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Abstract—In this paper, we have investigated the physical layer
security over cascaded Fisher-Snedecor F fading channels in the
presence of randomly distributed eavesdroppers. To characterize
the eavesdroppers’ intercept capability, both the conceptual k-th
nearest and best eavesdroppers are introduced. The probability
density function (PDF) of the k-th nearest and best eavesdropper
is characterized. The probability of interception, Pint, is corre-
spondingly regarded as the secrecy metric, and is further derived
with closed-form expressions in terms of Fox’s H-function. For
the purposes of providing more insights, the asymptotic behavior
of the intercept probability is also provided. To explore the
effects of the eavesdroppers’ density and the channel fading
conditions on the secrecy performance, we have performed the
Monte-Carlo simulation and compared our analytical results with
the simulated ones. One can find that our analytical results are
successfully verified by the simulation results.

Index Terms—Physical layer security, cascaded Fisher-
Snedecor F , Fox’s H-function, Poisson point process

I. INTRODUCTION

Information-theoretic security, i.e., physical layer security

(PLS), has attracted plenty of attentions [1], since the seminal

work was established by Shannon and Wyner. On the basis

of the classic Wyner’s wiretap channel model, many work

related to the secrecy performance analysis over various fading

channels, including the Gaussian fading channels [2], Rayleigh

[3], Rician [4], [5], Nakagami-m [6], Weibull [7], genralized-

K [8], α − µ [9]–[13], κ − µ [14], α-η-κ-µ [15], Fisher-

Snedor F [16], and Fox’s H-function fading channel [17], etc.,

were done. Apart from the aforementioned fading model, other

models, including the composite fading model and cascaded

fading model, are also widely used to characterize some

wireless communication scenarios. In particular, the cascaded

fading model demonstrates feasibility and applicability in

modeling the multi-hop cooperative communications [11],

[18], mobile-to-mobile (M2M) communication [19], [20], and

radio-frequency identification (RFID) pinhole channels [21],

etc.

More recently, the Fisher-Snedecor F fading channel was

proposed by [22], and the Fisher-Snedecor F is widely used

in the device-to-device (D2D) communications due to its good

accuracy as well as its simple mathematical form compared

with the generalized K fading channel. Later on, the authors

[18] characterized the N∗Fisher-Snedecor F distribution,

where the probability density function (PDF) and cumulative

distribution function (CDF) of the N∗Fisher-Snedecor F
distribution are derived and given in terms of the Meijer’s

G-function.

Despite the large amount of research dedicated to the

research on PLS over various fading channels [2]–[11], [14]–

[17], the PLS analysis with focus on cascaded fading channels

has been rare in open literature, except our previous work

[23]. In [23], the secrecy performance metrics such as average

secrecy capacity (ASC) and secrecy outage probability (SOP)

of communication systems over the cascaded α − µ fading

channels have been derived in terms of the Fox’s H-function.

Moreover, novel expressions for the the cascaded α − µ
statistical distributions, including the PDF and CDF, were

provided in a general and unified form in [23], which facilitates

the performance analysis cascaded α − µ fading channels.

The distribution expressions provided in [23] are advantageous

since they are derived under the assumption that the fading of

each hop is independently but not identically distributed, and

also they are not limited to the number of N .

To the best of our knowledge, no work in the open literature

has ever investigated the PLS over cascaded Fisher-Snedecor

F fading channels. In this work, we study the secrecy perfor-

mance of communication systems over the cascaded Fisher-

Snedecor F fading in the presence of randomly distributed

eavesdroppers. The locations of all eavesdroppers are modeled

by the homogeneous Poisson point process (HPPP). The

intercept capabilities of all eavesdroppers are mathematically

described either by the distance from the source node, i.e.,

the k-th nearest eavesdropper, or by the overall quality of the

received signal-to-noise ratio (SNR) at eavesdroppers, i.e., the

k-th best eavesdropper. The SNR of the k-th best eavesdropper

accounts for both the large and small scale fading effects [12].

The intercept probability is derived with regards to the k-th

nearest and best eavesdropper, respectively. Afterwards, Monte

Carlo simulations are presented to show the accuracy of our

analytical results.

The rest of this paper is structured as follows: Section II

presents the system model and formulates the secrecy problem.

