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Abstract—This paper introduces an industrial cyber-physical
system (CPS) based on the Internet of Things (IoT) that is
designed to detect rare events based on machine learning. The
framework follows the following three generic steps: (1) Large
data acquisition / dissemination: A physical process is monitored
by sensors that pre-process the (assumed large) collected data
and send the processed information to an intelligent node (e.g.,
aggregator, central controller); (2) Big data fusion: The intelligent
node uses machine learning techniques (e.g., data clustering,
neural networks) to convert the received (''big'') data to useful
information to guide short-term operational decisions related
to the physical process; (3) Big data analytics: The physical
process together with the acquisition and fusion steps can
be virtualized, building then a cyber-physical process, whose
dynamic performance can be analyzed and optimized through
visualization (if human intervention is available) or artificial
intelligence (if the decisions are automatic) or a combination
thereof. Our proposed general framework, which relies on an IoT
network, aims at an ultra-reliable detection/prevention of rare
events related to a pre-determined industrial physical process
(modelled by a particular signal). The framework will be process-
independent, however, our demonstrated solution will be designed
case-by-case. This paper is an introduction to the solution to be
developed by the FIREMAN consortium.

Index Terms—Industrial IoT, rare-event detection, predictive
maintenance, machine-learning.

I. INTRODUCTION

Predictive systems are usually designed to find recurrent
patterns while excluding outliers. This is also true when
analyzing methods of machine learning applied in industrial
settings or in Industrial Internet of Things (IIoT) more gen-
erally. This paper, which is based on the project FIREMAN!
funded by CHIST-ERA, focuses on this point by building an
IoT network in combination with specific machine learning
algorithms capable of detecting rare events in industrial setups
in an ultra-reliable way. This, however, is not a trivial task due
to the interdisciplinarity needed by the proposed solution. We
offer below the state-of-the-art in different topics that will be
covered by our solution.

IFIREMAN stands for Framework for the Identification of Rare Events via
MAchine learning and IoT Networks.

A. Literature review

Cyber-Physical Systems (CPS) and IIoT: In [1], the
authors provide many examples of CPS in industry discussing
the challenges involved and specifying the needs of different
industries. [2] provides a good review of high-level technical
challenges.

Modelling complex systems: Different approaches to
model 5G and IoT communication networks can be found in
[3]. In [4], the authors discuss different ways of modelling
modern power grids, including not only the physical system
but its relations with communication and decision-making
networks. In [5], the authors introduce an integrative, three-
layer, methodology.

Time-based vs. event-based data acquisition: Sensors
acquire raw data to monitor physical processes via periodic
sampling or via events. Depending on how the parameters
are set, traffic in the communication network is generated,
and each packet will contain information depending on the
sparsity of the signal. The sampling strategy and the reliability
of communication have been assessed in [6], while [7] dealt
with the impact of the combination of these sampling methods.

Machine-type communications and data aggregation:
The information exchange system is built upon ubiquitous
wireless connectivity of machine-type communications (MTC)
[8]. MTC may need to work in extreme cases: massive
MTC (mMTC) and ultra-reliable low-latency communica-
tions (URLLC). The concept of data aggregation [9]-[11]
is promising in this respect. Traffic from MTC devices is
first transmitted to a special node called data aggregator that
collects and processes the received data. Depending on the
application, the aggregator can relay the processed data to the
core network, use the data for a feedback control loop, or be
used to monitor some metric.

Big data mining for rare-event prediction and response:
Rare-event detection in time-series is a large field with many
approaches [12]. Local Outlying Factor [13] is based on
clustering multi-dimensional data points. Other techniques



borrow principles from speech processing [14]. Even more
potent are Quantitative Association Rules (QAR) with high
confidence & small support; recent results with a synthetic
dataset of multidimensional vectors, with components drawn
from Gaussian distributions have verified the effectiveness of
this approach [15]. QARMA (standing for "Quantitative Asso-
ciation Rule Mining Algorithm") outperforms all other well-
known machine learning methods in terms of both detection
rate and false alarm rate, as shown in Table I. Finally, the
detection of rare events can be also viewed as outlier detection
in the context of sparse modeling and optimization techniques
[16]. The GARD method in [17] and the KGARD in [18]
were proposed as offline tools for robust linear and nonlinear
estimation (supervised learning), respectively.

