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Abstract—We consider downlink transmission of a fronthaul-
constrained cloud radio access network. Our aim is to maximize
the system sum data rate via jointly designing beamforming and
user association. The problem is basically a mixed integer non-
convex programs for which a global solution requires a pro-
hibitively high computational effort. The focus is thus on efficient
solutions capable of achieving the near optimal performance with
low complexity. To this end, we transform the design problem
into continuous programs by two approaches: penalty and sparse
approximation methods. The resulting continuous nonconvex
problems are then solved by the successive convex approximation
framework. Numerical results indicate that the proposed methods
are near-optimal, and outperform existing suboptimal methods in
terms of achieved performances and computational complexity.

I. INTRODUCTION

In recent years, cloud radio access networks (C-RANs)
has received significant attention due to its potential of im-
plementing the fifth-generation (5G) standard [1]. Therein,
the baseband (BB) signal processing units are no longer
equipped at base stations (BSs) but migrated at a central cloud
computing platform, called BB unit (BBU) pool. As a result,
BSs in C-RANs mainly account for the wireless interface
of the network, and now referred to as remote radio heads
(RRHs). However, the BB signals from the BBU pool need to
be delivered to the RRHs through the fronthaul links of finite
capacity. This forms one of the main practical challenges of
the C-RAN designs [2]–[4].

Sum rate maximization for capacity-limited fronthaul C-
RANs has been investigated in [5]–[7]. Therein, to cope with
the constraint of fronthaul capacity, the strategies of selecting
a proper set of users that can be served by an RRH were
considered. This leads to the approaches of joint designs trans-
mit beamforming/power and RRH-user association. However,
such design problems are basically mixed integer non-convex
programs (MINPs) which are difficult to solve globally [7].
Thus most of the related works focused on suboptimal yet
low complexity solutions. In particular, in [5], a combina-
tion of reweighted `1-norm and alternating optimization was
proposed. Nevertheless, its convergence is not analytically
guaranteed. To overcome the convergence issue, the authors
in [6] devised a method based on a combination of sparse
optimization and successive convex approximation (SCA).
However, it is numerically observed that these mentioned
methods are far from optimal (see Fig. 1). In addition, they

are sort of two-layer iterative procedure which might require
high computational cost.

Motivated by the above discussions, this paper aims at
proposing efficient methods for joint designs of transmit
beamforming and RRH-user association in the downlink C-
RAN. In particular, we overcome the difficulty of combina-
tion by transforming the considered MINP into continuous
problems based on two approaches: penalty method and `0-
approximation. In the first approach, we represent the discrete
set by a set of constraints involving continuous variables, and
then apply the penalty method to solve the resulting problem.
In the second, the binary variables are approximated by an `0
approximation function [8]. In both approaches, the obtained
continuous problems are nonconvex, which are then solved by
the SCA technique. The proposed methods are guaranteed to
converge. The numerical results demonstrate that the proposed
methods are capable of achieving near-optimal performance.
In addition, they are superior to the aforementioned methods in
both terms of achieved sum rate and computational complexity.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider the downlink of a multiuser C-RAN system
in which a set of B RRHs, each equipped with M antennas,
cooperatively serves a set of K single-antenna users follow-
ing the coordinated multipoint joint transmission (CoMP-JT)
scheme, i.e., a user simultaneously receive data from multiple
RRHs. Let us denote by B , {1, . . . , B} the set of RRHs
and by K , {1, . . . ,K} the set of users. All RRHs are
connected to a common BBU pool which is responsible BB
signal processing. It is assumed that the BBU pool has perfect
channel state information (CSI) associated with all the users
in the network. Data for each user is shared from BBU pool
to its serving RRHs through fronthaul links. Let sk denote the
data symbol intended for user k which has unit-energy, i.e.,
E[|sk|2] = 1, and assume that linear beamforming scheme
is adopted to form transmit signals. Considering flat fading
channels, the received signal at user k can be written as

