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Abstract—Connectivity in low-density rural and remote areas
where distances are long is a big challenge because of high
deployment costs and challenging radio channels with long delay
profiles. Spectrum sharing can make spectrum available for 5G
local network deployments to serve rural and remote areas. Spec-
trum sensing can be used to complement the traditional database
approach in order to enable efficient and dynamic use of the
radio spectrum. In rural and remote areas, long range coverage
is required in order to enable flexible and cost-effective solutions.
This calls for efficient and low-complex sensing methods who
are able to operate in those challenging environments. In this
paper we study spectrum sensing method called the window-
based (WIBA) energy detector in a challenging rural area channel
model for 5G networks. The results are compared to that of
the localization algorithm based on double-thresholding (LAD)
energy detector. Simulations using a rural area channel model
with long delay profile indicated that the WIBA method is able
to operate in a rural area channel, and it clearly outperforms
the LAD method in terms of detection distance. The detection
difference was even 15-fold for the WIBA method, depending on
the transmit power and the signal bandwidth.

Index Terms—spectrum sensing, signal detection, rural area,
channel model.

I. INTRODUCTION

The exploitation of TVWSs (Television White Spaces) [1],
using dynamic and fragmented spectrum allocation (DSA)
[2] controlled by a cognitive engine [3], is a key feature
for remote and rural area wireless 5G networks. This inno-
vative and flexible use of spectrum is not allowed to harm
the incumbent spectrum users, which have priority over the
spectrum. Initial propositions for TVWS exploitation have
relied on a geolocation database [4] that store all technical
and geographic information about the TV stations and use a
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propagation prediction algorithm to define which channels can
be used in a given geographic position.

Relying only on the geolocation database is not enough to
provide the necessary protection for the primary users or to
fully exploit the vacant spectrum for two main reasons. The
first one is related to the fact that the coverage prediction
algorithms do not consider all propagation mechanisms, which
means that areas considered to be uncovered can indeed
be reached by the primary transmitter signal, resulting in
performance degradation for the secondary usage. The second
reason is related to potential unauthorized transmissions which
cannot be prevented in all cases. For example, pirate TV
stations which are as a problem in some countries do not have
their data inserted in the geolocation database. Although these
broadcasting signals do not need to be protected, they can
hinder the operation of the secondary networks running in the
same channel, which would be considered available by the
geolocation database. Therefore, spectrum sensing performed
by the secondary networks is essential for providing the ap-
propriate protection of the secondary user for the incumbents.
In this case, each a secondary node measures the spectrum
at its geographic position and performs a spectrum sensing
algorithm to determine if the channel is available or occupied.
This decision can be combined with the geolocation database
to improve the protection of the primary users and increase
the exploitation of all spectrum opportunities.

In this paper, a wide-band window-based spectrum sens-
ing technique called the WIBA [5] energy detector (ED) is
proposed to be used for the detection of signals in remote
area scenario. Unlike conventional energy detectors, the WIBA
ED can detect signals also below the noise level. This in-
creases the detection distance between the transmitter and the
receiver, that is very important in rural and remote areas.
The performance of the WIBA ED is evaluated in terms of
determining the achievable detection distance. This is the first
case when the recently proposed WIBA ED is studied in other



than AWGN channel. The results are compared to that of the
localization algorithm based on double-thresholding (LAD)
ED, which is among the most efficient ED methods [6].

This paper is organized as follows. First, a rural area channel
model is introduced in Section II. Section III introduces the
WIBA energy detector. Simulation results are provided in
Section IV and conclusions are drawn in Section V.

