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Abstract—Utilizing unmanned aerial vehicles (UAVs) in wire-
less communications can help to improve the capacity of ter-
restrial networks. In this paper, a novel method is proposed to
position a UAV in an optimal location to relay the information
from a vehicle to a base station (BS). The proposed method
uses predefined locations for the UAV and treats them as the
actions for a multi-armed bandit (MAB) framework. The upper
confidence bound (UCB) algorithm is used to solve the MAB
problem. The results show that this method can identify an
optimal location for the UAV to maximize the sum rate of the
network.

I. INTRODUCTION

Next generation of wireless networks will have native
support for Internet of Things (IoT) [1], vehicle-to-vehicle
(V2V) communications and unmanned aerial vehicles (UAV)
[2]. Recently, there has been a surge of research literature on
UAV communications, due to their ability in quick movement,
low budget deployment, and the large domain of applications
they provide [3]. The UAVs can be used as standalone aerial
base stations (BSs) or wireless relay nodes to increase the
capacity of the network. The UAVs can easily move towards
the ground users and establish a reliable and low power
transmission link [4]. Moreover, in the case of natural disasters
such as earthquakes and floods where the terrestrial wireless
BSs are damaged and out of service an aerial BS can quickly
be deployed and used in the process of helping the injured ones
or finding the missing people. The main challenges of UAV
communication are the 3D positioning and path planning and
air-to-ground channel modeling.

A statistical channel model for an air-to-ground link is
proposed in [5], which defines the path loss of the link from
the UAV to the ground user as a function of the elevation
angle and the environment characteristics. The air-to-ground
channel model is studied in [6] as well where only the line of
sight (LoS) and non-line of sight (NLoS) links between the
UAV and the ground users are considered. The study on the
channel model in [7] concludes that UAVs can be deployed as
wireless relay nodes due to their ability to have LoS links and
less shadowing compared to the terrestrial wireless links. The
studies in [4], [8], focus on the path planning and trajectory
of UAVs. In [4], a new approach is proposed for planning
an efficient path for multiple UAVs which are used as aerial
BSs to collect data from the ground users. UAVs are used
in [9] to relay the messages of the onboard units (OBUs)
to overcome the problem of smart jamming in vehicular ad-

hoc networks (VANETS) by using reinforcement learning. The
work in [10] studied the application of reinforcement learning
in enabling the UAVs to navigate in unknown environments
autonomously. Recently, the use of reinforcement learning to
solve wireless communication problems has increased. Some
examples of wireless communications related problems which
are solved using reinforcement learning are network selection
problems of heterogeneous networks, channel sensing, and,
energy harvesting [11]. In [12] reinforcement learning is
utilized to allocate the sufficient amount of resources to the
V2V link which shares the spectrum between a vehicle and
the BS. The V2V link transmitter itself is considered as an
agent which decides its own transmission power and finds the
optimal sub-band to satisfy the V2V constraints. The authors
in [13] use reinforcement learning to transmit delay-sensitive
data efficiently over a fading channel. Reinforcement learning
for UAV to a roadside unit (RSU) relaying is considered in
[9]. The UAV acts as the agent and based on the information
that it gets from the environment it decides whether or not to
relay its message to another RSU. In [14] authors have used
reinforcement learning for UAV path planning in a cellular
network. The goal of the agents in this work is to maximize
the energy efficiency and minimize the latency and the inter-
ference generated from the ground users. In [15], use of UAV
as a wireless relay to help a vehicular network to communicate
with a base station (BS) is considered. In this study, the UAV
can operate in one of the predefined locations based on the
QoS criteria which is defined as the signal-to-interference-
plus-noise ratio (SINR) of the communication links. Multi-
armed bandits (MAB) framework from reinforcement learning
are used in [16] for optimal allocation of fast uplink grants in
the IoT.

The main contribution of this paper is using MAB learning
to solve the UAV positioning problem. First, a set of locations
that the UAV can operate at are defined, then the MAB
framework is utilized to select the best location for the UAV
so that the maximum possible sum rate for the network can
be achieved. Different MAB algorithms are used to solve the
problem and their regret are compared to each other.