yk =
(∑
b∈B

hb,kwb,k

)
sk︸ ︷︷ ︸

desired signal

+
∑
j∈K\k

(∑
b∈B

hb,kwb,j

)
sj︸ ︷︷ ︸

interference

+ nk

= hkwksk +
∑
j∈K\k

(∑
b∈B

hkwj

)
sj + nk (1)



where wb,k ∈ CM×1 denote the beamforming vector
from RRH b to user k, hb,k ∈ C1×M is the channel
between RRH b and user k, and nk ∼ CN (0, σ2

k) is
the additive white Gaussian noise at user k. In (1), we
have denoted hk , [h1,k,h2,k, . . . ,hB,k] ∈ C1×MB and
wk , [wT

1,k,w
T
2,k, . . . ,w

T
B,k]T ∈ CMB×1, for notational

convenience. Assuming single-user decoding, i.e. interference
among users is treated as Gaussian noise, the SINR at user k
can be written as

γk(w) ,
|hkwk|2∑

j∈K\k|hkwj |2 + σ2
k

where w is the beamforming vector stacking all wk.

B. Problem Formulation

We jointly design beamforming vectors and RRH-user as-
sociation with the aim of maximizing the sum data rate. The
problem of interest reads

maximize
w,x,r

∑
k∈K

rk (2a)

subject to rk ≥ Qk, ∀k ∈ K (2b)∑
k∈K

‖wb,k‖22 ≤ P̄b, ∀b ∈ B (2c)

‖wb,k‖22 ≤ xb,kP̄b, ∀k ∈ K, b ∈ B (2d)
rk ≤ log(1 + γk(w)), ∀k ∈ K (2e)∑
k∈K

xb,krk ≤ C̄b, ∀b ∈ B (2f)

where x , [x1,1. . . . , xb,k, . . . xB,K ]T ∈ {0, 1}BK , r ,
[r1, . . . , rK ]T. Here, rk is the achievable data rate transmitted
to user k; xb,k ∈ {0, 1} represents the association between
RRH b and user k, i.e., xb,k = 1 indicates that user k receives
data from RRH b and xb,k = 0 otherwise. The constraints
in (2b) are to guarantee that the data rate of user k always
meets its required quality-of-service Qk. The constraints in
(2c) represents the total transmit power at each individual
RRH. The constraints in (2d) ensure that ‖wb,k‖22 = 0 when
RRH b does not serve user k, i.e., xb,k = 0. The constraints in
(2e) are for feasible transmission on wireless channels. Finally,
the constraints in (2f) mean that the total data rate transmitted
over a fronthaul link does not exceed its capacity C̄b.

Problem (2) is an MINP generally known to be NP-hard.
Globally optimal method for this problem was investigated in
[7], but it is for benchmarking purposes only. In the following,
we present two approaches efficiently solving (2).

III. PROPOSED ALGORITHMS

A. Penalty Method

In the first method, we use a set of continuous functions to
equivalently represent binary variables, then apply a penalty
method. In particular, we recall the following well-known
relaxation of binary variables to represent x, i.e.,∑

b∈B

∑
k∈K

x2b,k − xb,k ≥ 0, xb,k ∈ [0, 1],∀b, k. (3)

It can easily be seen that (3) holds true if and only if xb,k,∀b, k
admits binary value {0, 1}. With (3), we can treat x as
continuous variable. Next, to facilitate the application of the
SCA framework in solving (2), we rewrite the problem as

maximize
w,x,r,

g,q

∑
k∈K

rk (4a)

subject to log(1 + gk) ≥ rk ∀k ∈ K (4b)

qk ≥
∑
j∈K\k|hkwj |2 + σ2

k,∀k ∈ K (4c)

qkgk ≤ |hkwk|2 ∀k ∈ K (4d)

‖wb,k‖22 ≤ x
p
b,kP̄b, (4e)

(2b), (2c), (2f), (3) (4f)

where g , [g1, . . . , gK ]T and q , [q1, . . . , qK ]T are newly
introduced slack variables. We note that (4) is the epigraph
of (2) and thus it maintains the feasible set of the original
problem. Here, we have replaced (2d) by (4e) in the above
transformation, where p > 1. This maneuver is motivated by
the expectation that solving (4) will eventually return binary
solutions, as discussed in [9].

