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Abstract—Cost-efficient implementation with a low-complexity
analog-to-digital converter is necessary for the sensor nodes in
the internet of things. In the paper, we study the distributed
compressive sensing (DCS) under the constraint of 1-bit quanti-
zation at each node. The entire transmission chain, composed
of compressive sensing, 1-bit quantization, and joint source-
channel coding (JSCC), is taken into consideration with joint
signal reconstruction at the fusion center. A lower bound on the
end-to-end mean square error distortion, which is a function
of the measurement rate, distortion of 1-bit quantization, and
that of JSCC, is derived under the assumption of the oracle
reconstruction. The time-varying channel conditions have a
major impact on the distortion of JSCC. Therefore, a suboptimal
yet efficient power allocation scheme based on the successive
convex approximation method is proposed to minimize the lower
bound on the end-to-end distortion. Moreover, a practical coding
and joint signal reconstruction scheme is provided to show its
consistence with the derived theoretical limits.

Index Terms—Distributed compressive sensing, Internet of
things, joint sparsity model, rate distortion

I. INTRODUCTION

The internet of things (IoT) is widely recognized as the

next Industrial Revolution, aiming at connecting everything.

In the IoT networks, a group of sensor nodes are deployed to

sense and measure the same physical phenomenon. Due to the

limited geometrical distance, spatial correlation usually exists

between the sensed data from different sensor nodes. The

data is also smooth or piece-wise smooth over time. There-

fore, temporal correlation also exists within each time series.

This motivates the research field of (distributed) compressive

sensing (CS) [1], assuming that the sensor data has a sparse

representation in a certain transform domain.

The research on distributed compressive sensing (DCS)

mainly falls into two categories: 1) design of joint signal

reconstruction algorithms and 2) information-theoretic anal-

ysis. Different joint signal reconstruction algorithms have

their own advantages and drawbacks. For instance, the si-

multaneous orthogonal matching pursuit (SOMP) is simple to
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implement, but has unsatisfactory performance [2]. Bayesian

algorithms are more complicated, but outperform SOMP in

terms of reconstruction accuracy [3]. Approximate message

passing (AMP) algorithms have a problem in finding the

optimal soft-thresholding value during each iteration [4]. As

for the information-theoretic analysis of the DCS, Baron et

al. [5] studied a DCS setup with noiseless measurements and

channel. Coluccia et al. [6] utilized source coding with side

information, which is not exactly suitable for the DCS setup

with recovering both users’ data. Empirical and theoretical

performance of quantized DCS were reported in, e.g., [7], [8].

In this paper, we focus on the framework of DCS with 1-

bit scalar quantization, along with performing joint source-

channel coding (JSCC) of the quantizer outputs to transmit

them over noisy channels.1 A lower bound on the end-to-

end mean square error (MSE) distortion is derived under the

assumption of the oracle reconstruction (i.e., the support of

each signal is assumed known at the receiver), which is used,

e.g., in [6], [7]. To the best of our knowledge, such a bound

has not been derived earlier. In the proposed structure, each

CS-based sensor can access the information source only via

1-bit quantized noisy compressive measurements, followed by

joint source-channel coding (JSCC). The output of JSCC is

transmitted over Rayleigh block fading channels to the fusion

center. The Berger-Tung outer bound is used to characterize

the distortion in the JSCC module. The DCS joint signal

reconstruction is assumed to be an oracle estimator in the

minimum mean square error (MMSE) sense. A suboptimal

yet efficient power allocation scheme based on a successive

convex approximation (SCA) approach is proposed with the

objective of minimizing the lower bound on the end-to-end

distortion. With the introduction of the power allocation,

better performance in terms of reconstruction accuracy can be

achieved compared to its equal power allocation counterpart.

Practical results are produced by using a low-complexity

channel code, e.g., accumulator (ACC)-aided turbo code, as

JSCC, and SOMP2 as the joint signal reconstruction algorithm.