II. RURAL AREA CHANNEL MODEL

To evaluate the performance of the proposed spectrum
sensing algorithm in a remote rural area, a rural channel model
proposed in the Remote Area Access Network for the 5th
Generation (SG-RANGE) project [7] was used. The model is
based on measurements of Root Mean Square (RMS) delay
spread and path loss performed in four different rural areas
with varying terrains by the companies Ericsson and Telstra for
frequency of 850 MHz and distance range up to 200 km [8].
From the measured data it was proposed a simple path loss
and shadow fading (SF) models, as follows:

PL(d, f) = FSPL(d, f) + K, ¢))
SF ~ N(0,4.47%), )

respectively, where d is the distance distance in km, f is the
central frequency in MHz, FSPL(-) is the Free Space path
loss model, K = 29.38 dB is an additional loss coefficient due
to varying terrains shapes in the rural area propagation path
that contribute with additional loss effects, such as diffrac-
tion, reflections and scattering. Since the measurements were
obtained in varying terrains, the introduced channel model is
here expected to be generally applicable for different rural and
remote area scenarios.

Fig. 1 depicts cumulative distribution function (CDF) of the
overall large scale fading, i.e., path loss combined with the
SF, experienced by a user equipment (UE) deployed within
the radius 1 km < d < 50 km. In this figure it is noted that
the minimum and maximum losses are 110 dB and 165 dB,
respectively, showing that even when a UE is close (not less
than 1 km) to the base station (BS) a large attenuation is
expected, characterizing a very challenging scenario for a
successful sensing technique.

The small scale fading of the channel model is characterized
by the combination of measurements from [8] and the 3rd
Generation Partnership Project (3GPP) Clustered Delay Line
(CDL)-A model. The main parameters used to adjust the CDL-
A model and generate the small scale fading are summarized
in Table I. From the parameters in Table I, the root mean
square (RMS) delay spread (DS) plays an important role in the
system designing since it is used to characterize the coherence
bandwidth, as follows:

B, ~ = 2 MHz, 3)

5DS

i.e., any signal which occupies a bandwidth larger than
2 MHz will experience frequency selective channel conditions.
This restricted bandwidth will bring additional challenges
for sensing based on energy detection due to the increasing
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Fig. 1. CDF of the measured data from [8] and CDF of the path loss model
in (1) combined with the SF in (2), respectively, assuming a distance d ranging
from 1 km to 50 km.

TABLE 1
ROOT MEAN SQUARE DELAY AND ANGULAR SPREADS ADOPTED IN THE
RURAL CHANNEL MODEL.

DS (ns) ASD (deg) ASA (deg) ZSD (deg) ZSA (deg)
100 1 30 0.1 1
DS is root mean square delay spread
ASD and ASA are the root mean square azimuth spread of the departure
and arrival angles, respectively
ZSD and ZSA are root mean square zenith spread of the departure and
arrival angles, respectively

occurrences of deep fadings in the received signal which will
reduce the received energy below the noise floor.

III. THE WIBA METHOD

The WIBA method [5] uses detection windows and a
detection threshold when defining is there a signal (=occupied
channel) or only a noise (=unoccupied channel) present. As-
sume that there are IV received frequency domain samples x;
that are are zero mean, independent and identically distributed
Gaussian complex random variables. Then a sample energy
y; = |7;|? follows a chi-squared distribution with 2/ degrees
of freedom. In the WIBA algorithm, the received frequency
domain samples are divided into L blocks (detection windows)
whose length is M (see Fig. 2). Window length M can be
selected beforehand based on the expected signal bandwidths
(BW). It has been shown that an optimal window length
equals to the signal BW, and too long detection window
degrades the detection performance [5]. The WIBA algorithm
is using 50% overlapping of detection windows, i.e., first block
Ly=1,---,M,secondblock Ly = & +1,.-. 24+ M, third
block Ly = M +1,--- |2M, and so on. Energy samples y;
in each block are summed up to get the total energy in each
block: Z; = S, Yi(l), i=1,--- , L.

The signal detection threshold is [5]
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Fig. 2. The WIBA method operation principle.

where threshold parameter 7' comes from [9], [10]

M-1

Pepa=e ™ Z H(TM)"’, (5)

k=0
where Pra is the desired false alarm rate. The Pga defines how
many samples are above the threshold if there is only a noise
present. For example, if N = 1024 and Pgs = 0.01 (=1%), 10
samples from total of 1024 samples are above the threshold
in the noise-only case. The threshold parameter 7 is constant
for specific M and Pga, and is calculated before beforehand
and given as an input to WIBA algorithm.

