
 

  

Abstract— Color-based particle filters have emerged as an 

appealing method for targets tracking. As the target may 

undergo rapid and significant appearance changes, the template 

(i.e. scale of the target, color distribution histogram) also needs 

to be updated. Traditional updates without learning contextual 

information may imply a high risk of distorting the model and 

losing the target. In this paper, a new algorithm utilizing the 

environmental information to update both the scale of the 

tracker and the reference appearance model for the purpose of 

object tracking in video sequences has been put forward. The 

proposal makes use of the well-established color-based particle 

filter tracking while differentiating the foreground and 

background particles according to their matching score. A 

roaming phenomenon that yields the estimation to shrink and 

diverge is investigated. The proposed solution is tested using 

publicly available benchmark datasets where a comparison with 

six state-of-the-art trackers has been carried out. The results 

demonstrate the feasibility of the proposal and lie down 

foundations for further research of complex tracking problems.  

Index Terms—Object tracking, Video Analysis, Scale 

modification, Background learning. 

 

I INTRODUCTION 

With widespread of multimedia standards like MPEG-4, 

large amount of surveillance cameras have been deployed in 

cities, public buildings, motorways, etc. This resulted in 

substantial increase of multimedia data, which, in turn, 

rendered the task of robust automatic tracking system from 

video sequences of paramount importance because of the cost 

of manual check. Object tracking, as a fundamental problem 

in computer vision, can be further used in video compression, 

video retrieval, interactive video, scene composition, etc. [1]. 

This motivates extensive research in recent years to improve 

the efficiency of automatic target tracking and event 

recognition from video sequences [2]. However, visual 

tracking still poses many open challenges, e.g., background 

clutter, occlusion, fast movement, variation of illumination, 

object scale change and deformation [3-4]. To build effective 

mathematical models, numerous cues have been explored to 

represent target, including, motion, geometry, shape and 

colour [5]. Models based on a combination of features have 

also been explored in [6-7]. In a standard tracking model, the 

basis is to use a reference model, which can be any image 

patch or manual inputs of contour, colour histogram of object 

of interest, among others, that describes the appearance of the 

underlying object. Several approaches have been put forward 

that utilize this colour feature in video tracking (i.e. CamShift 

[8] MeanShift [9], Kalman Filter [10], Particle Filter [11] 

etc.). As Particle Filters have distinguished properties in 

dealing with multi-modal visual tracking problem of general 

non-linear and non-Gaussian systems without any assumption 

about the dynamics and shape  of  the  conditional  density, it 

has been used extensively in recent past [12-13]. In this 

course, the key is to calculate the similarity between the 

target colour histogram at the region around the target 

estimate (referred to tracker scale) and that of the ground 

truth (reference mode) [14-15]. Therefore, the (estimated) 

region (or tracker scale) around the target location estimate 

plays key role in the estimation process. If the size of such 

region becomes sufficiently small, the target may be lost by 

the tracking system, as it may yield no matching between the 

target and ground truth histograms. Similarly a wide 

(estimated) region may render the influence of the 

background pixels more dominant causing the tracker to 

become more easily distracted by background clutter, which, 

in turn, may lead to target loss as well. In addition, the 

appearance of the target might change according to self-

deformation and illumination variations, which also renders 

the similarity to the reference model biased. To handle these 

newly emergent/disappeared features, the appearance model 

also needs to be updated, accordingly.   

In this paper, likewise works in [14-21], we deliberately 

confine our study to a single object tracking, although we 

acknowledge the extensibility of the approach to multiple 

objects after handling the possible data association problem 

as in [22-23]. The main contributions of this paper are 

twofold. First the original color based particle filter tracker 

has been extended by accounting for background information 

around the estimated region of the target. Second, roaming 

density criteria were put forward by eliciting marginal 

density function, to model particles’ shrinking behavior, and 

then, if necessarily, refine particles’ weights and, 

accordingly, the estimation is updated. Especially, contextual 

information is accounted for to enhance the robustness of the 

tracker. The algorithm is tested using a set of benchmarked 

dataset to ease comparison with other state of art trackers.  