11-bit CS is beneficial because 1) for a given total bit-budget, its perfor-
mance is comparable to multi-bit alternatives, and 2) the quantizer, i.e., an
analog-to-digital converter (ADC) becomes inexpensive [9].

2We choose the simplest methods in the literature to verify the consistence
between the practical simulations and theoretical results.



II. PRELIMINARIES

A. Compressive Sensing

CS is a promising technique for reconstructing sparse sig-

nals from limited number of measurements (far less than the

dimension of the signal) [10]. The source signal s ∈ R
N×1 is

compressively sampled by a measurement matrix Φ ∈ R
M×N

with M < N and corrupted by a measurement noise z ∈
R

M×1. The measurement vector y ∈ R
M×1 can be expressed

as

y = Φs+ z. (1)

The source signal s = Ψu is assumed to have a sparse

representation in a transform domain, where Ψ ∈ R
N×N is

usually an orthonormal matrix, i.e., ΨTΨ = IN , with ()T

denoting the transpose and IN being the identity matrix with

dimension N × N , and u is the sparse transform coefficient

vector. The support of u is expressed as Ωu = {i|ui 6= 0},

and the cardinality of Ωu is K, i.e., |Ωu| = K. One of the

well-known properties of Φ is mutual coherence [11], i.e.,

µ , max
i 6=j

|φT
i φj |, (2)

where φi is the i-th column of Φ. Under the assumption that

each column of Φ is normalized to 1, we have 0 ≤ µ ≤ 1.

The smaller the value of µ, the better the measurement matrix.

B. Distributed Compressive Sensing

1) Joint Sparsity Model: In the literature, there are three

classic joint sparsity models (JSMs) [5] to characterize the

relationship among the correlated sparse signals. JSM-1 sup-

poses that the signals have a common sparse component but

different sparse innovations. JSM-2 assumes that the sparse

signals have the same support but different non-zero elements

(correlation may also exist for the non-zero elements). JSM-3

supposes that the signals have a common non-sparse compo-

nent but different sparse innovations.

2) Joint Signal Reconstruction: Unlike in reconstructing a

single signal, the signals can be reconstructed efficiently in a

joint fashion if there exists certain correlation among the sig-

nals, e.g., in the support and/or values. Namely, leveraging the

inter-signal correlation is expected to improve the reconstruc-

tion performance. The joint signal reconstruction algorithms

fall into four major categories, i.e., simultaneous OMP [2],

Bayesian learning [3], AMP [4], and deep learning [12].

III. SYSTEM MODEL

The IoT network is divided into different disjoint clusters

with different tasks. Each cluster has an access point (AP),

acting as a fusion center that collects the data from different

sensor nodes, processes the data, and sends it to the remote

center processing unit (CPU). Fig. 1 illustrates an IoT network

with three clusters. The functionality of each sensor node is

to sense, quantize, encode, and transmit the sensed data to the

AP within the cluster via a wireless link.

To be specifical, we focus on a two-sensor DCS network,

like Cluster 1 in Fig. 1, and assume JSM-2 signals. The block

diagram of the entire DCS network is detailed in Fig. 2. We

Cluster 1

Cluster 2

Cluster 3

Fig. 1: An example of an IoT network.
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Fig. 2: The entire signaling chain at the sensor nodes and joint signal
reconstruction at the fusion center.

assume that each non-zero element of the sparse coefficient

vectors u1 and u2 follows the independent and identically

distributed (i.i.d.) Gaussian N (0, 1). The relation between u1

and u2 is formulated by the first-order Gauss Markov process

as

u2,Ωu2
= ρu1,Ωu1

+
√

1− ρ2i, (3)

u2,Ω\Ωu2
= u1,Ω\Ωu1

= 0, (4)

where Ω = {1, 2, · · · , N}, Ωu1
= Ωu2

, |Ωu1
| = |Ωu2

| = K,

ui,Ωui
is a vector consisting of all the non-zero elements in ui,

for i = 1, 2, Ω\Ωui
is the complement of set Ωui

, 0 is an all-

zero vector, ρ is the correlation coefficient determining the cor-

relation level between u1,Ωu1
and u2,Ωu2

, and i ∼ N (0, IK).
The source signals s1 and s2 can be expressed as

si = Ψiui, for i = 1, 2. (5)

Without loss of generality, we assume that Ψ1 = Ψ2 = Ψ.