In the performance evaluation, a well-known signal detec-
tion method called the LAD method [11] [12] is used as a point
of comparison. The LAD method utilizes iterative forward
consecutive mean excision (FCME) threshold setting [13]. The
threshold setting process corresponds to the WIBA threshold
setting when M =1 (and L = N). In that case, the threshold
parameter can be derived from (5) as

Teme = — In(Pea). (6)

The FCME algorithm rearranges frequency domain samples
in an ascending order according to sample energy. The detec-
tion threshold is T}, = Temey, where Teyg is from (6) and
y denotes the mean of energy samples. In the first iteration,
the mean is calculated from the initial set that contains 10%
of the samples with smallest energy. The samples below
the threshold are added to the initial set, and this iteration
continues until there are no samples below the threshold.
The LAD method uses two FCME thresholds (upper and
lower), by using two different threshold parameters. The LAD
method clusters adjacent samples above the lower threshold.
The cluster is from a signal if at least one of the samples in the
cluster is also above the upper threshold. ACC parameter that
allows p (usually p = 3) samples [12] to be below the lower
threshold between two accepted clusters, is used to increase
the detection performance [12].

IV. SIMULATIONS

The detection performance of the WIBA method was stud-
ied by Matlab simulations, and the results were compared to

Fig. 3. Detection distance (Tx-Rx) depends on the transmit signal power,
signal BW and the channel.

the LAD method performance. The LAD method is known
as a simple and effective ED method. Typical performance
requirement for spectrum sensing algorithms is that probability
of detection P; > 0.9 (i.e. 90%) [14], therefore it is also
assumed here. Detection distance in kilometers (km) was
of interest in our performance evaluation. In practice, the
detection distance corresponds a radius of a circular detection
zone as illustrated in Fig. 3. Therein, transmitter Tx trans-
mits three signals a, b and ¢ with different transmit powers
and BWs. Figure illustrates the detection distance for three
receivers, Rx;-Rxs, that are able to detect the signals on
different distances, depending on the signal power, BW and
the propagation channel.

Rural area channel model presented in Section II was used
in the simulations and the signal to be detected was a band-
limited raised-cosine binary shift keying (RC-BPSK) modu-
lated signal. This signal was chosen to represent a general
telecommunication signal. Note that both the studied methods
are robust to signal and modulation types, and also to the
frequency areas [5], [12]. Assumed total sensing BW was
23.4 MHz and carrier frequency was 700 MHz. There were
N = 1024 frequency domain samples. Transmit power, signal
BW and detection window length A varied. Transmitted
signal powers were 17 — 83 dBm and used signal BW values
were 0.9 — 6 MHz corresponding to 4 — 25.6% of the total
BW, respectively. Corresponding window lengths M were
44 — 768 samples, so that the lengths equal to the signal BW.
The number of Monte Carlo iterations was 3000. The WIBA
method used Prs = 0.01, 50% overlapping, and L = 2%.
The LAD threshold parameters were 13.81 (Ppq = 10=%) and
2.66 (Pp4 = 0.07), and ACC parameter p = 3.

In the simulations, detection probability P; vs. detection
distance between Tx and Rx was studied. In Table II, it is
shown what is the maximum distance between Tx and Rx
for different transmit power and signal BW values so that the
detection probability requirement Py > 0.9 will be met in
the WIBA and the LAD methods case. For example, when
transmit power is 53 dBm and signal BW is 2 MHz, signal
can be detected (detection probability P; > 0.9) when Tx-



TABLE II
FOR DIFFERENT TRANSMIT POWER [DBM] AND SIGNAL BW VALUES
[MHZ], THE MAXIMUM TX-RX DISTANCE WITH A REQUIREMENT THAT
DETECTION PROBABILITY Py > 0.9.