 

II RELATED WORK 

Recently, the adaption of tracker scale and appearance model 

has been studied, extensively. The work in [5], [11], [14] 

considers the scale of the tracker as part of the state vector to 

be estimated by the particle filter at each sample. Although 
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such approach sounds appealing, the influence of the 

appearance model with respect to target cannot be neglected. 

Indeed, since the particle filter measurement relies on 

matching the appearance model (colour distribution) around 

the estimated position to that of the target, it is easy to see 

that scenarios of tiny variations of appearance models make 

the scale parameter estimation biased and yields possible 

local optimality because both small and large tracker scale 

would lead to almost the same result in terms of similarity 

between appearance model around the estimate and that of 

the appearance of target (reference) model.  

Several approaches have been put forward for the purpose 

of appearance model update, e.g., linear combination of 

previous and current estimations of template model at the end 

of each filter iteration [11], decision rule-based method [15], 

Rao-Blackwellised particle filter (RBPF) like approach [5], 

among others. However, all these updating stages are solely 

based on the information extracted from the estimation where 

any inaccurate estimation is likely to result in serious drifting 

problem. Other researchers attempted to extract contextual 

information as an aid for tracking, e.g., Wang et al.’s on-line 

updating of the appearance model by selecting the 

discriminative features with the aid of existing background 

particles [24]. Stolkin et al. [25] attempted to extract the 

information from the background and automatically adjust 

the relative importance of the two subsequent features (i.e., 

thermal and colour features), while background information 

was used to re-weight the existing features. 

 

III COLOR BASED PARTICLE FILTER 

The key idea of particle filter is to represent the posterior 

density function by a set of random samples (𝑠(𝑖), 𝜔(𝑖), 𝑖 =

1, 𝑁) , where 𝑠(𝑖)  represents some hypothetical state of the 

object of interest, referred to ith particle, with associated 

weight 𝜔(𝑖)  such that ∑ 𝜔(𝑖)𝑁
𝑖=1 = 1 . While the overall 

estimation of the state 𝑋  of object of interest from its 

particles is performed using the expectation operator over the 

set of particles; namely, 𝑋 = ∑ 𝑠(𝑖)𝑤(𝑖)𝑁
𝑖=1 . 

In our algorithm, the target is modelled by a rectangular 

region, which defines the tracker scale: 

𝑠 = {𝑃𝑥 , 𝑃𝑦 , 𝐻𝑥 , 𝐻𝑦}                              (1) 

where 𝑃𝑥 , 𝑃𝑦  represent the x-y coordinates of the center 

position of the tracker, 𝐻𝑥 , 𝐻𝑦 stand for the region width and 

height, respectively, as shown in the Fig. 1.  

 
Fig. 1 Tracker bounding box 

 

It is commonly assumed that the state vector 𝑠 is latent 

and/or unobservable, estimated from a set of (noisy) 

observations 𝑍 .We denote by 𝑍𝑘  the observation at current 

time 𝑘, and 𝑍1:𝑘  the cumulative set of measurements up to 

and including time 𝑘. 

The estimation of the posterior in particle filter uses three 

main steps: prediction, update and re-sampling. First, prior 

information is utilized to propagate and predict the potential 

distribution of samples. The update operation uses the 

measurement to modify the predicted probability density 

function (pdf). By using the principle of importance sampling, 

the weights are chosen and allocated to the corresponding 

samples [26]. Then, the update state is computed by 

averaging over the set of particles. More specifically, 

similarly to traditional color based tracking [11], the dynamic 

of the state model is described by a constant motion model:  

𝑠𝑘 = 𝐴𝑠𝑘−1 + 𝑣𝑘−1                         (2) 

where 𝑣𝑘~𝐺(0, 𝑅)  is a zero-mean Gaussian noise with a 

constant variance-covariance matrix R, and  𝐴 is an identity 

matrix of size four. 