The source signals are separately sensed through a measure-

ment matrix as

yi = Φisi + zi, for i = 1, 2, (6)

where each element of Φi ∈ R
Mi×N follows N (0, 1

Mi
) and

zi ∼ N (0, σ2
zi
IMi

). We assume that Φ1 and Φ2 are fixed and

known at the decoder.

The 1-bit scalar quantizer in Fig. 2 is described as

Qi : R → B, (7)

where B = {0, 1}. For a realization of yi,j (with yi,j denoting

the j-th element of yi), the quantizer operates as follows:

Qi(yi,j) =

{

1, if yi,j ≥ 0,

0, if yi,j < 0.
(8)

The code points of Qi are set as the points that minimize

the MSE distortion E[|ỹi,j − yi,j |
2], where ỹi,j is given as



√

2/πσyi
for region yi,j ≥ 0 and −

√

2/πσyi
for region

yi,j < 0 for i = 1, 2, j = 1, · · · ,Mi, and

σyi
=

√

K/Mi + σ2
zi
, (9)

which follows from the Central Limit Theorem (CLT) with

N → ∞ and lim
N→∞

K/N being constant [6].

The output of the quantizer is further encoded by a JSCC,

defined as

Ci : B
Mi → B

Ji , (10)

with the joint transmission rate RJ,i = Mi

Ji
. Each encoder

output has a transmit power constraint Pi. We assume that the

encoded data sequences are transmitted to the fusion center

over orthogonal i.i.d. Rayleigh block fading channels. The

channel coefficients are denoted as h1 and h2, which follow

CN (0, 1).
At the fusion center, joint signal reconstruction is operated

after receiving the encoded signals from the sensor nodes. Joint

source-channel decoding (JSCD) is carried out by utilizing

the correlation information of quantizer outputs,3 followed

by dequantization and joint signal reconstruction of the DCS

part with final outputs ŝ1 and ŝ2. The end-to-end distortion is

defined as

DEnd =

2
∑

i=1

DEnd,i =

2
∑

i=1

E{||si − ŝi||
2
2}. (11)

IV. END-TO-END DISTORTION ANALYSIS AND POWER

ALLOCATION

A. End-to-End Distortion Analysis

The end-to-end distortion in (11) is a function of the

measurement rate (RM,i =
Mi

N
), quantization rate (RQ,i = 1),

joint transmission rate (RJ,i = Mi/Ji), transmit powers (Pi),

and instantaneous channel coefficients (hi), i.e.,

DEnd,i = fi(RM,1, RM,2, RQ,1, RQ,2, ...

RJ,1, RJ,2, P1, P2, h1, h2), for i = 1, 2. (12)

Since a closed-form expression for DEnd,i seems technically

infeasible, we next derive a lower bound on the end-to-end

distortion under the assumption of the oracle DCS reconstruc-

tion.

The output sequences of the 1-bit quantizers, denoted by q1

and q2, are correlated (even though each of them is uniformly

distributed), and the correlation depends on the value of ρ
in (3). q1 and q2 can be modeled by the bit-flipping model as

q1,j = q2,j ⊕ ej , for j = 1, 2, · · · ,min{M1,M2}, (13)

where ej is an i.i.d. binary variable with Pr(ej = 1) = p =
f(ρ). The larger the value of ρ, the smaller the value of p.

