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Abstract—Recent studies validated the feasibility of 
estimating heart rate from human faces in RGB video. 
However, test subjects are often recorded under controlled 
conditions, as illumination variations significantly affect 
the RGB-based heart rate estimation accuracy. Intel newly-
announced low-cost RealSense 3D (RGBD) camera is 
becoming ubiquitous in laptops and mobile devices starting 
this year, opening the door to new and more robust 
computer vision. RealSense cameras produce RGB images 
with extra depth information inferred from a latent near-
infrared (NIR) channel. In this paper, we experimentally 
demonstrate, for the first time, that heart rate can be 
reliably estimated from RealSense near-infrared images. 
This enables illumination invariant heart rate estimation, 
extending the heart rate from video feasibility to low-light 
applications, such as night driving. With the (coming) 
ubiquitous presence of RealSense devices, the proposed 
method not only utilizes its near-infrared channel, designed 
originally to be hidden from consumers; but also exploits 
the associated depth information for improved robustness 
to head pose. 
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I. INTRODUCTION 

Heart rate (pulse) is a measure of the number of heart beats 
in a minute. It is a critical vital sign to assess the physiological 
state of a subject. In many applications, it is preferred or even 
required to measure the heart rate, e.g., of a patient or a driver, 
in a passive and remote manner. Hear rate (HR) monitoring has 
many potential applications. With the ability to ‘see’ inner 
changes like the heartbeat, video processing research can be 
broadened in many ways. Specifically, it can be used for real-
time remote medical examinations and support long-term HR 
monitoring. It can also be used for affective computing. In 
addition to the analysis of explicit behaviours like poses and 
gestures, inner physiological changes provide information for 
better understanding people’s behaviour. 

Traditional HR measurement methods are divided into two 
categories. The first one relies on special electronic or optical 
sensors, and most of the instruments require skin-contact, 
making them inconvenient and uncomfortable, e.g., 
Electrocardiography (ECG). The second one is to use 
photoplethysmography (PPG) [5, 10, 11]. The principle of 

PPG method is to illuminate the skin with a light-emitting 
diode (LED) and then measure the amount of light reflected or 
transmitted to a photodiode. Although it is possible to use PPG 
based settings to measure HR without any contact, this method 
still requires special lighting sources and sensors. 

Recent remote HR monitoring methods include motion-
based method [2, 26] and color-based methods using ordinary 
commercial cameras [12, 14, 15, 16, 23, 28, 30]. For the 
motion-based method, the cyclical movement of blood from 
the heart to the head via the abdominal aorta and the carotid 
arteries causes the head to move or face color to vary in a 
periodic way. A typical motion-based method was proposed by 
Balakrishnan et al [2]. They tracked subtle head oscillations 
caused by cardiovascular circulation, and used principal 
component analysis (PCA) to extract the pulse signal from the 
trajectories of multiple tracked feature points. The motion-
based method requires the recorded subjects to be strictly 
stationary and sit upright for the duration of the video, which is 
often difficult to enforce in real scenarios. 

For the color-based methods, Poh et al. explored the 
possibility to measure HR from face videos recorded by a web-
cam [15]. They detected the region of interest (ROI, i.e. the 
face area) and computed the mean pixel values of the ROI of 
each frame from three color channels for HR measurement. 
Later they improved their method by adding several temporal 
filters both before and after applying independent component 
analysis (ICA) [16]. The advanced ICA method achieved very 
high accuracy for measuring HR on their data. Kwon et al. 
recorded face videos with the built-in camera of a smart-phone, 
and used both the raw green trace and the ICA separated 
sources [12]. Li et al proposed a HR measurement framework, 
which can reduce the noises caused by illumination variations 
and subjects’ motions [14]. Tulyakov improved [14] by Self-
Adaptive Matrix Completion [30]. Xu et al. proposed a pixel 
quotient in log space to derive signal for computing the pulse 
heart rate [28]. It is based on a model of light interaction with 
human skin, in which the pixel quotient in log space is robust 
to illumination variations. Different from them, we use a 
RealSense cameras with near-infrared (NIR) channel. This new 
camera does not depend on the environment illuminations. 
Thus it is more robust than the pixel quotient [28] and it can 
work well in almost dark conditions (see Fig. 8). On the other 
hand, Zheng et al. proposed to use thermal (infrared) images 
for HR measurement [29], where variations in temperature are 
successfully associated with heart beats. Though thermal 



measurement provides an illumination invariant solution, 
thermal imaging devices are in general very expensive. 

(a) (b) (c)
Fig. 1. Three channels of the RealSense camera. (a) RGB channel; 
(b) Near-infrared channel; (c) Depth channel. 