The rest of the paper is organized as follows. Section
IT presents the system model describing the air-to-ground
and V2V channel model. In Section III, we introduce the
UAV positioning problem and the MAB learning framework.
Section IV presents the simulation results, and the conclusions
are drawn in section V.
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Figure 1: System model and the coordinate system

II. SYSTEM MODEL

Consider a vehicular system in which a vehicle is required
to communicate with a BS. We consider that because of
some geographical conditions or high shadowing on this
communication link, the communication link will be in deep
fade and transmissions will fail. Therefore, a UAV is used as a
relay to provide connectivity between the vehicle and the BS.
The vehicle is denoted by v, the UAV operating as the relay is
referred to by the letter r, and the letter b is used to the BS. The
relay is assumed to be communicating in a full-duplex (FD)
manner where it receives and transmits data simultaneously
on the same frequency band. The set D = {v,b} which
includes the users on the ground is defined to simplify the
mathematical equations. The locations of v and b are given by
(zi,Yi,2:),% € D. The predefined locations of the relay are
defined in the form of a matrix L, where each row [; € R3
of L, represents jth location with three columns for the x, y,
and z coordinates. The matrix of locations for the relay can
be written as
Lry Yry Zry
Try Yry  Zrg

L - (1)
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Moreover, it is assumed that the vehicle is enabled with the
GPS functionality and it sends its location periodically to the
UAV where it can be stored in a location table. Figure 1 shows
the system model considered for this section.

A. air-to-ground Channel Model

Defining the air-to-ground channel model is realized by
using two main groups of communication links namely line
of sight (LoS) and non-line of sight (NLoS) links [5]. Based
on the environment these occurrence probability of the links
would vary. In a suburban area with a low number of buildings
with short heights the chance of having a LoS link between a
user on the ground and an aerial user is higher compared to

an urban area with a higher number of buildings. In addition
to the physical characteristics of the environment, the distance
between the aerial and the terrestrial user as well as the eleva-
tion angle between the two affect the probabilities of having
either type of links. according to [17] These probabilities can
be expressed as
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where « and [ define the dependency of the probabilities on
the physical features of the environment, 6;,7 € D is the
elevation angle created between the ground users 7 and the
relay which depend on the Euclidean and vertical distance
between them and can be calculated as

180 hi;
; = — x arcsin(=2),

s db]
where the vertical distance between the ground user and the
relay is calculated as h;; = 2. — 2;,7 € D and the Euclidean

distance between the two is given by
di = /(zr =22+ (e =92 + (2 = 2)2. )

The path loss for the LoS and NLoS parts of the air-to-
ground link depend on the distance of the two users [5]. These
path loss values can be calculated as
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where 7;,s and 7,5, represent the excessive path loss imposed
on each type of propagation link depending on the environment
characteristics, ¢ is the speed of light, d;; is the distance
between the ground user ¢+ € D and the jth location of the
relay in the sky. Moreover, f. is the carrier frequency of the
transmission and g is the path loss exponent. By using the

Lnros(dB) = nnrLos(



probabilities of occurrence and the path losses associated with
the LoS and NLoS links the average path loss for the air-to-
ground z link can be calculated as

47chdi 47chdi
&
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After the path loss calculation, the gain of the air-to-ground
link is computed and used to attain the SNR of that link. The
SNR of the link between the vehicle the relay can be expressed

as
_ PvGor

Ny ’
where p,, is the transmit power of v, g,, is the gain of the
link, and Ny is the additive white Gaussian noise. Moreover,

the SNR of the communication link between the relay and the
BS is
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where p, is the transmit power of r, g,; is the gain of the
link.

(10)

III. PROBLEM FORMULATION AND MAB FRAMEWORK

In this section, we formulate the problem of relay posi-
tioning as a MAB problem. In our formulation, There is a
maximum number of ! predefined locations for the relay to
accommodate.

