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Abstract—Low density spreading non-orthogonal multiple-
access (LDS-NOMA) is considered where K single-antenna user
equipments (UEs) communicate with a base station (BS) over
F fading sub-carriers. Each UE k spreads its data symbol
over dk < F sub-carriers. Given dk, ∀k as design parameters,
we characterize the resource allocation solutions that closely
maximize the ergodic mutual information (EMI) in a scenario
where the BS assigns resources solely based on the UEs’
pathlosses. Conducting analysis in asymptotic limit where F ,
K, and dk, ∀k converge to +∞ at the same rate, we present
EMI in terms of a deterministic equivalent plus a residual term.
The deterministic equivalent is given in terms of pathloss values
and LDS-codes, and the small residual term scales as O( 1

d2
)

where d = min{dk, ∀k}. We formulate an optimization problem
to get the set C̄∗ of all spreading codes, irrespective of sparsity
constraints, which maximize the deterministic equivalent of EMI.
The spreading codes in C̄∗ with desired sparsity are obtained via
a simple and efficient algorithmic solution. In the finite regime,
the residual term is shown to be a small incremental gain for
the sparse solutions in C̄∗, which is dictated mainly by dk, ∀k
values. Accordingly, we show that the solutions in C̄∗ with desired
sparsity yield close to optimum values of EMI in the finite regime.
Numerical simulation validates the attainable spectral efficiency
enhancement as compared to regular, and random spreading.

I. INTRODUCTION

In low density spreading non-orthogonal multiple-access
(LDS-NOMA), an LDS code comprising a small number of
dk non-zero elements is employed for linearly modulating user
k’s symbol over a number of F shared radio resources. The
sparse mapping between K user equipments (UEs) and F
resources in LDS-NOMA can be either regular, where each
UE occupies dk = d,∀k resources, and each resource is used
by K

F d UEs; or irregular otherwise [1]. The objective here is
to investigate spectral efficiency (SE) limits of LDS-NOMA.

The SE limits of LDS-NOMA with spreading in time
domain have been studied in [1]–[6] under symmetric AWGN
channel model. The irregular schemes with dk being randomly
Poissonian distributed with fixed mean [4], [5], and randomly
uniformly distributed [3] are studied using replica method [7]
and random matrix framework developed in [8], respectively.
The regular scheme is considered in [1], [2] where in [2]
a closed-form approximation is given for the optimum SE.
These analyses indicate that the regular codes, in symmetric
AWGN channel, yield superior SE limits as compared to
irregular and dense spreading (the case with dk = F,∀k).
The aforementioned works rely on the analysis of random
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matrices in large system regime [7], [9] where F grows
large with a fixed ratio of K/F . Such analysis yields rather
accurate approximations in the finite regime that become
arbitrarily tight as F grows large. Since the mathematical
literature studying the limiting behaviour of sparse random
matrices is distinctly smaller than that for non-sparse random
matrices [10], the analysis in more generic settings is rather
limited. The SE analysis in presence of fading is considered
in [11] in a special setting with dk = 1,∀k.

In this paper, a multi-carrier LDS-NOMA scheme with
spreading in frequency domain [12], [13] is considered. Dif-
ferent from the aforementioned works, the UEs are allowed to
have distinct pathloss values, and fading is imposed on sub-
carriers. Also, instead of assuming a particular sparse mapping,
we consider dk,∀k as design parameters, and identify the
LDS-code allocation policies that closely attain the maximum
of the ergodic mutual information (EMI). A key feature of
these policies is that they assign the codes only based on
pathloss values. Conducting analysis in large system limits
where F , K, and dk,∀k converge to +∞ at the same rate,
we present EMI in terms of a deterministic equivalent plus a
residual term. The deterministic equivalent is given in terms
of pathlosses and LDS-codes, and the small residual term is
shown to quickly vanish inversely proportional to d2 where
d = min{dk,∀k}. We first formulate an optimization problem
to get the set C̄∗ of all spreading codes, irrespective of sparsity
constraints, which maximize the deterministic equivalent of
EMI. The desired sparse spreading codes in C̄∗ are obtained
via a simple and efficient algorithmic solution. Conducting
numerical analysis in the finite regime with a moderate number
of sub-channels F , we observe that the residual term appears
as a small incremental gain in EMI for the sparse solutions
in C̄∗, which is dictated mainly by dk,∀k values. Thus,
interpreting the residual term as sparsity gain1 and with a line
of argument, we show that the solutions in C̄∗ with desired
sparsity attain close to the optimum values of EMI in the finite
regime. It is observed that regular spreading is asymptotically
optimal for the symmetric scenarios with the same pathlosses
for all UEs. However, in the generic asymmetric scenarios, an
irregular structure might arise. Numerical simulation validates
the attainable SE enhancement as compared to random and
regular spreading.