In the update stage, the measurement 𝑍𝑘 is used to modify the 

prior density by evaluating the similarity between the ground 

truth and the prediction. In other words, instead of taking the 

entire image as a measurement, one only restricts to the 

image region specified by the state vector 𝑠𝑘
(𝑖)

 (region centred 

on (𝑃𝑘
𝑖𝑥 , 𝑃𝑘

𝑖𝑦) and whose width and height are 𝐻𝑘
𝑖𝑥  and 𝐻𝑘

𝑖𝑦
, 

respectively) for the ith particle. Next, the associated 

probability distribution ℎ
𝑠𝑘

(𝑖)  is constructed using the 𝑚-color 

histogram of the above region. On the other hand, the 

probability model corresponding to the reference model is 

also computed. This may refer to the first frame or the image 

request containing the object to be tracked, so that the 

rectangular region that fully delimits the object of interest is 

fully quantified using its 𝑚-bins histogram based probability 

distribution  ℎ𝑟𝑒𝑓 . Next, the similarity 𝐷(ℎ
𝑠𝑘

(𝑖) , ℎ𝑟𝑒𝑓) between 

the reference target model ℎ𝑟𝑒𝑓  and the candidate target 

model ℎ
𝑠𝑘

(𝑖)  according to state estimation 𝑠𝑘
(𝑖)

 is calculated 

using commonly employed Bhattacharyya distance [27]: 

  

𝐷2 (ℎ
𝑠𝑘

(𝑖) , ℎ𝑟𝑒𝑓) = 1 − ∑ √ℎ
𝑠𝑘

(𝑖)(𝑗). ℎ𝑟𝑒𝑓(𝑗)
𝑁𝑏𝑖𝑛
𝑗=1        (3) 

where ℎ
𝑠𝑘

(𝑖)(𝑗), ℎ𝑟𝑒𝑓(𝑗)  indicate the value of bin 𝑗  in the 

histogram of 𝑖𝑡ℎ  particle and reference model, respectively, 

normalized in the unit interval. 𝑁𝑏𝑖𝑛 is the total number of the 

bins. Finally, particles’ weights are extracted from 

Bhattacharyya distance as:  

𝜔(𝑖) = 𝑒
−𝜆∗𝐷2(ℎ

𝑠𝑘
(𝑖) ,ℎ𝑟𝑒𝑓)  

                        (4) 

where 𝜆∗ is some positive constant parameter. Weights in (4) 

are then normalized by a simple division over ∑ 𝜔(i)N
i=1 , say, 

𝜔′(𝑖) = 𝜔′(𝑖)/ ∑ 𝜔(i)N
i=1                       (5) 

Next, the estimated state is obtained by averaging over the set 

of all particles: 

𝑆̂𝑘 ≈ ∑ 𝜔′𝑘
(𝑖)

𝑠𝑘
(𝑖)𝑁

𝑖=1                             (6) 

 

The choice of parameter 𝜆∗ governs the number of particles 

with high weights that can be generated. For instance, 

choosing high value of 𝜆∗  would substantially increase the 

number of particles whose weights are close to zero value, 

while choosing 𝜆∗ very small would yield marginally equal 

(𝑝𝑥 , 𝑝𝑦)   𝐻𝑦 

𝐻𝑥 



 

  

weights. Setting 𝜆∗=1 sounds a cautious attitude that avoids 

both overfitting and under-fitting phenomena. Next a 

resampling stage is carried out to discard small weight 

particles in the same spirit as in [13].  

 

IV MODEL ADAPTATION 

We first differentiate foreground and background particles. 

The algorithm uses the distribution of those foreground 

particles to model particles' roaming behavior for tracker 

scale adaption while the contextual information extracted 

from the surrounding is utilized for appearance model 

adaptation, as described in the following subsections. 

A. Scale adaption 

In order to ensure efficiency in object tracking 

performance, the (estimated) scale of the tracker should be 

resized at each frame in order to accommodate the dynamic 

and inherent variations of shape of tracking object (e.g., 

rotation, moving forward or backward from camera view). 

Especially, when the tracker scale is too small, the kernel can 

roam around on the object, and leads to a poor object 

localization, which can cause tracking failure.  

Especially, provided that the genuine target is not of uniform 

color, the roaming phenomenon occurs because of an 

erroneous estimation that either shift the bounding box 

estimates to the background region or the bounding box 

regions become marginally small. This raises the importance 

of reliable identification of foreground regions as well as 

monitoring of the target scale estimates, issues that will be 

detailed in the next section.  