The calculation of p is based on the joint probability of y1,j
and y2,j , i.e.,

p = 2Pr(y1,j > 0, y2,j < 0) =

∫ +∞

0

∫ 0

−∞

f(y1,j , y2,j)dy1,jdy2,j ,

(14)

3The correlation information can be estimated during the decoding pro-
cess [13].

where

f(y1,j , y2,j) =
exp{−1/2[y1,j y2,j ]Σ

−1[y1,j y2,j ]
T }

√

(2π)2|Σ|
, (15)

and Σ is the covariance matrix for [y1,j y2,j ], in the form of

Σ =

(

σ2
y1

ρσy1
σy2

ρσy1
σy2

σ2
y2

)

. (16)

Due to the assumption of orthogonal transmissions, distortions

DJ,1 and DJ,2 in the JSCC are achievable if the following

inequalities hold:

R(DJ,1)RJ,1 ≤ C(γ1), (17)

R(DJ,2)RJ,2 ≤ C(γ2), (18)

where R(·) is the rate distortion function for the binary input

q1 and q2 with Hamming distortion, i.e., R(D) = 1−Hb(D)
with Hb(x) = −x log(x) − (1 − x) log(1 − x), 0 ≤ x ≤
1, C(γi) = log(1 + γi) is the Gaussian channel capacity by

assuming the additive noise in the received signal has unit

variance with γi = Pi|hi|
2.

The Berger-Tung outer bound is further utilized to character-

ize the rate distortion region for the distributed multiterminal

lossy source coding (binary source case), defined as [14]

R(DJ,1) ≥ Hb[2p ∗H
−1
b (1−R(DJ,2))]−Hb(DJ,1), (19)

R(DJ,2) ≥ Hb[2p ∗H
−1
b (1−R(DJ,1))]−Hb(DJ,2), (20)

R(DJ,1) +R(DJ,2) ≥ 1 +Hb(2p)−Hb(DJ,1)−Hb(DJ,2),
(21)

where a ∗ b = a(1− b) + (1− a)b and H−1
b (·) is the inverse

function of Hb(·).
The aggregate distortion of 1-bit quantization and JSCC can

be written as

DQ,i = DJ,i

∫ 0

−∞

(yi −

√

2

π
σyi

)2f(yi)dyi

+DJ,i

∫ ∞

0

(yi +

√

2

π
σyi

)2f(yi)dyi

+ (1−DJ,i)

∫ 0

−∞

(yi +

√

2

π
σyi

)2f(yi)dyi

+ (1−DJ,i)

∫ ∞

0

(yi −

√

2

π
σyi

)2f(yi)dyi

= (1 +
2

π
)σ2

yi
+ (4DJ,i − 2)αi, (22)

where αi =
∫∞

0
2
√

2
π
σyi

yif(yi)dyi and f(yi) is the proba-

bility density function for each element in yi.

We set the aggregate MSE distortion in (22) as the vari-

ance of an additive Gaussian random variable. Accordingly,

the relationship between the dequantizer output ŷi,j and the

quantizer input yi,j is expressed by ŷi,j = yi,j + n̂i,j , where

n̂i,j ∼ N (0, DQ,i).
For the joint signal reconstruction, we assume that the

support information is perfectly known at the fusion center.

Therefore, the end-to-end distortion is lower bounded as

DEnd,i ≥
K
∑

k=1

λ2
k(σ

2
zi
+DQ,i)

(λ2
k + σ2

zi
+DQ,i)2

, for i = 1, 2. (23)



under the MMSE estimation, where λ2
k, for k = 1, · · · ,K, are

the eigenvalues of the matrix ΦT
Ωui

ΦΩui
.