A. Problem formulation

Consider the matrix of the locations for the relay defined
in (1). Let I; € R3 be the ith location that the relay can
operate at, where the first, second, and the third element of
l; are x, y, and z coordinates, respectively. Each location for
the relay is considered as the arm of a bandit machine. We
refer to these arms as the actions and show them by a € A =
{a1,as,...,a;}. The relay will establish two links regardless
of the location that it operates at. One of the links is from the
v to r and the other one from the r to b. Each of these links
will have a rate which determines if the link is proper or not.
Therefore, for a given coordinate for the v on the ground we
can calculate the value of the rates for each of the locations
and store them in a vector. Each element in this vector of rates
is considered to be the reward r, assigned to the locations of
the relay.

In order to find the rates associated with each relay location
we define two vectors sy, € R ! and s,, € R which
contain the received powers at each location of r and the
received powers in b from each location of the relay. The
vector s,, can be expressed as

(1)

where p,, is the transmit power of the v and g,, € RF is
channel gain vector for the links between v and each of the
predefined locations for r. Similarly, the vector s, is given
as

Svr = PvGyr-

Srb = DrGrp- (12)

where p,. is the transmit power of the 7 and g,, € R is
vector of the channel gains for the links between each of the
predefined locations of r and b.

By using (11) and (12) the SNRs of the links can be written
in the form of vectors. The SNR vector for the links between
the v and r can be given as

SUT'
Ny’

Similarly, the SNR vector for the links between the different
locations of r and b can be given as

Yor = (13)
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Now we can calculate the rate for each link using the
calculated SINR and the SNR calculated above

(14)

Tsr = logQ(’ysr + 1)a (15)
Trp = IOgQ(’YTb + 1)7 (16)
Tt =Tsr + Trb, (17)

where 7, is the vector of the rates between the s and all the
[ locations of the relay. Similarly, the 7, is the vector of the
rates for the links between all the possible locations of the
relay and b. Moreover, r; is a vector including the total rate
for each location of the relay. The total rate is calculated by
adding up the rates of the uplink and the downlink.

The goal of the relay is to find the location with the
maximum sum rate. Since the MAB framework is designed to
learn how to act in one specific situation, we play this game
only for one particular given source node location and find the
proper location for the UAV which can provide the best rate.

In the bandit problem, each time an action is selected and
the reward for that action is selected from r;. The objective of
the relay is to maximize the rewards that it attains by selecting
the location which provides the maximum rate for the given
coordination of the source node on the ground.

B. Solution approach

MABs are a form of reinforcement learning where there is
a set of available arms (actions) for an agent to select from.
When an arm A, is selected, it generates a reward R; from
a probability distribution which is not known to the agent.
The objective of the agent is to maximize the expected total
reward. Since the agent does not know the distribution from
which the rewards of each arm are drawn it needs a strategy
to compensate for the lack of information to achieve its goal
[18]. The age only observes the reward of the arm that it has
played. Therefore, the agent can calculate an estimation of the
value Q:(a) for action a before selecting it. The estimation of
the action value prior to time ¢ is given by

Qi(a) =

sums of rewards when action a is taken prior to ¢
number of times action a taken prior to ¢

18)
The agent can play the arm with the highest value for
@, which is known as the greedy action selection method.



Algorithm 1 UCB Algorithm
Input: 7 (horizon), A (arms)

1: Play each arm (action) a once
: Observe the rewards of each arm r,
: Setk, =1,YVae A
Set jiq = ;—‘;
: for t = | Al to T do

Play arm a = arg max, (;Za + qu(t))
Observe reward r

Ta =Ta+T

ka = ka +1r

Update jiq = Z—Z

: end for
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This method leads to exploiting the arm with the highest
estimation for the action value without exploring any other
arm. The greedy method only increases the reward at the
current time. However, the objective of the agent is to increase
the cumulative reward. Therefore, the agent is required to have
a reasonable trade-off between exploitation and exploration.
To overcome the challenge of exploration and exploitation
the upper confidence bound (UCB) algorithm can be used.
Therefore, the UCB algorithm monitors the potential of the
non-greedy actions to be the optimal action instead of explor-
ing the actions in a random fashion. The UCB selects an arm
a; at any given time according to the following equation [18]

clnt

19
No(a) | 19)

Ay = argmazx |Qi(a) +

where c is the degree of exploration, ¢ is the time step, and [V
is the number of times that the arm a has been selected. The
square root part in (19) acts as the variance of the estimated
value of action a and it shows the level of uncertainty about
the action. When an action is selected, the N; for that action
is increased, since this term resides in the denominator of
(19), the whole term under the square root decreases. However,
when other actions are selected, the value of ¢ in the nominator
increases, therefore, the uncertainty increases. This increment
in the uncertainty is logarithmic, which means that the value
of this increment will get smaller by time. This will guarantee
that the actions that have a lower estimate value or that have
been selected for a large number of times will not be selected
frequently in the future. The UCB algorithm is summarized in
Algorithm 1 [19].