At this point, we can apply the SCA technique to solve
the continuous problem (4). However, finding an initial point
to start the iterative process is usually challenging due to
the association vector and the fronthaul constraint. To tackle
this issue, we apply a penalty method which results in the
following regularized problem

maximize
Λ

φ(Λ, α, ξ) ,
∑
k∈K

rk + α
∑

b∈B,k∈K

(x2b,k − xb,k)

+ ξ
∑
b∈B

min{0, C̄b − vb} (5a)

subject to
∑
k∈K

xb,krk ≤ vb, vb ∈ [0, C̄b], ∀b ∈ B (5b)

(2b), (2c), (4b)− (4e), (5c)

where v , [v1, . . . , vB ]T is the vector of newly introduced
variables, Λ , {w,x, r,g,q,v}, and α, ξ > 0 are the penalty
parameters. In φ(Λ, α, ξ), we have added two penalty terms
to minimize the costs when x is not a binary vector, and when
the fronthaul constraints are violated, respectively.

Now the difficulty in solving (5) lies in the nonconvex
constraints (4d), (4e), (5b), and the objective function. In
light of the SCA principle [10], (4d), (4e) and (5b) can be
approximated as

λ
(n)
k g2k
2

+
q2k

2λ
(n)
k

≤ 2<(w
(n)
k hHk hkwk)− ‖hkw(n)

k ‖
2
2, (6)

‖wb,k‖22 ≤ (p(x
(n)
b,k )p−1xb,k + (1− p)(x(n)b,k )p)P̄b, ∀b, k (7)∑

k∈K

(xb,k + rk)2 ≤
∑
k∈K

(
2x

(n)
b,kxb,k + 2r

(n)
k rk

− (x
(n)
b,k )2 − (r

(n)
k )2 + 2vb

) (8)

where λ
(n)
k =

g
(n)
k

q
(n)
k

, and the superscript n is the iteration
counter. Remark that (6) follows the result in [11], and



Algorithm 1 Proposed method for solving (4)

1: Initialization: Set n := 0, initialize Λ(0) and set α(0)

small
2: repeat {n := n+ 1}
3: Solve (9) and achieve Λ∗, then update Λ(n) := Λ∗

4: Update α(n) := min{αmax;α(n−1) + ε} for small ε
5: until Convergence

(8) is due to the fact that 2xb,krk = (xb,k + rk)2 −
x2b,k − r2k. In addition, the objective function φ(Λ, α, ξ) can
also be convexified using the first order approximation, i.e.,
φ(Λ, α, ξ; Λ(n)) ,

∑
k∈K rk + α

∑
b∈B,k∈K(2xb,kx

(n)
b,k −

(x
(n)
b,k )2 − xb,k) + ξ

∑
b∈Bmin{0, C̄b − ϑb}. To summarize,

the following approximate convex program will be solved at
every iteration of the proposed SCA procedure

max
Λ

φ(Λ, α, ξ; Λ(n)) s.t. {(2b), (2c), (4b), (4c), (6)− (7)} (9)

Algorithm 1 describes the SCA procedure solving (4), and its
convergence can be proved following the arguments in [12,
Section 2].

In Algorithm 1, we note that the value of penalty parameter
α is increased at each iteration, i.e., Step 4. This is inspired by
the fact that α provides the tightness of the relaxation, and a
high value of α will encourage xb,k to take on binary values.
Thus we let Algorithm 1 start with a small value of α to focus
on maximizing the sum rate objective. Then α is increased in
subsequent iterations to gradually force xb,k to be binary. We
will illustrate by the simulation that xb,k approaches to binary
value at the convergence (see Fig. 3).