(a) (b)
Fig. 2. Videos captured under different illuminations  

It has been reported that skin color changes caused by 
cardiac pulse can be captured by ordinary cameras for HR 
measurement [15, 23], but this is a challenging task since the 
change caused by the cardiac pulse is very small compared to 
other factors that can also cause fluctuation of the RGB value 
of local skin. Among these factors, illumination variation is a 
key one. The performance of all these methods [2, 12, 14, 15, 
16] drops significantly when there are serious illumination
changes. To this end, we use the very low-cost (in the order of 
$20) RealSense camera [31] to solve this issue.  

Intel’s newly-announced very low-cost ubiquitous 
RealSense 3D (RGBD) camera has become available very 
recently, being embedded into the screen lids of a dozen of 
laptop models from major brands such as Lenovo, Dell, and 
HP. RealSense is the first integrated 3D sensor to reach the 
consumer market, and has better short-range resolution than 
other low-cost platforms such as those developed by 
PrimeSense. RealSense produces RGB images with extra depth 
information (see Fig. 1), which is inferred from its latent near-
infrared (NIR) channel. 

Here are the contributions of our method: 
 Motivated by pulse detection in RGB images, we

propose to utilize the hidden near-infrared channel in 
the RealSense camera to enable illumination invariant 
pulse estimation (see Fig. 2). Near-infrared, as 
commonly adopted in night vision systems, provides 
an illumination invariant low-cost alternative. 
However, to the best of our knowledge, there is no 
clear evidence reported that near-infrared images 
provide a reliable source for pulse detection, as they 
capture very different wavelengths from both thermal 
and RGB images. We experimentally demonstrate, for 
the first time, that heart rate can be reliably estimated 

from faces in near-infrared images. Such observations 
not only enable pulse estimation to be invariant to 
light conditions, but also significantly extend its usage 
to low-light applications, such as night driving. Our 
results also suggest a novel way to utilize the near-
infrared channel in RealSense and similar 
technologies, originally hidden from consumers. 

 We develop a global self-similarity (GSS) filter to
filter the infrared channel. 

 We use depth information provided by RealSense
cameras to improve the location accuracy of the 
region of interests (ROI) in faces (i.e., cheek regions). 

II. METHOD

In this section we introduce our framework on how to use 
the RealSense camera for heart rate measurement. 

A. Framework 

The proposed framework is shown in Fig. 3. We use the 
RealSense camera to simultaneously record the RGB video, the 
NIR video, and the depth video of a person’s face (see Fig. 1). 
We perform face detection and landmark tracking on the NIR 
video [27], and blob analysis on the depth video to isolate and 
segment the cheek region of the face in each frame (see 
Section II.B). We then compute the average NIR intensity of 
the selected region and carry out the detrending step to remove 
the absolute intensity variations [21] (see Fig. 5). Subsequently 
we apply GSS filter (see Section II.C). After this GSS filtering, 
we normalize the signal and use a temporal moving-average 
filter to remove random noise. After that, we use a band pass 
filter to cut outside of [0.7, 4] range in the frequency domain, 
which is the normal interval of heart rate of a human, i.e., [42, 
240] beat-per-minute (bpm). Finally, we perform an FFT to 
transform the signal from the spatial domain to the frequency 
domain and estimate its power spectral density (PSD) 
distribution using Welch’s method [25]. We use the frequency 
with the maximal power response as the HR frequency fHR (Fig. 
5(g)), obtaining the average HR measured from NIR input 
video as  

60HR HRf   . (1) 

We will use the color-based method proposed in [14] to 
process the RGB videos for comparison. Under well-
illuminated conditions, our method is able to achieve 
comparable results. As for situations where the illumination is 
low or changing, the performance of the methods using RGB 
images drops significantly while our method still attains the 
same level of performance.  

B. Region selection and tracking 

It has been shown in [2, 14], that the cheek and forehead 
areas of the face are an ideal region for heart rate estimation. 
We combine facial landmark tracking and depth information 
from the RealSense camera to automatically segment out the 
cheek regions. The steps are shown in Fig. 6.  
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Fig. 5. Heart rate measure for ROI in infrared channel 

(a) (b) (c) (d) (e)
Fig. 6. Cheek region segmentation using NIR and depth images. (a) Facial landmarks tracked on NIR image; (b) Connected components in 

depth image; (c) The connected component containing the most landmarks is selected as the face. (d) The face on the NIR image; (e) The cheek 
region is selected as area between the eyes and mouth landmarks.



We first apply the Viola-Jones face detector [24] on the 
infrared video to find a bounding box containing the face. A 
supervised method [27] is then used to track landmarks on the 
face (Fig 6(a)). The connected components of the depth image 
are computed (Fig. 6(b)). The landmarks are then mapped from 
the NIR image to the depth image and the connected 
component, excluding background, containing the majority of 
facial landmarks to be the face (Fig. 6(c)). Morphological 
operations such as erosion and hole filling are then performed 
on this region before using it as a mask to segment the face 
region in the NIR image (Fig. 6(d)). Using the landmarks, the 
cheek is then extracted selecting the area beneath the eyes and 
above the mouth (Fig. 6(e)). 