One way to measure the performance of an MAB algorithm
is by calculating its regret. The regret is the difference in
reward of the best possible arm and the reward of the arm
that was played. In order to compute the regret we assume
that we know the probability distribution from which each
action is selected, therefore, we can pick the optimal action
by choosing the action with the highest payoff. The regret
calculation can be written as [19]

Li = TE[R|A; = a*] — ZE[Rt\At =al, (20
t

Table I: Environment parameters for A2G channel model.

Envirc t NLoS | NNLoS a B

Suburban 0.1 21 5.0188 0.3511
urban 1 20 9.6101 0.1592
Dense urban 1.6 23 11.9480 0.1359
High rise urban 2.3 34 27.1562 0.1225

Table II: Simulation parameters.

Description Value
Vehicle transmit power (FP,) 0.5 mW
Relay transmit power (Fr) 0.5 mW
Carrier frequency (fc) 2 MHz
Bandwidth (BW) 1 KHz
Number of the locations of the relay (I) 400
Path loss exponent (n1) 1.81
Path loss exponent (n2) 2.85
Noise power spectral density (/Ng) -170 dBm
BS antenna height (hyp) 30 m
8000 ! !
Naive 1
7000 | 2000 ucs ]
Epsilon Greedy

1000
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Figure 2: Regret of the MAB framework.

where a* is the optimal action given the probability distribu-
tions of all the actions and it can be found by

a* = I;leai(E[Rt‘At = ay, (21)

IV. NUMERICAL RESULTS

We consider a cross-road in which the vehicle is located.
The pre-defined locations for the relay are considered to be
above this cross-road. These locations are in a square area of
226 m x 226 m with 32 m distance between them which make
up for 64 locations in total. We consider the communications
to be the carrier frequency of 2 GHz and the parameters used to
calculate the air-to-ground channel for different environments
are given in Table I [5]. Similar to section IV we assume the
BS to be at the coordination of (1000,1000) and the location
of the source node to be selected randomly along the streets
of the length 1 Km.

Fig. 2 shows the regret of the UCB, e-greedy, and a naive
allocation policy which chooses the locations randomly. The
regret of both naive, e-greedy algorithms increases linearly.
However, the regret of the UCB algorithm is logarithmic which
is considered optimal in MAB problems.

Fig. 3 shows the cumulative reward for each of the locations.
All of the sub-optimal locations would yield low rates and
the UCB algorithm should not select them. The highest
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cumulative reward which is highlighted in Fig. 3 belongs to the
optimal location. The UCB algorithm successfully identifies
that arm and selects it more often, which leads to higher total
throughput in the system.

Fig. 4 shows the expected values of the rewards for each
arm and the confidence interval associated with each one of
them calculated by the UCB algorithm. All the sub-optimal
arms with a low expected value have larger confidence bound
than the arms with a high expected value. This reveals that the
UCB algorithm can correctly identify the optimal arm and play
that arm frequently. As depicted in Figure 4, the confidence
bound at the index 55 has the smallest value, indicating the
index of the optimal location for the relay to operate.

V. CONCLUSION

In this paper, FD UAV relaying is proposed to increase
wireless coverage in vehicular communication networks. First,

by using a set of predefined locations for the UAV relay,
and, also by considering the locations of the vehicle on the
ground, we have derived the values of the sum rate for all
the possible locations of the UAV. Second, to find the optimal
location of the UAV, we have formulated a MAB problem.
Finally, by using the UCB algorithm we have solved the

problem. Simulation results have shown that by using the
proposed method, the algorithm can confidently select the
proper location for the UAV to operate.
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