1We refer to the residual term as sparsity gain in contrast to the loss
associated with spreading in the considered system model. See [14] for
spreading-coding trade-off.



II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider an uplink multi-carrier system where single-
antenna UEs K = {1, ...,K} communicate with a base station
(BS) on a common frequency band. Exploiting the OFDM
technique, the total frequency band is divided into a set of
narrow band sub-channels F = {1, ..., F}. Then, each UE k
spreads its data symbol in frequency direction using an LDS
code wk ∈ RF . The code is a sparse vector consisting of
F chips with dk, a small number, of non-zero values. The
UEs’ codes are not restricted to be orthogonal. Thus, in an
overloaded scenario, the signals of UEs transmitting on the
same sub-channel are superimposed. The vector of received
signal within F sub-channels is

r =
∑
k∈K

ρ√
dk

diag{wk}(akgk)sk + n (1)

where normalized noise vector is given by n ∼ CN (0, IF ),
unit variance symbol of kth UE is denoted by sk, and signal-
to-noise-ratio (SNR) at the transmitters is represented by ρ.
The channel vector for UE k is denoted by akgk where a2

k

includes the pathloss due to large scale fading. The entries of
G = [g1, ...gK ] ∈ CF×K are independent complex Gaussian
random variables. Each entry has zero-mean independent real
and imaginary parts with variance of 1

2 . The assumptions are
based on uncorrelated fading channel model utilized in the
context of multi-carrier systems [15, Chapter 1] where the
fadings on adjacent data symbols after inverse OFDM and de-
interleaving are considered as uncorrelated [15]. This holds
when, for example, a frequency and time interleaver with
sufficient depth is applied in a frequency-selective fading chan-
nel. Hereafter, hk = ak√

dk
diag{wk}gk and H = [h1, ...,hK ]

denote the equivalent channel vectors and matrix, respectively.

A. Ergodic Capacity of the Channel

Let W = [w1, ...,wK ] ∈ RF×K denotes the spreading ma-
trix. We define the set of power constrained sparse spreading
matrices as C1 = {W|wf,k ∈ R, 1

dk

∑
f w

2
f,k ≤ 1, ‖wk‖0 =

dk, ∀k ∈ K} where ‖wk‖0 = dk restricts the number of non-
zero elements in wk to be equal to dk. The interest is in the
scenario where the BS assigns the spreading codes based on
pathlosses. Implicit in this model is the assumption that the
channel statistics vary much more slowly than the small-scale
fading coefficients [16]. Given perfect knowledge of fading
coefficients at the BS side, ergodic mutual information (EMI)
between the transmitters and the receiver, for a spreading
matrix W ∈ C1 known to the BS and the UEs, is

J(W, ρ) =
1

F
E log

∣∣IF +
∑
k∈K

ρa2
k

dk
diag{wk}gkgH

kdiag{wk}
∣∣

where the expectation is with respect to the ergodic random
realizations of the small-scale fading. Then, the ergodic ca-
pacity of the channel is equal to the maximum of J(W, ρ)
over the set of all sparse spreading matrices in C1, i.e.,

CE = max
W∈C1

J(W, ρ). (2)

The corresponding conventional problem without sparsity con-
straints is considered in [17], [18] for additive white Gaussian

noise (AWGN) channel. While AWGN channel capacity de-
pends on the spreading codes through their cross-correlations,
the transmission of the signal over a Rayleigh fading channel
destroys the orthogonality of the spreading codes [19]. This
together with the assumption of obtaining the spreading codes
based on pathlosses limit the search space to the set of vectors
wk ∈ R+ with positive values, and independent of the small-
scale fading gains.2 Even though the cross-correlation proper-
ties of the spreading codes are not determining parameters
in (2), the optimal pairing of UEs and the power loading
on each sub-channel need to be studied. The binary sparsity
constraints in (2) makes the problem non-convex. Also, the
expectation in (2) needs to be evaluated in a concise form.