TABLE I
COMPARISON OF QARMA WITH STATE-OF-THE-ART CLASSIFIERS FOR
RARE-EVENT DETECTION ON THE TEST PART OF A SYNTHETIC DATASET
(70,200 POINTS, 200 RARE EVENTS, 50% TRAINING, 50% TESTING).
ADAPTED FROM [15].

Method True Detection in % | False Alarm in %
QARMA 100 0.002
JRip (Ripper) 97 0.06
MultiLayerPerceptron 98 0.017
AdaBoost.M1 91 0
Bagging 51 0
J48 (Decision Tree), 0 0
SMO (SVM) 0 0
Stacking 0 0
BayesNet 0 0
LogitBoost 0 0

Predictive maintenance and rare events: In classical
periodic maintenance, parts may be replaced too soon, and
supply chains may be disrupted, causing extra variability in the
supply chain unnecessarily. [19] constitutes a review consider-
ing condition-based maintenance (CBM) as a decision-making
strategy based on the detection of rare events. Yam et al. in
[20] describe an integrated Decision Support System (DSS).
In [21], the authors provide different performance trade-offs
between frequency of unexpected breaks and unexploited
lifetime.

B. Structure of the paper

This paper will present an innovative framework to be
proposed by FIREMAN by moving beyond the state-of-the-
art in the above-mentioned fields in order to build an effective
solution for rare event detection in industrial environments.
The rest of this paper is organized as follows: Section II de-
scribes the general approach to be used by FIREMAN. Section
IIT focuses on the method to solve specific problems and the
progress beyond existing solutions. Section IV introduces the
expected results to be delivered by FIREMAN and Section
V provides the main impact insights of the project. Finally,
Section VI concludes this paper.

II. FIREMAN APPROACH

Our solution aims at providing a big-data-based optimized
framework to predict and detect rare events in industrial
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Fig. 1. The FIREMAN approach and concept illustration.

processes (mainly in maintenance), also including possible
interventions. Figure 1 illustrates the general FIREMAN con-
cept, built to answer the following scientific questions:

(1) Many industrial processes are physical and can be vir-
tualized following three generic, autonomous but interrelated,
steps: (i) acquisition of raw data and its pre-processing related
to the sensor network deployment, (ii) fusion to aggregate and
represent the raw data and (iii) analytics to build an intelligent
prediction/detection of rare events. Research question: What
is the optimal system architecture (i.e., design of each one
of the three above steps and their integrated deployment)
for detecting/predicting rare events for an industrial process
with its own characteristics? FIREMAN will answer this by
providing a framework based on CPS to guide the opti-
mal system architecture design that is process-independent.
However, for demonstration purposes the system design will
be determined case-by-case. Our proposal will be tested for
predictive maintenance in various environments: an automotive
industrial plant, a base-station factory and a wind turbine. Both
simulations and tests in real environment will be employed.

(2) In the acquisition step, there are many ways to obtain
raw data: single vs. many sensors, periodic vs. event-driven
sampling, random vs. planned deployments, single- vs. multi-
hop transmissions, etc. Each industrial process can be evalu-
ated by one or a set of relevant signals that shall be monitored.
Research question: For a given industrial process, what are
the main signal characteristics (e.g., periodic or sparse), what
are the most suitable ways to collect, store and distribute the
raw and pre-processed data within such sensor/IoT network?
How can the communication (sensor) network be dimensioned
and configured to attain the required performance metrics (e.g.,
reliability and low-latency) for the detection of rare events?
FIREMAN will answer this by proposing a framework to
model the industrial physical processes to assess and classify
the signal characteristics. For the different classes of signal,
different sets of collection-storage-dissemination deployments
shall be analysed. A network architecture that is tuned to



rare events will be proposed and the corresponding network
protocols (e.g., from 5G-PPP?) will be accordingly configured.