 

1) Roaming detection 

The key idea to tackle the roaming phenomenon is to avoid 

its occurrence. For this purpose, the rationale is to account for 

contextual information in order to favor higher-weight 

particles. Three rational criteria have been pursued: 

distinguishing foreground from background region, 

Accounting for only high-weight particles and Taking into 

account the distribution of the particles in the foreground 

region. In order to differentiate the foreground and 

background particles, the matching scores {𝜔𝑘
(𝑖)

}  is 

employed. Especially, a particle is regarded as foreground if 

its associated weight value {𝜔𝑘
(𝑖)

} is beyond some predefined 

threshold value 𝜔∗. The latter is chosen such that   

𝜔𝑘
∗ = 𝜇𝑠 ∗ 𝑚𝑎𝑥𝑖{𝜔𝑘

(𝑖)
},                        (7) 

where {𝜔𝑘
(𝑖)

} are computed according to Eq. 4-5 and  𝜇𝑠 is a 

fixed weighting factor ranging in the unit interval. Typically, 

𝜇𝑠 = 1 would restrict the number of particles to only the one 

with the highest weight, while 𝜇𝑠 = 0 makes all particles to 

pass the threshold test, therefore a balance should be 

provided by avoiding low number of particles, which would 

make the non-linear approximation of particle filter very 

weak and the high number of particles which would worsen 

the roaming behavior. Interestingly, one shall notice that 

since 𝜆∗  also influences the weight of particle, the 

dependency between 𝜆∗  and 𝜇𝑠  is established. Therefore 

fixing the value of one parameter to a reasonable default and 

studying the variation of the other sounds a rational attitude. 

Discussion regarding the choice of 𝜇𝑠  is reported to 

experimental section.   

Second, the distribution of the underlying foreground 

particles in terms of spatial representation is investigated. 

Intuitively, if the covering area of such particles is too small, 

then it likely induces a shrinking problem, alternatively if it is 

too large, this would also suggest that the underlying region 

will likely include some background pixels as well, which, in 

turn, may trigger the roaming phenomenon. Therefore, we 

define the concept of roaming threshold value as   

𝐷𝑟 =
√∑ ‖𝜔𝑘

(𝑖)
−𝜔̅𝑘‖

2
𝛿(𝜔𝑘

(𝑖)
−𝜔𝑘

∗)𝑁
𝑖=1

𝑆𝑟𝑜𝑎𝑚
,                   (8) 

where 𝑆𝑟𝑜𝑎𝑚  corresponds to the (geometrical) area of the 

foreground particles, 𝜔̅𝑘 is the mean weight of these particles 

and N is the total number of particles. More formally, let L be 

the set of particles whose weights is beyond 𝜔𝑘
∗: 

𝐿 = {𝑠𝜓(1), 𝑠𝜓(2), … , 𝑠𝜓(𝑀)},                        (9)                 

where M is the total number or such particles and 𝜓 is some 

permutation of indices {1,2,…,N} such that all particles in 

set 𝐿 meet the threshold criterion. Let 𝑅∗ be the rectangular 

region that includes all the sub-regions 𝑅𝑠𝑘
 associated to the 

foreground particles whose weights are beyond threshold 

𝜔𝑘
∗. In the same spirit as (1), let 

     𝑠𝑘
(𝜓(𝑖))

= {𝑃𝑘

𝑥𝜓(𝑖)
, 𝑃𝑘

𝑦𝜓(𝑖)
, 𝐻𝑘

𝑥𝜓(𝑖)
, 𝐻𝑘

𝑦𝜓(𝑖)
}, 𝑖 = 1, 𝑀,        (10) 

be the set of particles that are found to belong to foreground, 

then 

𝑆𝑟𝑜𝑎𝑚 = min
𝑖=1,𝑀

(𝑃
𝑘

𝑥𝜓(𝑖) − 𝐻
𝑘

𝑥𝜓(𝑖)) max
𝑖=1,𝑀

(𝑃
𝑘

𝑦𝜓(𝑖) − 𝐻
𝑘

𝑦𝜓(𝑖)) (11) 