Transmit power | Signal BW | Tx-Rx distance | Tx-Rx distance
[dBm] [MHz|/% | WIBA method | LAD method
83 5.85/25 > 200 km 40 km
53 2/8.6 < 34 km < 7 km
53 4/17.1 < 20 km < 3 km
53 6/25.6 < 15 km < 1km
46 2/8.6 < 15 km < 6 km
46 4/17.1 < 9 km < 3 km
46 6/25.6 < 6 km < 1 km
43 5.85/25 < 4 km -
36 5.85/25 < 2 km -
30 2/8.6 < 3 km -
30 4/17.1 < 2 km -
30 6/25.6 < 1 km -
17 0.9/4 < 900 m < 200 m
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Fig. 4. P, vs. detection distance results when transmit power of the signal
is 53 dBm. M = 102 for 3 MHz signal, 180 for 4 MHz signal and 264 for
6 MHz signal.

Rx distance is 34 (WIBA) and 7 (LAD) km (second line in
Table II). The performance difference is remarkable, being
almost five-fold. It can be seen that the narrower the signal
is, and the higher the transmit power is, the longer is the Tx
- Rx distance that the signal can be detected. When transmit
power is 83 dBm and signal BW is 5.85 MHz (= 25%), the
WIBA method is able to detect signal when Tx-Rx distance
is even 200 km. Instead, the LAD method is able to detect
the signal when Tx-Rx distance is at most 40 km. The WIBA
method outperforms the LAD method in all studied cases: it
gives 3 — 15 times larger detection distances than the LAD
method. The wider the signal the bigger the detection distance
difference.

In Figs. 4 - 7, transmitted signal power values were
53,46, 30 and 20 dBm. While used BW values of the detected
signal were 2,4 or 6 MHz corresponding to 8.6%,17.1% and
25.6% of the sensing BW, respectively. Corresponding window
lengths were 102, 180 and 264 samples, being optimal so that
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Fig. 5. P, vs. detection distance results when transmit power of the signal
is 46 dBm. M = 102 for 3 MHz signal, 180 for 4 MHz signal and 264 for
6 MHz signal.
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Fig. 6. P, vs. detection distance results when transmit power of the signal
is 30 dBm. M = 102 for 3 MHz signal, 180 for 4 MHz signal and 264 for
6 MHz signal.

the lengths equal to the signal BW. The performance target
of signal detection was Py > 0.9, which is marked with the
horizontal lines in the pictures. When the WIBA method is
used and transmit power is high (> 46 dBm), the curves fall
evenly whereas in the LAD method case the curves first fall
steeply. From Fig. 4 can be seen that both the methods are able
to find all the signals from some distance. However, there is a
big difference between the detection distances. For example,
when signal BW is 2 MHz and the WIBA method is used, the
detection distance is 34 km. When the LAD method is used,
the detection distance is 27 km less, that is, only 7 km. In
Fig. 5 case, the WIBA method can detect all the signals, as
the LAD method detects only the two narrowest ones (2 and 4
MHz). When transmit power is 30 dBm, the WIBA method is
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Fig. 7. P, vs. detection distance results when transmit power of the signal
is 20 dBm.
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Fig. 8. Distance [km] where the LAD and WIBA methods can detect the
signal at Py > 0.9. Transmit power is 53,46 and 30 dBm and signal BW is
2,4 and 6 MHz.

able to detect the signals (Fig. 6). However, the LAD method
gets at its best P; = 0.7, so the signals can not be detected
using the LAD method. When transmit power is 20 dBm, for
both the methods, the signal can not be detected at all (Fig. 7).
Results for 53, 46 and 30 dBm signals are illustrated in Fig. 8.
It can clearly be seen that the WIBA method outperforms the
LAD method. The wider the signal and the higher the transmit
power, the bigger is the performance difference.

V. CONCLUSION

This paper has studied the performance of the window-
based WIBA energy detector spectrum sensing method to
complement the traditional database based spectrum sharing
approaches for providing rural and remote area connectivity
with 5G networks. Spectrum sensing can help in detecting
unauthorized transmissions as well as facilitating the deploy-
ment of several secondary networks. Focus in this paper has
been on assessing the achievable detection distance in kilo-
meters which is critical for the establishment of remote area

networks. The simulation results show that the WIBA method
has excellent performance in a challenging rural area channel,
and it clearly outperforms conventional energy detectors.
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