III. AN OPTIMIZATION APPROACH BASED ON ASYMPTOTIC
ANALYSIS

In the following, we use theory of large random matrices [9]
to characterize the EMI in terms of spreading codes and
pathloss values. The large system analysis of the problem is
carried out in the asymptotic regime where F → ∞ with
KF−1 ∈ (0,∞) and dkF−1 ∈ (0, 1],∀k. We use subscript F
to denote the dependency of the entities on the system size.

Theorem 1. Consider HF = [h1, ...,hK ] with hk =
ak√
dk

diag{wk}gk,∀k ∈ K. The entries of GF = [g1, ...,gK ]
are i.i.d standard complex Gaussian random variables. The de-
terministic vectors wk,∀k ∈ K are the columns of WF ∈ C1,
each with dk non-zero values. The scalars {ak}1≤k≤K are
bounded real values. Then, as F →∞ with KF−1 ∈ (0,∞)
and dkF−1 ∈ (0, 1],∀k, we have

JF (WF , ρ) = J̄F (WF , ρ) + εF (ρ) (3)
where εF (ρ) ≤ K

F
C
d2 with C being a generic constant

independent of system size, d = min{dk}1≤k≤K , and

J̄F (WF , ρ) =
1

F

∑
k∈K

log(1 +
ρa2
k

dk

∑
f∈F

w2
f,krf )

+
1

F

∑
f∈F

log(1 + ρ
∑
k∈K

1

dk
w2
f,ka

2
kr̃k)− ρ

F

∑
f∈F

∑
k∈K

w2
f,k

dk
a2
krf r̃k

(4)
where rf (WF , ρ) and r̃k(WF , ρ) are the solutions of

rf = (1 + ρ
∑
k∈K

1

dk
w2
f,ka

2
kr̃k)−1,∀f ∈ F ,

r̃k = (1 +
ρa2
k

dk

∑
f∈F

w2
f,krf )−1,∀k ∈ K.

(5)

Proof. The convergence JF (WF , ρ)−J̄F (WF , ρ)→ 0 can be
claimed relying on Girko’s law [21, Section 3.2.3] [9, Theorem
6.10]. An alternative proof based on Replica method is also
given in [22]. The convergence rate can be obtained using
Nash-Poincaré inequality [23] as in the extended version of
this work in [24], or alternatively, using the results in [25] by
properly scaling the channel entries’ variances while ensuring
the assumptions therein remain valid.

2This directly follows from the invariance of standard complex Gaussian
random vector in distribution under unitary transformation [20].



According to Theorem 1, the EMI JF (WF , ρ) converges
asymptotically to the deterministic equivalent J̄F (WF , ρ) with
a convergence rate of O( 1

d2 ). In the finite scenarios of interest
with a moderate number of sub-channels, dk values can
be small relative to F .3 In such finite cases, the analysis
in Sec. IV-B shows that the residual term εF (ρ) appears
as a small incremental gain for sparse spreading, which is
dictated mainly by the number of non-zero elements in the
codes. Keeping this in mind, in Sec. IV-A, we first formulate
an optimization problem to get the set C̄∗ of all spreading
codes, irrespective of sparsity constraints, which maximize
J̄F (WF , ρ). Then, in Sec. IV-B, we show that the solutions
in C̄∗ with desired sparsity harness the incremental gain in
εF (ρ) and attain close to optimal values of EMI JF (WF , ρ)
in the finite regime. Finally, We identify the desired subset of
spreading matrices in C̄∗ that satisfy the sparsity constraints
via a simple partitioning algorithm.

IV. MAXIMIZING THE ERGODIC MUTUAL INFORMATION

In the sequel, we omit the subscript F denoting the de-
pendency on system size. Also, observe that J̄(W, ρ) in (4)
depends only on squares of wf,k values. Therefore, with a
change of variable as vf,k = 1

dk
w2
f,k, hereafter, we express

the EMI and the related entities as a function of matrix
V = [vf,k]f∈F,k∈K. Given a matrix V, the corresponding
set of spreading vectors {wk} can be obtained up to an
uncertainty in the sign of the entries of spreading vectors.
As mentioned in Sec. II-A, the objective function under the
considered i.i.d channel model is indifferent to the signs of
spreading code entries. Thus, hereafter, we refer to V and W
interchangeably as the spreading matrix.