     𝛿(𝜔𝑘
(𝑖)

− 𝜔𝑘
∗) = {1  𝑖𝑓 𝜔𝑘

(𝑖)
≥ 𝜔𝑘

∗ 

0   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                             (12) 

 

      𝜔̅𝑘 = ∑ 𝜔𝑘
(𝑖)

𝛿(𝜔𝑘
(𝑖)

− 𝜔𝑘
∗)𝑁

𝑖=1                                       (13) 

 

From (11), higher the number of foreground particles, likely 

wider the entity 𝑆𝑟𝑜𝑎𝑚 . From (8), a threshold, say, 𝑇𝑟 , was 

used to detect roaming phenomenon; namely, the roaming 

occurs whenever 

        𝐷𝑟 ≤ 𝑇𝑟                                                                        (14) 

Given the arguments provided earlier, the threshold 𝑇𝑟  is 

chosen inversely proportional to the number of particles in 

the foreground: 

𝑇𝑟 =
𝑓𝑠

𝑆𝑟𝑜𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙

1

𝑀
                                 (15) 

Where 𝑆𝑟𝑜𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙  corresponds to the initial value of 𝑆𝑟𝑜𝑎𝑚 

after the first estimation (first frame) and 𝑓𝑠 the (maximum) 

scaling factor of images in the video sequence. The rationale 

behind the preceding is that the (target) shrinking and 

roaming phenomenon rather occurs at later stages, therefore, 

it is fair to assume the estimation of 𝑆𝑟𝑜𝑎𝑚 at the beginning as 

relatively reliable. The parameter 𝑓𝑠  quantifies the variation 

of the distance object – camera, which in our case was set to 

unity. If there is no roaming problem, say, (14) is not held, 

the algorithm will follow the original method of Eq. 5-6 to 



 

  

estimate the target status, otherwise, the scale modification 

step described in the next subsection applies.  

 

2) Scale modification 

First one shall consider the cover-particle; namely, the 

minimal-area particle that covers all particles in the 

foreground region (whose geometrical area coincides with 

𝑆𝑟𝑜𝑎𝑚). Let us denote by 𝑠𝑘
𝑅∗

 this cover-particle.  

After generation of the above modified bounding box 

associated particle, a new resampling scheme is induced 

accordingly by resetting the scale of all particles according to 

the estimated state, and then computing the histogram ℎ𝑆𝑘
𝑅∗ of 

this new tracker from the modified estimated state (cover-

particle) 𝑠𝑘
𝑅∗

 and use Bhattacharyya distance as in (3) to 

compute the similarity between the histogram associated to 

ground truth and that of the cover-particle as well as weights 

according to (4).  

B. Appearance adaption 

Due to discrepancies caused by changing target 

appearance a static appearance model is not sufficient to form 

a robust tracker in real scenarios. To overcome the resulting 

appearance changes, in the same spirit as [11], one updates 

the appearance model according to the current estimate. 

For this purpose, we first set a threshold 𝑇𝑎  for the 

Bhattacharyya distance 𝐷2(ℎ𝜔
𝑠𝑘

𝑅∗ , ℎ𝑟𝑒𝑓)  so that the 

appearance adaption is triggered only if  

𝐷2 (ℎ𝜔
𝑠𝑘

𝑅∗ , ℎ𝑟𝑒𝑓) > 𝑇𝑎                      (16) 

Inspired by the work of Wang et al. [24] and Stolkin et al. 

[22, 25], we first extract an appearance model of background. 

Second, a likelihood based approach has been employed to 

update the weights attached to reference model.  

1) Extracting background information 

Since in the roaming detection section, an approach has 

been developed to distinguish foreground from background 

particles, the same test (quantified by expression (9)) can 

therefore be employed to discriminate background particles, 

say, 𝑠𝑘
𝑏𝑖 , as well. Indeed, all particles whose weights are 

below the threshold 𝜔𝑘
∗ are assumed background. Next, the 

appearance model of the background is calculated as the sum 

of the colour-histogram of its associated particles: 

ℎ𝑏 = ∑ ℎ
𝑠𝑘

𝑏𝑖

𝑁𝑏
𝑖𝑏=1                       (17) 

where ℎ
𝑠𝑘

(𝑖𝑏)  is the colour-model of the 𝑠𝑘
𝑏𝑖  particle, and Nb 

stands for the number of background particles.  