B. `0-Approximation Method

In the second method, we formulate the joint design of
beamforming and RRH-user association as finding a sparse
solution of beamformer vector w. In other words, the RRH-
user association policy here is derived from the values of
beamformers wb,k, instead of represented by binary variables
xb,k. To be specific, we consider the following beamforming
design problem

maximize
w,r,u

∑
k∈K

rk (10a)

subject to ‖wb,k‖2 ≤ ub,k,
∑
k∈K

u2b,k ≤ P̄b, ∀b ∈ B (10b)∑
k∈K

ψ(ub,k)rk ≤ C̄b, ∀b ∈ B (10c)

(2b), (2e), (10d)

where ub,k is the slack variable associated to the power
of beamformer wb,k, and u , [u1,1, . . . , ub,k, . . . , uB,K ]T;
ψ(ub,k) is the step function, i.e.

ψ(ub,k) ,

{
1 ub,k > 0,

0 ub,k = 0.

It is clear that RRH b serves user k if ub,k > 0, and otherwise
if ub,k = 0. Thus problem (10) is in fact equivalent to (2).

The central idea of the second proposed method is to
approximate ψ(ub,k) by a continuous function as such con-
tinuous optimization technique can be applied to solve (10).
To this purpose, we consider the (concave) approximation
functions listed in Table I (see the top of the next page),
which have often been used in sparse optimization problems in
wireless communications [5], [6], [9]. It can easily be seen that
ψ(ub,k) u ψβ(ub,k) when β is sufficiently large. Therefore,
we can approximate (10) by replacing ψ(ub,k) by ψβ(ub,k) as

maximize
w,r,u

∑
k∈K

rk (11a)

subject to
∑
k∈K

ψβ(ub,k)rk ≤ C̄b, ∀b ∈ B (11b)

(2b), (2e), (10b) (11c)

Toward solving (11), we use the following transformation

maximize
w,r,u,x̃

g,q,

∑
k∈K

rk (12a)

subject to
∑
k∈K

x̃b,krk ≤ C̄b,∀b ∈ B (12b)

x̃b,k ≥ ψβ(ub,k), ∀b ∈ B, k ∈ K (12c)
(2b), (4b)− (4d), (10b) (12d)

where x̃ , [x̃1,1. . . . , x̃b,k, . . . x̃B,K ]T, and g,q are introduced
exactly as those in the previous subsection. Note that the
nonconvexity of (12) is due to constraints (4d), (12b) and
(12c). Now we can readily apply the SCA to solve (12).
Specifically, constraints (4d) and (12b) can be approximated as
in (6) and (8), respectively. For (12c), its convex approximation
is given by

x̃b,k ≥ ψ̄β(ub,k;u
(n)
b,k ) (13)

where ψ̄β(.) is provided in Table I.1 Finally, we have the
following approximate convex program of (10), i.e.,

max
Λ̃

∑
k∈K

rk s.t. {(2b), (4b), (4c), (6), (8), (10b), (13)}, (14)

where Λ̃ , {w, r,u,g,q, x̃}.
The second proposed suboptimal method is outlined in

Algorithm 2. Since the approximation parameter β provides
the tightness of the approximate step functions in Table I, we
also update β after every iteration which follows the similar
idea as with Algorithm 1. In addition, to circumvent the initial
guess issue, a penalty of violating the fronthaul constraints can
be added to the objective of (14). Convergence of Algorithm 2
is guaranteed, which can be proved using the same arguments
as in [9].

We remark that the value of x̃b,k returned by the SCA in
Algorithm 2 is not ensured to be close to a binary value.
Therefore, a simple post-processing scheme is applied at the
output of the SCA to derive a feasible solution for problem

1For Capped-`1 function, ψβ(y) is concave and continuous but not smooth
at y = 1

β
. However its convex upper bound can be derived based on the sub-

differential ψβ(y) [8].