A. The optimal spreading codes in asymptotic regime

Let us first neglect the sparsity constraints, and define C2 ,
{V|vf,k ∈ R+,

∑
f∈F vf,k ≤ 1, ∀k ∈ K} to be the set of all

spreading codes that satisfy the power constraints. Then, the
problem of maximizing J̄(V, ρ) can be formulated as follows

CE = max
V∈C2

J̄(V, ρ). (6)

The Karush-Kuhn-Tucker (KKT) conditions [26] are necessary
conditions for a matrix V to be a local optimal solution of the
problem in (6). The sufficiency and the global-optimality are
discussed later. The Lagrangian associated with (6) is
L(vf,k, λf,k, δk) = −J̄(V, ρ)−

∑
i∈F,j∈K

λi,jvi,j+
∑
j∈K

δj
(∑
i∈F

vi,j−1
)

where δk and λf,k are associated Lagrangian variables. The
gradient of the Lagrangian is given as

∇
f,k
L(vf,k, λf,k, δk) = −∂J̄(V, ρ)

∂vf,k
−λf,k+δk,∀f ∈ F , k ∈ K.

Note that J̄(V, ρ) depends on the entries of V via rf (V, ρ)
and r̃k(V, ρ) as in (4) and (5). Since they are the so-
lutions to the saddle point equations, the partial deriva-
tives ∂J̄(V,ρ)

∂rf
and ∂J̄(V,ρ)

∂r̃k
are zero at any point given by

3Note that while the limiting results are obtained in the asymptotic regime,
those can be applied as approximations for the finite scenarios with dimensions
as small as 8 and even 4 or 2 [9, Section 2.2.1].

(V, rf (V, ρ), r̃k(V, ρ)). Thus, the chain rules of deriva-
tives [27] yield ∂J̄(V,ρ)

vf,k
= ρ

F a
2
kr̃krf . As a result, the KKT

conditions can be evaluated as
λ∗f,k ≥ 0, λ∗f,kvf,k = 0, δ∗k ≥ 0, δ∗k

(∑
i∈F

vi,k − 1
)

= 0,

− ρ

F
a2
kr̃krf − λ∗f,k + δ∗k = 0, ∀f ∈ F , k ∈ K

where λ∗f,k and δ∗k denote the optimal values of the Lagrangian
variables. Since λf,k can be solved from the last equation, the
KKT conditions can be simplified as

δ∗k
(∑

i∈F
vi,k − 1

)
= 0, ∀k ∈ K, (7a)

(δ∗k −
ρ

F
a2
kr̃krf )vf,k = 0, ∀f ∈ F , k ∈ K, (7b)

δ∗k ≥
ρ

F
a2
kr̃krf , ∀f ∈ F , k ∈ K. (7c)

The KKT condition (7c) implies that δk ≥ ρ
F a

2
kr̃krf > 0,

and thus, (7a) gives
∑
i∈F vi,k = 1,∀k ∈ K, i.e., all UEs are

active, and transmit with full power. Also, at the optimum, we
have rf = r∗, ∀f ∈ F where

r∗ =
(
1 +

ρ

F

∑
k∈K

a2
k

1 + ρa2
kr
∗

)−1
. (8)

This is justified because (7b) and (7c) imply that a given
UE k transmits only on the sub-channels with the largest rf
value. Since, all other UEs also have the same preference, the
condition in (7b) and (7c) are satisfied only if UEs assign
their powers such that rf = r, ∀f . It is shown in [24] that
r is unique, i.e., r = r∗, for any solution satisfying (7).
Plunging rf = r∗, ∀f ∈ F into (5) equivalently yields
r̃∗k = 1

1+ρa2kr
∗ ,∀k ∈ K. Observe that r∗ and r̃∗k are the same

for all the solutions satisfying KKT conditions. Plugging the
r∗ and r̃∗k values into (4) yields

J̄(V, r̃∗k, r
∗, ρ) = − 1

F

∑
k∈K

log(r̃∗k)− log(r∗)− ρ

F
r∗
∑
k∈K

a2
kr̃
∗
k.