 

2) Reference model update 

After computing the appearance model of the background 

using (17), for each bin 𝑢,  we evaluate the marginal 

contribution of foreground appearance model with respect to 

background appearance model, so that such contribution 

reaches its maximum value one if there is no particles in 

background or the foreground is highly dominant and takes 

zero value in the case of absence of foreground particles or 

strong background dominance. This is quantified using the 

following: 

𝛼(𝑢) = {1 − 𝑒
−𝜆𝑐(

ℎ𝑓(𝑢)

ℎ𝑏(𝑢)
)
 , 𝑖𝑓 ℎ𝑏(𝑢) ≠ 0

 1,                          𝑖𝑓 ℎ𝑏(𝑢) = 0
            (18) 

where 𝜆𝑐  is a positive smoothing parameter. The value of 

𝛼(𝑢)  ranges in [0,1]. Next, 𝛼(𝑢)  coefficients are used to 

adaptively update the appearance of the reference model 

according to: 

ℎ̂𝑟𝑒𝑓(𝑢) = (1 − 𝛼(𝑢))ℎ𝑟𝑒𝑓(𝑢) + 𝛼(𝑢)ℎ𝑓(𝑢)        (19) 

where ℎ𝑟𝑒𝑓  represents the reference appearance model. The 

latter is normalized by dividing it over the sun across bins. A 

pseudo-code description of the whole algorithm is given by 

Table I. 

 
 

TABLE 1 PSEUDO-CODE OF OVERALL ALGORITHM 

Algorithm: Robust model adaption for color-based particle filter tracking with contextual information 

Given the sample set {𝑠0
(𝑖)

} and the target modelℎ𝑟𝑒𝑓. Perform the following steps: 

1. Select 𝑁 samples from the set 𝑆𝑘−1; 

2. Predict each sample from the set{𝑠𝑘−1
(𝑖)

} by linear stochastic differential in (2); 

3. Observe the colour distribution: 

(a) Calculate the colour histogram for each sample of set{𝑠𝑘
(𝑖)

}; 

(b) Weight each particles {𝜔𝑘
(𝑖)

} using (4);  

4. Detect the roaming phenomenon  

(a) Identify foreground particles  

(b) Test for roaming occurrence; 

5. If no shrinking (roaming test is negative) 

Estimate the mean state of the set 𝑆𝑘 by Eq. 6 and use systematic resampling; 
             If shrinking 

                      Modify the tracker scale size and calculate new weights; 

6. Update the appearance model 

(a) Test whether appearance update is needed 

(b) If the above test is positive, calculate for each bin 𝑢 , calculate the appearance mode of the background using 
(17), and apply the update rule (28-19); 

(c) Otherwise if the test (16) is negative, the reference model remains unchanged. 



 

  

V EXPERIMENTAL SETUP AND RESULTS 

A. Introduction 

For evaluation purpose, given the estimated bounding 

box region ET of the tracker and the ground truth region 

GT, we used standard precision (P 𝑃 = (𝐺𝑇 ∩ 𝐸𝑇)/𝐸𝑇), 

recall ( 𝑅 = (𝐺𝑇 ∩ 𝐸𝑇)/𝐺𝑇  ) and Overlap ( 𝑂 = (𝐺𝑇 ∩
𝐸𝑇)/(𝐺𝑇 ∪ 𝐸𝑇)). 
An initial testing using simulated dataset, which is not 

covered in this paper provided a roughly good estimate of 

the threshold value Ta = 0.1 as achieving the best 

performance in terms of precision-recall taking into 

account the wide set of scenarios of object / background 

configurations and clutter intensities.  

 

B. Experiment using real videos and comparison with 

some state of art trackers 

To have an overall evaluation, we tested our newly 

designed algorithm on the explicitly selected sequences 

from two publicly available benchmark datasets [29] [30], 

with another 6 state-of-the-art trackers; namely, namely, 

the original PF tracker [11], adaptive-coupled layer visual 

model [17], Struck [18], L1-minimization [19], circular 

structure kernel [20] and Incremental learning tracker [21]. 