(3) Depending on the acquisition, the aggregation and repre-
sentation of raw/pre-processed data require different treatment
(e.g., periodic samples require different treatment from event-
based ones). Research question: What are the most suitable
data fusion options to aggregate/represent the heterogeneous
big data sets generated by a specific acquisition deployment?
FIREMAN will answer this question by studying different
(heterogeneous big) data aggregation methods and assess
the performance of different machine-learning algorithms to
compress and represent the raw/pre-processed data after the
acquisition step.

(4) The already fused data still need to be processed
through analytics so rare events can be predicted/detected, and
possible reactions proposed. Research question: What is the
most efficient algorithm to deal with rare events in industrial
processes, particularly for predictive maintenance? FIREMAN
will answer this question by proposing new big data algorithms
to deal with rare events, and developing visualization tools to
help their identification and provide possible actuator reactions
to cope with them. As mentioned, our framework shall be
general, but the actual implementation is carried out according
to the specific process being considered.

III. FIREMAN METHODOLOGY

FIREMAN will employ the following methodology: (1)
Definition of the system specifications and requirements, based
on the needs and key performance indicators (KPIs) related to
the detection of rare events, as provided by the industry itself.
For this, we will rely on the consortium’s industrial partner,
SEAT, as well as on inputs provided by other collaborating
industrial players from various vertical fields (e.g., telecoms,
energy, etc.). (2) Research work to achieve the project’s tech-
nical goals in its three key areas: large-scale data acquisition,
big data fusion and big data analytics. The emphasis will be
both on the development of novel techniques in each of these
constituent areas, as well as on their optimal inter-working;
the latter is an important novelty of the proposed work com-
pared to the state-of-the-art. (3) Development and conducting
of proof-of-concept trials and pilots that will showcase the
validity and value of the proposed approach. The emphasis
here will be both on the usefulness of the overall approach, and
on its validation over different industry sectors. The scientific
results and experimental trials will be disseminated in the
scientific and industrial communities.

FIREMAN will seek radical new approaches to rare-event
detection for predictive maintenance and other types of ac-
tuation. To reach this goal, the steps of acquisition, fusion
and analytics are understood as constituent parts of an in-
dustrial CPS, modelled following the three-layer approach
proposed in [5]. For the first step, we will focus on the
characterization of the physical process data by employing
traffic modeling techniques that account for event-based traffic
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activation patterns [6, 22]. Furthermore, we will develop
methods for data pre-processing, classification and storage that
will enhance the process of rare-event detection. Finally, the
process is enriched by the investigation of data transmission
techniques that achieve scalable (mMTC), ultra-reliable low-
latency (URLLC) and energy-efficient transmission, taking
into account existing and ongoing work towards 5G standards
[23, 24]. In the fusion step, we will investigate intra-cluster
discovery algorithms, cluster-head selection policies, no-SQL
databases and indexing from time-series databases, as well
as dimensionality reduction techniques for big data, such as
neural network-based approaches [25] and compressed sensing
techniques [26, 27].

The big data analytics, in turn, will use the pre-processed big
data from the previous step and will constitute the final stage
for detecting/predicting/preventing rare events. The proposed
solution will be based on new results from Quantitative
Association Rule Mining (QARM) applied to very big datasets
comprising multi-dimensional time-series (preliminary results
illustrated in Table I). Using recent results in QARM (see
[15]), as well as using results from the seemingly unrelated
area of application of FOREX market direction prediction (see
[14]) for detecting useful (even if rare) patterns of time-series
move directions, as well as from robust regression, we shall
build an ensemble of rare-event detectors that will be capable
of detecting conditions that signal the need for maintenance
operations even when the frequency of these signals does not
exceed say, one occurrence per millions of sensor readings.