Subsequently, the intercept probability is derived in Section III

and numerically discussed in Section IV. Finally, concluding

remarks are given in Section V.
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Fig. 1. System model

Mathematical Functions and Notations: [x]+ = max(0, x),
Γ(x) is the Gamma function. Hm,n

p,q [.] is the univariate Fox’s

H-function [24, Eq. (1.2)]. Gm,n
p,q [.] is the univariate Meijer’s

G-function [25, Eq. (9.301)].

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System model

As shown in Fig. 1, we consider a digital communication

system, where a source (S) intends to send confidential mes-

sages to a destination (D) via multiple amplify-and-forward

relays in the presence of randomly distributed eavesdroppers.

The locations of all eavesdroppers are characterized by the

HPPP distribution with density θe. We further assume the

following assumptions for the analysis: (i) S is located at the

origin; (ii) all eavesdroppers are randomly distributed in an

unbounded Euclidean space of dimension d; (iii) all users are

equipped with single antenna; and (iv) each communication

link experiences the Fisher-Snedecor F fading channels.

The instantaneous received SNR at D is

γD =
N
∏

i=1

γ̄Dgi, (1)

where γ̄D is the average power at the receiver side, gi = |hi|
2,

and hi is the fading coefficient, which follows independent

and non-identically Fisher-Snedecor F distribution with pa-

rameters (mi,mi,s). By using the results given in [18], the

PDF and CDF of the received instantaneous SNR at D are

respectively given by

fD(γ) = κDGN,N
N,N

[

̺Dγ

∣

∣

∣

∣

(−mi,s)i=1:N

(mi − 1)i=1:N

]

, γ > 0,

(2a)

FD(γ) =
κD

̺D
GN,N+1

N+1,N+1

[

̺Dγ

∣

∣

∣

∣

(1−mi,s)i=1:N , 1
(mi)i=1:N , 0

]

,

(2b)

where κD =
∏N

i=1
Ci

γ̄D
, Ci =

λi

Γ(mi)Γ(mi,s)
, λi =

mi

mi,s
, and ̺D =

∏N
i=1

λi

γ̄D
. As shown in Fig. 2, the PDF of γD is plotted to show

the correctness of (2a).

The received SNR at a random eavesdropper is given as

γE =
γ̄Ege
rαe

. (3)

2 4 6 8 10 12 14

0

0.05

0.1

0.15

0.2

Fig. 2. The PDF of γD for selected values of N when mD = 3, mD,s = 2,
γ̄D = 5 dB.

Similarly, γ̄E is the average power at the receiver side.

ge = |he|
2, and he is the Fisher-Snedecor F distributed fading

coefficient with parameter (me,me,s). re is the distance of a

randomly distributed eavesdropper from the source, α is the

path-loss exponent.

In order to better characterize the eavesdroppers’ intercept-

ing capability, two ordering schemes, i.e., either according to

the distance or the quality of the received SNR (namely, the

k-th nearest and best eavesdropper) are considered.

B. User Association

1) The k-th nearest eavesdropper: The k-th nearest eaves-

dropper is ordered by the distance from the source to the

considered eavesdropper. In other words, all the randomly

distributed eavesdroppers are in the descending order, i.e.,

|r1| < |r2| < |r3| < · · · .

Theorem 1. Inspired by [12, Lemma 1], the PDF of the

instantaneous SNR of k-th nearest eavesdropper is given by

fN (γ) =
CE/γ̄E

Γ(k)A
1
δ
e

H1,2
2,1

[

λEγ

γ̄EA
1
δ
e

∣

∣

∣

∣

(−me,s, 1), (1− k − 1
δ
, 1
δ
)

(me − 1, 1)

]

,

(4)

where Ae = πθe, λE = mE

mE,s
, CE = λE

Γ(mE)Γ(mE,s)
, and δ =

d
α

.

Proof. Substituting the PDF of rαe [6, Eq. (5)],

frαe (y) = exp(−Aey
δ)
δ(Aey

δ)k

yΓ(k)
, (5)

and the PDF of ge [16]

fge(γ) = CEG
1,1
1,1

[

λEγ

∣

∣

∣

∣

−me,s

me − 1

]

(6)

into

fN (γ) =

∫ ∞

0

y

γ̄E
fge

(

yγ

γ̄E

)

frαe (y)dy, (7)

and using [26, Eq.(8.3.2.21)]

Gm,n
p,q

[

x

∣

∣

∣

∣

(ap)
(bq)

]

= Hm,n
p,q

[

x

∣

∣

∣

∣

(ap, 1)
(bq, 1)

]