Note that the resultant objective function is given in terms
of r̃∗k and r∗ values, and irrespective of vf,k values. Thus,
one can conclude that any solution satisfying KKT condition
attains the maximum of J̄(V, ρ). This set of solutions, denoted
hereafter by C̄∗, can be evaluated equivalently as the positive
solutions of the following indeterminate system of equations∑

f∈F
vf,k = 1, ∀k ∈ K, (9a)∑

k∈K
βkvf,k =

1

r∗
− 1, ∀f ∈ F . (9b)

where βk =
ρa2k

1+ρa2kr
∗ . In these equations, r∗ is a fixed scalar,

which is evaluated from (8). The equalities in (9b) are obtained
by setting rf = r∗,∀f in (5). These equalities follow since any
power constrained spreading matrix V that gives rf = r∗,∀f ,
equivalently, satisfies the KKT conditions in (7) as well. In the
special setting with the same pathlosses for all UEs, it can be
verified that the regular LDS codes are among the solutions
of (9). However, in general, this condition does not hold due
to distinct pathlosses. Also, observe that dense spreading with
vf,k = 1/F,∀k, f is always a solution to (9).



B. On the optimality of the asymptotic sparse spreading codes

Based on the analysis in Sec. IV-A, we know that the
spreading codes in C2 that maximize the deterministic equiv-
alent J̄(V, ρ) in (6) are given as the solutions of the system
of equations in (9). This set of solutions is denoted by C̄∗.
Hereafter, we use V̄∗ to refer to a member of the set C̄∗. The
analysis in Theorem 1 shows that the residual term is bounded
as ε(ρ) ≤ K

F
C
d2 with C being a generic constant, independent

of system size. Therefore, ε(ρ) term vanishes asymptotically,
and thus, the solutions in C̄∗ attain the maximum of EMI
J(V, ρ) in the asymptotic regime. However, in the finite
regime, ε(ρ) term appears as a small incremental gain in the
EMI formulation, which needs to be considered. Let V∗d to be
the unknown optimal spreading matrix that maximizes J(V, ρ)
subject to sparsity constraints. Also, let J∗d , J(V∗d, ρ) to be
the maximum of J(V, ρ) attained by V∗d. Now, the penalty
when using any spreading matrix V̄∗ ∈ C̄∗, given as a solution
of the system of equations in (9), instead of the optimal one
V∗d can be written as

∆d = J(V∗d, ρ)︸ ︷︷ ︸
J∗
d

−J(V̄∗, ρ) (10)

Writing J(V∗d, ρ) and J(V̄∗, ρ) in terms of the deterministic
equivalents and the residual terms, we get

J(V∗d, ρ)− J̄(V∗d, ρ) = ε1(ρ) (11a)
J(V̄∗, ρ)− J̄(V̄∗, ρ) = ε2(ρ) (11b)

where the additional index i in εi(ρ) is added to distinguish
the above differences. Subtracting the sides of above equalities,
and rearranging the terms, we get

(J(V∗d, ρ)− J(V̄∗, ρ))︸ ︷︷ ︸
∆d

+(J̄(V̄∗, ρ)− J̄(V∗d, ρ)) = ∆ε

where ∆ε = ε1(ρ)− ε2(ρ). Since the subtraction (J̄(V̄∗, ρ)−
J̄(V∗d, ρ)) in the left-hand is positive4, it can be claimed that
the gap to the optimum ∆d is bounded as

0 ≤ ∆d ≤ ∆+
ε (12)

where ∆+
ε denotes the positive values of ∆ε. The lower bound

by zero is imposed since ∆d attains negative values when J∗d <
J(V̄∗, ρ). However, this can happen only when V̄∗ violates the
sparsity constraints, which is not the case of interest.

Fig.1 illustrates the variations in the residual term ε(ρ) in a
numerical study based on the simulation assumptions in Sec. V
with F = 50, K = 100, and dK = d, ∀k. In deriving the
results, a randomly selected drop of UEs is taken, and the
mean and variance of the residual term ε(ρ) are evaluated
over 1000 randomly selected spreading matrices in C1. Fig. 1
shows the mean and 20 times magnified variance of ε(ρ) values
along with J̄(V, ρ) versus the number of non-zero elements
in the codes. The first observation is that the residual term is
small as compared to J̄(V, ρ). Moreover, the small variance
of the residual term indicates that the values of ε(ρ) do not
vary abruptly among the spreading matrices in C2 with the
same number of non-zero elements. Thus, the values of the
residual term are dictated mainly by the number of non-zero