We first test our algorithm on the 16 sequences which 

have significant scale change, namely, Bike, Boy, Bolt, 

Basketball, CarScale, Couple,  Crossing, Diving, Tunnel, 

Skiing, Singer, Fish1, Fish2, Jogging, Gymnastics,  

Walking. The result in terms of trade-off curve of success 

rate versus overlap threshold is shown in Fig. 2. 

 
Fig. 2 Trade-off curve of target with scale changes (16 sequences) 

 

Then, we test our algorithm on the 18 sequences with 

significant appearance change; namely, Basketball, Bolt, 

Diving, Tiger1, Tiger2, Trellis, Tunnel, Skiing, Skating, 

Sunshade, Shaking, Soccer, Fernando, Fish1, Fish2, 

Ironman, Singer, Gymnastics. The result is shown in     

Fig. 3.  

 
Fig. 3 Trade-off curve of target with scale changes (18 sequences) 

 

Similarly, we have also conducted similar studies on those 

video sequences that involve significant shape 

deformation (Basketball, Bolt, Couple, Crossing, David,  

David3,  Dudek, FleetFace,  Jogging,  Mhyang, Singer2, 

Skating, Skiing,  Subway,  Tiger1, Tiger2, Walking,  

Woman) with comparison to the six state art trackers in 

Fig. 4. 

 

 
Fig. 4 Trade-off curve of target with shape deformation (18 sequences) 
 

As it can be noticed from the results highlighted in Figs. 2-

4, the performance of the developed tracker substantially 

compete with the state of art trackers and marginally 

outperform these trackers. Next, average results in terms 

of centre tracking error across the nine distinct publicly 

available sequences [30] with comparison to the six state-

of-the-art trackers are summarized in Table II. The results 

show a good performance of our tracker in overall where 

in 80% of employed dataset, our tracker is either ranked 

first or second. Especially the best performance is 

achieved with sequences involving human motion. 
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TABLE II COMPARISON RESULTS OF TRACKING ACCUARCY 

Video 

Name 
 Ours 

PF 

[11] 

LGT 

[17] 

Struck 

[18] 

L1 

[19] 

CSK 

[20] 

IVT 

[21] 

Bolt 0.55 0.23 0.42 0.02 0.02 0.02 0.01 

Bike 0.44 0.28 0.31 0.50 0.43 0.25 0.43 

Basketball
  

0.53 0.25 0.50 0.09 0.03 0.02 0.33 

CarScale 0.53 0.35 0.43 0.42 0.55 0.41 0.63 

Crossing 0.53 0.43 0.55 0.31 0.20 0.18 0.48 

David3 0.59 0.58 0.25 0.29 0.38 0.50 0.44 

Face 0.65 0.51 0.60 0.61 0.77 0.87 0.53 

Jogging 0.51 0.55 0.09 0.23 0.16 0.18 0.16 

Subway 0.63 0.09 0.54 0.67 0.16 0.19 0.56 

Mean acc.   

over all 
sequences 

0.55 0.36 0.41 0.35 0.30 0.29 0.40 

 

 

 

VI CONCLUSION 

In this paper, we proposed a robust model adaption 

method, for both scale and appearance model, which 

utilizes the contextual information from the background. 

We use roaming density to model the behavior of 

foreground particles and modify the kernel according to 

the distribution of the particles. Simultaneously, the 

resampling method also changes and adapts to solving the 

degeneracy problem. In order to avoid appearance model 

drifting problem, the algorithm re-weights the confidence 

of the color distribution changes by learning from the 

present background, which means the color that has a high 

probability of belonging to the target will be updated 

relative fast, otherwise it will remain unchanged. We 

tested our proposed approach on both simulated and 

publicly available datasets, and demonstrated the 

significant improvements over several other state-of-the-

art trackers. In the future work, we will continue to 

research on the ways to self-optimization of some 

parameters involved in this approach and extend the 

tracker to multiple targets. 
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