, (8)



we have

fN (γ)
(a)
=

Ak
eCE

γ̄EΓ(k)

∫ ∞

0

ykδH1,0
0,1

[

A
1
δ
e γ

∣

∣

∣

∣

−
(0, 1

δ
)

]

×H1,1
1,1

[

λEγ

γ̄E
y

∣

∣

∣

∣

(−me,s, 1)
(me − 1, 1)

]

dy,

(9)

where step (a) is developed by re-expressing the exponential

function in terms of the Fox’s H-function [24, Eq.(1.125)], and

then using the Mellin transform of the product of two Fox’s H-

function [26, Eq. (2.25.1.1)], the proof is accomplished. �

2) The k-th best eavesdropper: Different from the k-

th nearest user, the k-th best user is ordered according to

the quality of the received SNR at the eavesdroppers, i.e.,

γE,1 > γE,2 > γE,3 · · · . Obviously, the eavesdropper with

smaller index is more capable of successfully intercepting the

legitimate links.

For the notational simplicity, all the k-th nearest and best

eavesdropper are denoted as γN,k and γB,k, respectively.

Theorem 2. Similarly, by employing the results from [12],

[27], the PDF of the instantaneous SNR for the k-th best

eavesdropper is given by

fB(γ) = exp

(

−Ab

(

γ̄E
γ

)) δ

(

Ab

(

γ̄E

γ

)δ
)k

γΓ(k)

(b)
=

1

γ̄EΓ(k)A
1
δ

b

H0,1
1,0

[

γ

γ̄EA
1
δ

b

∣

∣

∣

∣

(

1− k − 1
δ
, 1
δ

)

−

]

,

(10)

where Ab =
λecdδCEΓ(mk+δ)Γ(mk,s−δ)

λδ+1

E

and cd = π
d
2

Γ(1+ d
2 )

.

Proof. Applying the results given in [11, Eqs. (11-12)], and

following the same methodology as in [11], we have the proof

achieved with ease. Step (b) is further developed with the help

of [24, Eqs. (1.58-1.60)] to simplify the following intercept

probability analysis. �

As shown in Fig. 3, we have demonstrated that our ana-

lytical PDFs of the k-th nearest and best eavesdropper are in

perfect match with Monte Carlo simulations.

C. Problem Formulation

The instantaneous secrecy capacity of such a system config-

uration under the assumption that eavesdroppers do not collude

is given by

Cs,k = [log2(1 + γD)− log2(1 + γl)]
+, l ∈ {N,B}. (11)

The probability of interception indicates the capability of

the eavesdroppers of decoding and intercepting the legitimate

transmitted messages from S. Mathematically, it is expressed

as follows [11, Eq. (16)]

Pint,l = Pr(Cs,k < 0) = P(γD < γl) =

∫ ∞

0

Fl(γ)fD(γ)dγ.

(12)
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Fig. 3. The PDFs of γN,k and γB,k for the k-th nearest and best eavesdropper
when me = 2, me,s = 3, γ̄E = 0 dB, d = α = 2, and θe = 0.75.

III. SECRECY PERFORMANCE CHARACTERIZATION

In this section, we aim at deriving the Pint,l under the two

ordering schemes. In addition, the asymptotic behavior of the

intercept probability is also demonstrated herein.

A. The k-th nearest eavesdropper

1) Exact Analysis: In the presence of the k-th nearest eaves-

dropper, the intercept probability over the cascaded Fisher-

Snedecor F fading channels is given by (13), shown at the

top of next page.

Proof. Plugging (2b) and (4) into

Pint,N =

∫ ∞

0

FD(γ)fN (γ)dγ, (14)

and then using [26, Eqs. (8.3.2.21) and (2.25.1.1)], the proof

is achieved. �

2) Asymptotic Analysis:

Remark 1. Observing (13), Pint,N is given in terms of δ = d
α

.

When δ = 1, i.e., α = 2 and d = 2. Physically speaking, it is

the situation that all the users are scattered in the 2 dimen-

sional space with a special pass-loss exponent. Subsequently,

using [26, Eq. (8.3.2.21)], the intercept probability is given by

(15) in Meijer’s G-function1, shown at the top of next page.

Remark 2. Again, observing from (13), the Pint,N is the

function of ̺D =
∏N

i=1
λi

γ̄D
and γ̄E . As the ratio

γ̄E

γ̄D
goes

to 0, applying the asymptotic expansion of the Meijer’s G-

function [28, Eq. (07.34.06.006.01)], we have the following

asymptotic Pint,N given in (16), shown at the top of next page.