Table I
`0-APPROXIMATION FUNCTION ψβ(y), AND THE CORRESPONDING SUBGRADIENT ∂ψβ(y) AND FIRST ORDER APPROXIMATIONS ψ̄β(y; y(n)) [8]

Approximation Function ψβ(y) Subgradient ∂ψβ(y) First-order approximation ψ̄β(y; y(n))

Exponential function (Exp) 1− exp(−βy) β exp(−βy) 1− exp(−βy(n)) + β exp(−βy(n))(y − y(n))

Logarithmic function (Log) log(1+βy)
log(1+β)

β
log(1+β)(1+βy)

1
log(1+β)

(
log(1 + βy(n)) +

β(y−y(n))

(1+βy(n))

)
Capped-`1 function min{1, βy}

{
0 if y ≥ 1

β

β if otherwise

{
1 if y(n) ≥ 1

β

βy otherwise

Algorithm 2 Proposed method for solving (11)

1: Initialization: Set n := 0, choose initial values for Λ̃(0)

and set β(0) small
2: repeat {n := n+ 1}
3: Solve (14) and achieve Λ̃∗, then update Λ̃(n) := Λ̃∗

4: Update β(n) := min{βmax;β(n−1) + ε} for small ε
5: until Convergence and output Λ̃∗

6: Apply the post-processing procedure

(2). In particular, we first map x̃b,k to nearest binary value,
denoted as x̄b,k ∈ {0, 1}, and then recalculate beamforming
vector and achieved data rate accordingly by (2d) and (2e),
respectively. As shown at the end of the next section, the
proposed approach outputs feasible solutions to (2) after the
post-processing procedure with high probability. However, in
the worst case where the fronthaul constraint is violated, we
fix x̃b,k = x̄b,k and carry out the second loop of the SCA to
determine feasible w and r.

IV. NUMERICAL RESULTS

This section provides numerical illustrations to evaluate
the effectiveness of the proposed methods. Here we consider
a network with B = 3 RRHs and K = 4 users. The
inter-RRH distance is 200 m. Each RRH is equipped with
M = 2 antennas. The channel hb,k is assumed to be flat
fading which is generated following Gaussian distribution, i.e.,
hb,k ∼ CN (0, ρb,kIM ), where ρb,k represents the large-scale
fading and is calculated as ρb,k[dB] = 30 log10(Db,k[m]) +
38 +N (0, 8). The bandwidth is 10 MHz and the noise power
is -143 dBW. Parameters P̄b and C̄b are set to be same for
all RRHs, i.e., P̄b = P̄ and C̄b = C̄,∀b. The minimum
required data rate for each user is Qk = 1 nat/s/Hz. To
generate an initial point for starting the proposed methods,
we fix all elements of the selection vector as one (i.e., full-
cooperation) and create beamforming vector w(0) satisfying
power constraint (2c); then the values for the remaining
variables are determined based on (4b)–(4d). For the penalty
parameters, we take ξ = 1, p = 15, αmax = 103, βmax = 107,
and initialize α(0) = 10−2 and β(0) = 0.1. For comparison
purposes, we provide performances of the existing methods in
[5] (dubbed as ‘Sparse-WMMSE’) and [6] (dubbed as ‘Sparse-
SCA’). All the convex programs in this paper are solved by
MOSEK solver in MATLAB environment.
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Fig. 1. Average sum rate performances of the considered schemes with P̄ =
30 dBm.

In Fig. 1, we compare the achieved average performance
of the proposed approaches to the optimal one in [7], and
that of the existing schemes. The figure plots the average sum
rate of the considered schemes versus the fronthaul capacity
C̄. We can see that the proposed methods achieve the near-
optimal performance and remarkably outperform the existing
schemes, especially in small regime of C̄. This validates the
effectiveness of the proposed schemes in terms of achieved
sum rate.