C. GSS filter for infrared channel 

In the infrared channel IR  (see Fig. 5(b)), there are some 

noise in this signal. To filter out the noise, we propose a GSS 
filter to smooth the infrared channel, which improves the 
accuracy of the heart ratio measurement. 

Self-similarity is an attractive image property which has 
recently found its way into object recognition in the form of 
local self-similarity descriptors [7]. Similarly, we find the same 
local self-similarity in the infrared channel (see Fig. 5(b), (c)). 
In addition, GSS guides the global topological structure and 
work better than local ones. 

Specifically, for each frame, we compute the ROI as shown 
in Fig. 6. For the ROI in Fig. 6(e), we compute the average 
pixel intensity of this ROI, and denote it as IR . For each 

video, we have IR  = { ,IR i , i = 1,...N}; where N is the number 

of frames in the video; ,IR i  is the average intensity of the ROI 

of the i-th frame. 

We divide IR of a video into   segments: IR  = {  , 

1, 2,...   }. Each segment corresponds to a length of 1.5 

seconds. We then perform clustering for all   segments  . 

After clustering, we have K clusters 1 2{ , ,... }KC c c c  and 

sumd , where sumd is the within-cluster sums of point-to-

centroid distances. We discard the m clusters with the largest 

sumd , i.e., { ,... }K m KC c c  , and keep those clusters which 

have smaller sumd , i.e., 1 1{ ,... }K mC c c
  . For those 

segments belong to C , we use the neighbouring previous 
segment to replace them. For example, if C  , we use 1   

to replace it. Here 1   should be in C  . Otherwise, it has 

been replaced by its neighbouring pervious segment. 
In our case we let K =10, m=2. These two parameters are 

used to control the smoothing of the filtering. If K becomes 
larger, we have less segments in each cluster and the 
smoothing is marginal, and vice versa. If m becomes larger, we 
discard more clusters and the smoothing becomes stronger, and 
vice versa.  

The collected dataset in our case is usually around 90 
seconds. We have 60 segments for one video. For each 
segment, we use 1.5 seconds since the lower limit of normal 
heart rate is 42 (see Section II.A). Thus, each 1.5 seconds 

segment includes one heart beat (i.e., at least one period of 
heart beating signal). 

III. EXPERIMENTAL RESULTS 

We test our method for datasets collected using the 
RealSense camera and also compare with existing methods. 

A. Data collection 

We have collected two datasets (to be made publically 
available upon publication). The first dataset (verification 
dataset) is a simple dataset for verification purposes since we 
re-implemented previously proposed methods. The second 
dataset (challenging dataset) is a more challenging dataset to 
test the robustness of our proposed method. 

 

Fig. 7. Faces in frontal pose and under constrained illuminations 

  

Fig. 8. Faces in multi-poses and under unconstrained illuminations 

The verification dataset is collected using the RealSense 
camera under constrained illuminations and frontal pose. Some 
examples are shown in Fig. 7. Each sequence is saved in png 
format with different frame rates, 12 frames per second (fps), 
15 fps and 30 fps. Three subjects (one females and two males) 
aged from 20 to 40 years old were enrolled. During the 
recording, subjects were asked to sit still in a chair and try to 
avoid any movement. Here, the subject are still during data 
collection, which is to follow the setup as that in [2, 16] to 
verify the re-implemented previously proposed methods [2, 
16]. The RealSense camera was fixed on a laptop about 30 cm 
from the subject’s face. Each subject was recorded for about 90 
seconds. There are three channels for each subject, i.e., RGB, 
infrared and depth channels. The RGB channel is in 24-bit 
color format with resolution of 1920×1080. The infrared 
channel is in 8-bit gray format with resolution of 640×480. The 
depth channel is also with resolution of 640×480. 

The challenging dataset is also collected using the 
RealSense camera but under unconstrained illuminations, 
multi-poses and multi-races. Some examples are shown in Fig. 
8. Each sequence is saved in png format with a frame rate of 
30 fps. Ten subjects (1 female and 9 males) aged from 20 to 50 
years old were enrolled. Subjects were asked to sit on a chair 
and show different poses. The RealSense was fixed on a laptop 



and about 30 cm from the subject’s face. Each subject was 
recorded for about 90 seconds. Two channels were recorded 
for each subject, i.e., infrared and depth channel. Both the 
infrared and depth channels are in 8-bit format with resolution 
of 640×480. 