For the simplicity of notations, let mN+1 = me,s,mN+2 =
k,mN+1,s = 0,mN+2,s = me.

1It is noted that the implementation of univariate Meijer’s G-
function is available at mathematical packages, such as Mathematica
(MeijerG[a1, · · · , an, an+1, · · · , ap, b1, . . . , bm, bm+1, · · · , bq , z]), and
MATLAB (meijerG(a, b, c, d, z)).



Pint,N =
κDCE

̺DλEΓ(k)
HN+2,N+2

N+2,N+3

[

̺Dγ̄EA
1
δ
e

λE

∣

∣

∣

∣

(1−mi,s, 1)i=1:N , (1, 1), (1−me, 1)
(mi, 1)i=1:N , (me,s, 1),

(

k, 1
δ

)

, (0, 1)

]

. (13)

Pint,N =
κDCE

̺DλEΓ(k)
GN+2,N+2

N+2,N+3

[

̺Dγ̄EAe

λE

∣

∣

∣

∣

(1−mi,s)i=1:N , 1, 1−me

(mi)i=1:N ,me,s, k, 0

]

. (15)

Pint,N =

N+2
∑

i=1

κDCE
̺DλEΓ(k)

N+2
∏

j=1,j 6=i

Γ(mj −mi)
N+2
∏

j=1

Γ(mj,s +mi)

Γ(1 +mi)

(

̺Dγ̄EAe

λE

)mi

. (16)

B. The k-th best eavesdropper

1) Exact Analysis: The intercept probability for the k-th

best eavesdropper over the cascaded Fisher-Snedecor F fading

channels is given by (17), shown at the top of next page.

Proof. Plugging (2b) and (10) into

Pint,B =

∫ ∞

0

FD(γ)fB(γ)dγ, (18)

and then using the Mellin transform of the the product of two

Fox’s H-functions, the proof is finished. �

2) Asymptotic Analysis: The asymptotic analysis of Pint,B

can be similarly achieved by following Remarks. 1 and 2.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, the intercept probability in terms of the

k-th eavesdropper obtained via Monte-Carlo simulations is

compared with our analytical results. The Fox’s H-function

is computed by using the approach proposed in [29], this

approach is widely used in the open literature to implement the

Fox’s H-function. For simplicity, all the simulation parameters

are set to follow the identical Fisher-Snedecor F distribution,

i.e., m1 = · · · = mN = mD and m1,s = · · · = mN,s = mD,s.

The markers denote the Monte-Carlo simulations, the dashed

and dotted lines represent the exact analytical results for

Pint,N and Pint,B , respectively.

Fig. 4 plots the analytical Pint,N and Pint,B against the k-

th nearest and best eavesdropper for selected values of N . One

can observe that (i) our analytical expressions for the Pint,N

and Pint,B given in Section III are in perfect agreements

with the Monte-Carlo simulations; (ii) the larger values of N
results in a higher intercept probability, in other words, the

larger value of N is more beneficial for the eavesdropper to

be capable of wiretapping the legitimate links; and (iii) for

selected N , the k-th best eavesdropper always behaves better

than the k-th nearest one.

Likewise, in Fig. 5, the impact of the eavesdroppers’ density

θe on the successfully intercept probability is explored. One

can conclude that the k-th best eavesdropper is more powerful

in intercepting confidential messages compared to the k-th

nearest one. In addition, the higher density θe contributes more

to the successful intercept probability.

Finally, Fig. 6 illustrates the Pint,N and Pint,B for selected

values of γ̄D. Again, it can be seen that for selected γ̄D, the

k-th best eavesdropper has a higher intercept probability than

the k-th best one.

V. CONCLUDING REMARKS

In this paper, we investigated the PLS of a digital commu-

nication link, characterized by the cascaded Fisher-Snedecor

F fading channels. Randomly distributed eavesdroppers are

considered and are termed as the k-th nearest and best

eavesdroppers. The intercept probability are correspondingly

derived with closed-form expressions in terms of the Fox’s H-

function. Numerical results and discussions are conducted to

show that (i) larger values of N leads to a higher intercept

probability; (ii) a higher eavesdropper density θe means a

higher intercept probability; and (iii) more importantly, the

k-th best eavesdropper always outperforms the k-th nearest

eavesdropper.
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