This capability is due to the ability of QARM to mine
association rules with any required support the user defines
that simultaneously maintain sufficient confidence, lift and
any other combination of interestingness measures for the
derived rules, and to the algorithm’s completely scalable
(parallelizable in shared/distributed memory clusters/clouds)
nature. As shown in [15], it is possible to mine all rules of the
form: ’il[vml’l € Ti1,1] A ...in[’l)am’m inTin’m] 5=c> j[p = lj],

where the notation i[v € r] denotes the “restriction” of item
i’s v attribute value to the range r. The rule is interpreted
as follows: “whenever in a “user history” the item ¢; appears
with value for the attribute a*>! within the range 7;1,1, and the
item i,, also appears with value for its attribute v falling
within the range 1, ,, then, with support at least equal to
s and “interestingness metrics” at least equal to ¢, the item
7 also appears in the same user’s history with a value for p
being greater than (or, if specified, with value exactly equal
tO) l g

When detecting rare events in a manufacturing plant’s
operations, a “user history” may simply correspond to a set of
simultaneous sensor readings (each sensor reading correspond-
ing to an “item” with a single quantitative attribute, its value)
or any other derived feature from these readings (e.g., the
immediately previously read sensor value). The consequence
that is sought for may simply be the maximum reading of a
particular sensor in the next 10 sampling periods or any other
desired quantity such that, when its value exceeds a threshold



this indicates the need to take some specific action e.g. halting
operation and performing predictive maintenance.

The QARM framework is therefore theoretically very well
suited for predictive maintenance based on rare event detec-
tion, because it can automatically discover all non-dominated
rules that indicate that a set of (rarely occurring) pre-conditions
triggers a maintenance need; we have also provided initial
experimental evidence supporting the theoretical intuition as
well: the preliminary results in Table I show that QARMA
is indeed superior to all current competitors. By specifying
sufficiently low support levels to capture the rarity of the
events’ occurring frequency, and at the same time specifying
sufficiently high required confidence and lift or conviction
values for the derived rules, the algorithm can produce a
(possibly large) set of rules that trigger rarely, but when
they do, they indicate with high likelihood the need for
maintenance. Once produced, such rules are continually and
automatically tested to see if they fire as new observations
arrive. When they fire, they signal an alert for a maintenance
need. In FIREMAN, we will further innovate by turning the
QARMA algorithm into an online algorithm that continuously
learns to adapt its rules as new evidence becomes available
(tackling Big Data). Furthermore, we will investigate how to
choose in a near-optimal manner what values to consider for
each attribute when their domains become prohibitively large,
without serious sacrifices in the quality of the results.

Similarly, the pattern mining system described in detail in
[14] is based on a highly parallel algorithm that allows the
prediction of the movement of any component of a multi-
dimensional time-series above or below a certain threshold
within an upcoming time interval, and again, the support levels
for the patterns can be arbitrarily small, defined by the user.
The idea is to “fit” a wave-form of a time-series in a so-
called template-grid, and derive a similarity value between the
current time-series fragment, and a “prototype” template-grid
pattern that has the property that with significant support and
confidence, to indicate that the time-series will exceed or fall
below a certain percentage of its current value within a defined
number of sampling periods in the near future, which should
be an alert for maintenance.

A third approach for the online (real-time) detection of rare-
events is to use machine learning techniques based on sparse
representations. In FIREMAN, we intend to develop novel
online algorithms for outlier detection, based on the state-of-
the-art methods [17, 18, 28], which have been used as offline
(batch) detection tools for robust regression over relatively
small data sets (supervised-learning). The novelty of our
learning approach is summarized as follows: a) develop online
methods based on the aforementioned sparse optimization
directions, b) investigate the best possible sampling techniques
(stochastic versus mini-batch) and c) extend the regression
tasks to their classification counterparts (which can be also
viewed as regression with integer output variables, e.g., for
the binary case +1,-1 - outlier versus no-outlier). As already
mentioned, in FIREMAN, we shall build a pool of rare-event
detection tools, consisting of robust regression/classification,

QARM, and FOREX market prediction techniques. The goal
is to use these methods collaboratively, considering parallel
or sequential use over different layers for the identification
and prediction tasks. This approaches will be demonstrated in
three sites: SEAT car manufacture, University of Oulu together
with Nokia base-station manufacture, and LUT automation
laboratories. Experiments with well-defined blocks will be
considered to guarantee reproducibility. The setup will consist
of at least one controlled machine with sensors, a communi-
cation network, and a workstation including data acquisition,
management, analytics blocks, as well as a visualization block
(refer to Figure 1) for at least one industrial process. Real
users will be considered to define the performance metrics as
reliability, low latency and usability with well-defined criteria,
and to validate the proposed approach. From their feedback,
it will be refined until users’ validation.