4Note that J̄(V̄∗, ρ) is the maximum of the objective function in (6).
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Fig. 1: Mean and 20 times magnified variance of ε(ρ) (left
axis), and J̄(V, ρ) (right axis) vs. d, random spreading.

elements in spreading codes, which implies a decline in ε(ρ)
as d increases. Generally, the residual term is larger for the
sparse spreading matrices, while it almost disappears in the
dense spreading with a moderate number of sub-channels F .
This motivates the small incremental gain in ε(ρ) for sparse
spreading to be interpreted as sparsity gain, in contrast to the
loss associated with the spreading in the considered system
model [14] Now, let us recall the ∆d formulation in (12),
which gives the gap to the optimum J∗d when using a solution
V̄∗ ∈ C̄∗ in the finite regime. Relying on the above analysis,
we expect a solution V̄∗ that satisfies the sparsity constraints
to harness an incremental ε2(ρ) value close to the ε1(ρ) one,
and thus, yields a close to zero performance gap of ∆d . Next,
we find the sparse solutions in C̄∗ via an algorithmic solution.

C. Algorithms for allocation of low density spreading codes

The system of equations in (9) unveils a simple rule for the
allocation of spreading codes. This allows the desired sparse
codes to be obtained using efficient algorithmic solutions.
Let the elements vf,k of spreading codes to be taken from
{0, 1

dk
}. Based on (9b), the problem is to allocate 1

dk
βk

values to sub-channels such that the sums of 1
dk
βk values on

each sub-channel become the same, i.e., equal to ( 1
r∗ − 1),

across all sub-channels. This problem falls within a class
of partitioning problems that arise in number theory and
computer science [28]. Although the partitioning problem is
NP-complete, there are heuristics that solve the problem in
many instances, either optimally or approximately [29]. One
Algorithm 1 Partitioning solution

1: Divide the total power of each UE k into dk power
fragments.

2: Set vf,k = 0, ∀f, k, and J = {1, ...,K}.
3: while J is non-empty do
4: Set k = arg max

j∈J

1
dj
βj .

5: Set f = arg min
i∈F

ηi with ηi =
∑
j∈K βjvi,j .

6: Set vf,k = 1/dk
7: if

∑
i∈F vi,k = 1, i.e., UE k satisfies (9a). then

8: Remove index k from J .
9: end if

10: end while



such approach is the greedy algorithm, which iterates through
the 1

dk
βk values in descending order, assigning each of them

to whichever sub-channel has the smallest sum [30]. These
steps are summarized in Alg. 1. Here, we try to make the sum
terms ηf across the sub-channels as equal as possible. Let η∗max

denotes the maximum of ηf ,∀f ∈ F in an optimal partitioning
solution. Alg. 1 yields ηf values such that max(ηf )

η∗max
≤ 4

3 −
1

3F

[30]. Alg. 1 has a running time of O(2F (dmaxK)2) [30].

V. NUMERICAL RESULTS

The simulation results are generated in a scenario where
a single-antenna BS serves the UEs in the uplink. Transmit
power of each UE is 1 Watt, and the noise power is set to
−120dB. The pathlosses are taken randomly and uniformly
from the range of −150dB to −60dB to account for diverse
received SNRs. The final channel gains are given by the
product of pathlosses and fast fading effects as in (1).

Fig. 2 shows the SE enhancement for the coordinated
allocation of sparse codes based on pathloss values in Alg.1, as
compared to the uncoordinated scheme that allocates randomly
generated sparse codes to UEs. The rates are averaged over
1000 random UE drops and in each drop the expectation in
J(V, ρ) is evaluated over 1000 random realizations of small-
scale fading. In the analysis, we use Alg.1 in the non-spreading
case with d = 1 as well. Note that Alg.1 allocates sparse
codes to UEs such that the deterministic equivalent of EMI
is maximized. The motivation therein is that the residual term
is small relative to the deterministic equivalent part, and the
small gain in ε(ρ) is harnessed inherently due to the sparsity
of the allocated codes. While we expect ε(ρ) to be relatively
small for the cases with d > 1, due to the fast convergence
rate of O( 1

d2 ), the analysis in the non-spreading case with
d = 1 might be considered as a heuristic attempt. Interestingly,
the difference between J(V, ρ) and J̄(V, ρ) is relatively small
even in such a case, and the coordinated allocation of resources
gives about 20% to 35% enhancement in spectral efficiency at
100% to 300% system load. The system load is defined as the
ratio of K

F in percentage. In the case with d = 2, the gain in
the coordinated assignment of spreading codes is about 6.5%
and 11% at 100% to 300% load, respectively, which is less
than in the non-spreading case (d = 1).
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Fig. 2: Spectral efficiency J(V, ρ) vs. K, d = 1, 2, F = 50.
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Fig. 3: efficiency J(V, ρ) vs. d, F = 50, KF = 3.