B. Minimization of Lower Bound on End-to-End Distortion

via Power Allocation

The objective is to minimize the lower bound on the

end-to-end distortion in (23) subject to the constrains

in (17), (18), (19)–(21) and a total power constraint P1+P2 ≤
P . Thus, the optimization problem is formulated as follows:

min
{Pi,DJ,i}

2
∑

i=1

K
∑

k=1

λ2
k(σ

2
zi
+DQ,i)

(

λ2
k + σ2

zi
+DQ,i

)2 (24a)

subject to

Hb[2p ∗H
−1
b (1−

C(γī)

RJ,̄i

)]−Hb(DJ,i) ≤
C(γi)

RJ,i

, (24b)

1 +Hb(2p)−
2

∑

i=1

Hb(DJ,i) ≤
2

∑

i=1

C(γi)

RJ,i

, (24c)

DJ,i ∈ [0, 0.5],

2
∑

i=1

Pi ≤ P, i ∈ {1, 2}, ī ∈ {1, 2}\{i}. (24d)

Our first observation is that problem (24) is intractable

to solve. To be specific,
λ2
k(σ

2
zi

+DQ,i)
(

λ2
k
+σ2

zi
+DQ,i

)2 is a quasi-concave

function w.r.t. DJ,i ≥ 0 which can easily be checked by

second-order conditions [15, Sect. 3.4]. Thus, the convexity

of the objective is difficult to prove [16]. In addition, function

Hb[2p ∗ H−1
b (1 − C(γī)

RJ,̄i
)] in constraint (24b) is not straight-

forward to handle. We propose a suboptimal but efficient

algorithm to solve (24). To this end, we define a new set

of variables, i.e., vi , 1 − C(γi)
RJ,i

and wi , H−1
b (vi).

Then, by noting that Pi = 22RJ,i(1−vi)−1
|hi|2

, vi = Hb(wi), and

following the epigraph transformation [15, Sect. 3.1.7], we can

equivalently rewrite problem (25) in a more tractable form as

min
{ti,k,wi,ri,DJ,i}

2
∑

i=1

K
∑

k=1

ti,k (25a)

subject to

2 +
λ2
k

σ2
zi
+DQ,i

+
σ2
zi
+DQ,i

λ2
k

≥
1

ti,k
(25b)

Hb(2p− 4pwī + wī) +Hb(wi) ≤ 1 +Hb(DJ,i), (25c)

1 +Hb(2p) +

2
∑

i=1

Hb(wi) ≤ 2 +

2
∑

i=1

Hb(DJ,i) (25d)

2
∑

i=1

2ri − 1

|hi|2
≤ P,

ri
2RJ,i

+Hb(wi) ≥ 1 (25e)

DJ,i ∈ [0, 0.5], i ∈ {1, 2}, ī ∈ {1, 2}\{i}, (25f)

where {ti,k} and {ri} are newly introduced slack variables.

Note that Hb(x) is a concave function. Thus, the nonconvexity

of problem (25) can easily be verified from the left-side of

constraints (25b)–(25d). Interestingly, problem (25) is an SCA-

applicable formulation [17]. In the light of the SCA principle,

we can convexify (25) as

min
{ti,k,wi,ri,DJ,i}

2
∑

i=1

K
∑

k=1

ti,k (26a)

subject to

2 + f̃ (n)(DJ,i) +
σ2
zi
+DQ,i

λ2
k

≥
1

ti,k
(26b)

H̃
(n)
b (2p− 4pwī + wī) + H̃

(n)
b (wi) ≤ 1 +Hb(DJ,i), (26c)

Hb(2p) +

2
∑

i=1

H̃
(n)
b (wi) ≤ 1 +

2
∑

i=1

Hb(DJ,i) (26d)

(25e), (25f), (26e)

where f̃ (n)(DJ,i) and H̃
(n)
b (.) are the first-order approxi-

mations of
λ2
k

σ2
zi

+DQ,i
and Hb(.), respectively, at some point

{t
(n)
i,k , w

(n)
i , r

(n)
i , D

(n)
J,i } in the feasible set. We have

f̃ (n)(x) ,
λ2
k

σ2
zi
+ x(n)

−
λ2
k

(σ2
zi
+ x(n))2

(x− x(n)),

H̃
(n)
b (x) , −

log(1− x(n)) + x(log(x(n)) + log(1− x(n)))

ln 2
.