IV. EXPECTED RESULTS

The overall objective of FIREMAN is to design, develop
and showcase a novel big-data-based framework that en-
compasses all steps from sensing and data acquisition to
statistical analysis and operational decisions, to accurately
identify, detect, forecast and prevent rare events in a pre-
determined industrial physical process. FIREMAN aims to
build an architecture with a strong interplay among several
research areas towards a highly-integrated CPS design at
all data-processing levels. In this context, FIREMAN will
provide breakthroughs in all three key pillars, i.e., large-
scale data acquisition, big data fusion and big data analytics,
considering the developments of relevant ongoing projects, but
it will contribute far beyond state-of-the-art by pursuing the
following objectives:

« Model the industrial physical process to retrieve the signal
characteristics, e.g., time- vs. event-triggered sampling,
from the physical data captured/recorded using sensors.

o Design a flexible network topology for the scalable de-
ployment of many sensors to securely collect data at a
low cost with a proper utilization of the scarce shared
resources.

o Optimize the communication protocols to efficiently han-
dle mission-critical transmission with stringent QoS re-
quirements (ultra-high reliability, very low-latency) in
industrial setups.

o Perform preliminary data analysis and processing to
transform multi-stream raw data generated by various
sources (heterogeneous, high-dimensional) into usable
formats.

o Extract useful information from the monitoring of data
and guide short-term operational decisions related to the
physical process monitored by the sensors.

o Achieve proactive (predictive) maintenance via data-
driven learning and mining techniques that identify and
unlock the potential value of data.

« Offer system situational awareness on the occurrence of
rare events for timely detection, effective decision-making
and possible issuing of actuator commands.



« Develop experimental test-beds to enable the validation
and evaluation of the proposed solutions and verification
of the overall system performance.

V. IMPACT

The results from FIREMAN will clearly have a strong
impact on the field of predictive maintenance for IIoT sys-
tems; on the other hand, the specific challenges posed to the
new generation of wireless networks will lead to important
advances for reliable and massive-scale connectivity. From
social perspective, FIREMAN will lead to a more connected
society and to the implementation of radically new services
based on a sustainable industrial value creation. Specifically,
FIREMAN will achieve the following impacts:

1) Poor maintenance in production lines can reduce their
productivity by 5 to 20% and unplanned downtime is
estimated to cost 50 billion dollars each year [29].
The proposed predictive maintenance approach may
eliminate such productivity losses, reducing the time
required to plan maintenance by 20 to 50%, increasing
equipment availability by 10 to 20%, and reducing
overall maintenance costs by an estimate of 5 to 10%.

2) Rare events related to industrial plants result in serious
risks to the working force and poor maintenance may
cause accidents and permanent damage. FIREMAN’s
approach to identify and predict rare events will help
to diminish such issues, improving the working safety
in industrial plants.

3) More efficient communication and information process-
ing in industrial plants may increase the efficiency of
the plant in general, following the concept of Industry
4.0. The integrative proposed approach based on IIoT
and CPS may create 10 million new qualified jobs in
Western Europe and may provide useful benchmarks for
European industry.

VI. CONCLUSIONS

This paper provides an overview of an IoT-based framework
to design an ultra-reliable rare-event detector using machine-
learning, mainly focused on industrial settings. The proposed
approach is holistic, from the physical process modeling
to the end-user data visualization. Differently from existing
solutions, FIREMAN will design general guidelines of how
to jointly sample, communicate, fuse and perform analytics
so that the desired rare events are reliably detected.
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