In Fig. 3, the attainable SEs are presented versus the number
of non-zero elements in the codes d, for a system load of
300%. It can be seen that the performance of random spreading
method improves as d grow larger. Spreading on more sub-
channels allows UEs to attain interference diversity. This, in
general, reduces the loss imposed by uncoordinated resource
allocation. Note that, even though one can enhance the spectral
efficiency of the uncoordinated method by spreading on further
sub-channels, the number of UEs overlapping on the same
sub-channel increases correspondingly. In a system with 300%
load, the average number of overlapping UEs in the case with
d = 2 and d = 6 is equal to 6 and 18, respectively. Thus,
the detection complexity is greatly increased with larger d.
In Fig. 3, the spectral efficiency of dense spreading is also
depicted. As mentioned in Sec. IV-A, dense spreading is a
solution of the optimization problem in (6), and thus, the
values of deterministic J̄(V, ρ) for both of dense spreading
and the sparse spreading in Alg. 1 are the same. However, the
values of J(V, ρ) for sparse spreading in Alg. 1 are better of
dense spreading by an amount of ε(ρ). This can be seen from
Fig. 3 where the curves of J̄(V, ρ) and J(V, ρ) are almost
overlapping for dense spreading while the curve of J(V, ρ)
for Alg 1 at d = 1 is nearly 0.5 bits/s/Hz higher than the
deterministic curve. This additional gain in J(V, ρ) for sparse
spreading as compared to the dense spreading was referred
to as sparsity gain in Sec. IV-B. Observe that the sparsity
gain decreases as the number of non-zero elements in the
codes increases. Finally, we observe that, in contrast to the
symmetric model, the regular spreading is inferior to Alg.1
and dense spreading in the considered asymmetric scenario.

VI. CONCLUSIONS

A simple and efficient rule for close to the optimal allocation
of sparse spreading codes was derived based on rigorous
analysis. The analysis reduced EMI maximization dilemma to
a partitioning problem, which was solved via an efficient algo-
rithmic solution. The algorithm allocates the spreading codes
based on the system load, sparsity constraints, and pathloss
values. The simulation results showed that the performance of
the proposed method with minimal coordination is superior to
random, regular, and dense spreading schemes.



REFERENCES

[1] O. Shental, B. M. Zaidel, and S. S. Shitz, “Low-density code-domain
NOMA: Better be regular,” in IEEE International Symposium on Infor-
mation Theory (ISIT), June 2017, pp. 2628–2632.

[2] B. M. Zaidel, O. Shental, and S. S. Shitz, “Sparse NOMA: A closed-
form characterization,” in IEEE International Symposium on Information
Theory (ISIT), June 2018, pp. 1106–1110.

[3] G. C. Ferrante and M. D. Benedetto, “Spectral efficiency of ran-
dom time-hopping CDMA,” IEEE Transactions on Information Theory,
vol. 61, no. 12, pp. 6643–6662, Dec 2015.

[4] M. Yoshida and T. Tanaka, “Analysis of sparsely-spread CDMA via
statistical mechanics,” in IEEE International Symposium on Information
Theory, July 2006, pp. 2378–2382.

[5] A. Montanari and D. Tse, “Analysis of belief propagation for non-linear
problems: The example of CDMA (or: How to prove tanaka’s formula),”
in IEEE Information Theory Workshop - ITW ’06 Punta del Este, March
2006, pp. 160–164.

[6] M. T. P. Le, G. C. Ferrante, G. Caso, L. De Nardis, and M. Di Benedetto,
“On information-theoretic limits of code-domain NOMA for 5G,” IET
Communications, vol. 12, no. 15, pp. 1864–1871, 2018.

[7] R. R. Müller, “Random matrices, free probability and the replica
method,” in 12th European Signal Processing Conference, Sep. 2004,
pp. 189–196.
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