Here, the superscript n denotes the n-th iteration of the SCA

algorithm. Problem (26) is solved at step 3 of the iterative

method outlined in Algorithm 1. The optimal solution for

(26) is used to form the problem to be solved at the next

iteration. The iterative procedure of Algorithm 1 is guaranteed

to converge by following the same arguments as those in [18].

Algorithm 1 SCA for solving (25)

1: Initialization: Set n := 0, find an initial feasible point

{w
(0)
i , D

(0)
J,i }

2: repeat

3: Solve (26) and obtain optimal value {w∗
i , D

∗
J,i}

4: Update {w
(n+1)
i , D

(n+1)
J,i } := {w∗

i , D
∗
J,i}

5: Update n := n+ 1
6: until Convergence

7: Output {t
(n)
i,k , w

(n)
i , r

(n)
i , D

(n)
J,i }

V. NUMERICAL RESULTS

In this section, we evaluate the theoretical end-to-end dis-

tortion and practical implementation for the DCS under 1-bit

quantization at each sensor node. The ACC-aided turbo code

with polynomial G = ([3, 2])8 is taken as a JSCC [13] and

SOMP [2] is applied as the DCS joint signal reconstruction

scheme for practical implementation. In all the experiments,

we set M1 = M2 = 50, N = 60, RJ,1 = RJ,2 = 0.5,

ρ = 0.95, and K = 4. In the derivation of the theoretical

lower bound of the end-to-end distortion, we assume that

λ2 = [1.3 1.0 0.8 0.6] is perfectly known for a given

measurement matrix.4

4In the practical implementation, we assume that the non-zero elements are
in the first K positions of u1 and u2. The measurement matrices Φ1 and
Φ2 are designed to be the same.
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Fig. 3: End-to-end distortion for DCS with noiseless measurements,
theoretical analysis vs. practical scheme.
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Fig. 4: End-to-end distortion for DCS with noisy measurements,
theoretical analysis vs. practical scheme.

First, we consider the noiseless measurements, i.e., σ2
z1

=
σ2
z2

= 0, resulting in p = 0.101 and α1 = α2 = 0.0424.

The simulation results are shown in Fig. 3. The terms “PA”

and “EA” in the legend denote power allocation and equal

power allocation, respectively. The terms “Theo” and “Prac”

in the legend denote theoretical results and practical results,

respectively. The signal-to-noise ratio (SNR) is defined as

10 log10(P1 + P2). Second, we set the measurement noise

variances as σ2
z1

= σ2
z2

= 0.01, resulting in p = 0.101
and α1 = α2 = 0.0446. The simulation results are shown

in Fig. 4. As shown in Figs. 3 and 4, better performance

can be achieved for the proposed power allocation scheme,

especially in the low SNR regime. The gap between the

practical schemes and derived theoretical limits is reasonable

due to three reasons: 1) The JSCC code with low complexity is

not capacity-approaching, even in an additive white Gaussian

noise (AWGN) channel. 2) Errors in the support detection

further enlarge the gap. 3) The DCS joint signal reconstruction

algorithm itself can not achieve the best performance in the

MMSE sense.

VI. CONCLUSION

Theoretical end-to-end distortion has been analyzed for

the distributed compressive sensing under the assumptions of

1-bit quantization and the oracle estimator. The correlation

information of the quantizer outputs has been utilized in the

JSCC. A suboptimal yet efficient power allocation scheme has

been operated with the aim of minimizing the lower bound

on the end-to-end distortion via the SCA approach. Practical

coding and joint signal reconstruction has been performed to

show its consistence with the derived theoretical distortion

bounds. With the consideration of the low-resolution 1-bit

quantization, the sampling method may violate the conven-

tional concept of compressive sensing with Mi > N . Thus, a

more complicated high-resolution quantization scheme could

be considered for better complexity-performance trade-offs by

carefully allocating the quantization rate, measurement rate,

JSCC rate, etc.
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