Fig. 2 shows the complexity of the considered methods
in terms of the average total run time for convergence as a
function of C̄ . We first observe that the proposed algorithms
take smaller run time to output the solution compared to the
existing ones. This result again confirms the advantage of the
proposed approaches. We can also see that, except Sparse-
WMMSE, the run time for all considered schemes reduces
as C̄ increases. This can be explained as follows. A higher
value of C̄ allows more users to be served by an RRH which
facilitates the association process. As a result, the optimization
procedure takes fewer operations to arrive at the optimal
selection vector, and the run time is reduced. For the Sparse-
WMMSE scheme, we note that the RRH-user association is
not simultaneously updated with the beamforming at each it-
eration due to the alternative optimization procedure. Hence it
may require more iterations for convergence, especially when
the feasible set is expanded as C̄ grows. Another observation
is that run time for Algorithm 1 may be larger than that of
Algorithm 2 in some cases. On the other hand, among the
considered approximation functions in Algorithm 2, Capped-
`1 provides the best performances, followed by Exp and Log
functions. Furthermore, our proposed optimization approach



20 40 60 80
0.1

0.5

1

1.5

2

2.5

3

3.5

4

Fronthaul capacity C̄ (nats/s/Hz)

S
o
lv

er
ti

m
e

(s
)

Alg. 1 Alg. 2-Capped-ℓ1
Alg. 2-Exp Alg. 2-Log

Sparse-WMMSE [5] Sparse-SCA [6]

Fig. 2. Average solver run time of the considered schemes with P̄ = 30
dBm.

1 10 20 30 40 50 60

100

10−1

10−2

10−3

10−4

10−5

Iteration index

∆
(n

)

Alg. 1

Alg. 2-Capped ℓ1
Alg. 2-Exp

Alg. 2-Log

Fig. 3. Gap to the binary of relaxed variables obtained by the proposed
algorithms for one channel realization with Cb = 20 nats/s/Hz, P̄ = 30
dBm.

based on `0-approximation has lower complexity compared to
the one in [6]. These observations can be explained by the
next experiment.

In Fig. 3, we show how close the obtained values of the
relaxed variables are to 0 or 1. In particular, we plot the gap
to the binary of relaxed variables obtained by the proposed
algorithms, denoted by ∆(n), for one channel realization where
∆(n) is defined as

∆(n) ,

{
maxb,k{x(n)b,k − (x

(n)
b,k )2} for Algorithm 1

maxb,k{x̃(n)b,k − (x̃
(n)
b,k )2} for Algorithm 2

Here, a smaller ∆(n) indicates a closer gap between {x(n)b,k }b,k
(or {x̃(n)b,k }b,k) and binary values. For Algorithm 1, it is seen
that ∆(n) ≈ 0 at convergence. This implies that the penalty
method can achieve binary solutions. However, it takes a few
more iterations to reach such values, which may result in
higher solver time in some case, as seen in Fig. 2. On the
other hand, the `0-approximation based method cannot derive
exact binary solutions for relaxed variables in general. Among
the considered approximation functions, Capped-`1 function
can yield {x(n)b,k }b,k very close to 0 or 1 at convergence (the
maximum gap is about 10−2), and is superior to the other
two functions. This indicates that Algorithm 2 using Capped-
`1 function can return a feasible solutions after the simple
mapping process (i.e., without carrying out the second SCA
loop) with higher probability than the two other ones. In fact,
we have observed when C̄ = 20 nats/s/Hz, Algorithm 2 with
Capped-`1 successfully outputs feasible solutions for up to
77% of the number of channel realizations. The corresponding
percentages for Algorithm 2 adopting Exp and Log functions
are 61% and 10%, respectively. When increasing C̄, i.e.,
C̄ = 60 nats/s/Hz, the percentage of the successful channel
realizations when using Capped-`1, Exp and Log functions is
100%, 100% and 91%, respectively. This result also implies
that Algorithm 2 often carries out one optimization stage, and
thus it has lower computational complexity compared to the
two-stage approach in [6].

V. CONCLUSION

This paper has studied the joint design of beamforming
and RRH-user association to maximize sum rate in fronthaul-
constrained C-RANs. Two new methods has been developed

for the design problem, which can achieve very close to
optimal performance with reasonable complexity. Numerical
results have shown that the proposed schemes outperform the
other known methods in both terms of sum rate performance,
and computational complexity.
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