We re-implement three previous methods: two color based 
ones Li 2014 [14], Poh 2011[16], and one motion-based one 
Balakrishnan 2013 [2]. In [2] they also used customized peak 
detection functions to find the location of each heart beat for 
further HR variation analysis. We did not replicate the peak 
detection process here since we only aim to compare the 
accuracy of the methods on estimating the average HR. The 
FFT is applied at the last stage for each method to find the 
average pulse frequency. 

For these two dataset, we use two tools to measure the 
ground truth. One is a finger pulse Oximeter CMS50F, which 
gives an average heart rate for a sequence. The other one is an 
ECG BioRadio, REF BR-500.The sampling rate is 250HZ. It 
detects the heart rate beat by beat as shown in Fig. 9 
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Fig. 9. Hear rate measurement beat by beat using BioRadio 

B. Results for verification dataset  

The results of all methods for the verification dataset are 
shown in Tables 1-4. In Tables 1 and 2, we show the HR result 
for each sequence for both RGB and infrared channels. In 
tables 3 and 4, we give the statistical results. Here, the measure 
error is computed as  

error HR GT   , (2) 

where HR  denotes HR measured from video (see Eq. (1)), 

and GT  is the ground truth HR.  

To comprehensively compare the methods in multiple 
aspects, we include five kinds of statistics used in previous 
research works. The first one is the mean of error  denoted as 

Me; the second one is the standard deviation of error denoted 

as SDe; the third one is the root mean squared error denoted as 
RMSE; the fourth one is the mean of error-rate percentage  

1

( )1 N error
eRate l

GT

l
M

N 




  (3) 

where N is the number of videos in the database.  
The fifth is accuracy, computed as 

correctN
Accuracy

N
 , (4) 

where Ncorrect is the number of videos which have the correct 
HR measurement. The HR measurement for one video is 

correct if error   . Here the threshold is  =5, suggested by 

a consulted medical specialist in the team. 

Table 1: Illustration results for RGB channel of verification 
dataset (GT: ground truth) 

Method 

(a) (b) (c) 

 
(GT: 62.99) 

 
(GT: 69.1) 

 
(GT: 69.1) 

Poh 2011 60.35 68.99 68.55 

Balakrishnan 
2013 

62.89 65.51 68.66 

Li 2014 60.13 67.54 68.21 

Proposed 60.35 67.67 68.55 

 

Table 2: Illustration results for infrared channel of verification dataset 

Method 

(a) (b) (c) 

 
(GT: 62.99) 

 
(GT: 69.1) 

 
(GT: 69.1) 

Poh 2011 60.64 66.53 57.12 

Balakrishnan 
2013 

61.34 136.41 69.58 

Li 2014 60.26 67.18 68.23 

Proposed 60.44 67.23 68.55 

 

Table 3: Statistical results for RGB channel of verification dataset 
Method Me(SDe) 

(bpm) 

RMSE 

(bpm) 

MeRate 

(%) 

Accuracy 

(%) 

Poh 2011 1.10(1.91) 1.10 0.0172 100 

Balakrishnan 2013 1.37(2.72) 1.37 0.0200 100 

Li 2014 1.77(1.41) 1.77 0.0270 100 

Proposed 1.54(1.48) 1.54 0.0235 100 

Table 4: Statistical results for infrared channel of verification dataset 
Method Me(SDe) 

(bpm) 

RMSE 

(bpm) 

MeRate 

(%) 

Accuracy 

(%) 

Poh 2011 5.63(7.77) 5.63 0.0826 66.7 

Balakrishnan 2013 -22.04(55.45) 23.14 0.3357 66.7 

Li 2014 1.84(1.31) 1.84 0.0279 100 

Proposed 1.65(1.43) 1.65 0.0252 100 

 
From Table 1, we can see that all methods work very well 

for high resolution images (1920×1080) under constrained 
conditions, i.e., frontal pose and indoor illuminations. 

From Table 2, we can see that both our method and Li 2014 
work very well. Poh 2011 perform well for the first two 
sequences but fails for the third one. One explanation might be 
due to the shadow around the nose. Balakrishnan 2013 
correctly measures the HR for the first and third sequences but 
not the second one. The reason is that the face in the middle 
sequence is small and a lot of tracking points move away from 
the region of interest during the last few frames. 



Tables 3 and 4 further show the robustness of our proposed 
method to illumination changes, thanks to the use of the NIR 
and depth channels. As we will further show next, our method 
is the only one robust both to illumination and pose. 

C. Results for challenging dataset 

Table 5: Results for infrared channel of challenging dataset 
Method Me(SDe) 

(bpm) 

RMSE 

(bpm) 

MeRate 

(%) 

Accuracy 

(%) 

Poh 2011 -8.40(27.98) 15.04 0.2259 70 

Balakrishnan 2013 -5.91(17.95) 10.33 0.1507 90 

Li 2014 -1.45(7.99) 4.56 0.0632 90 

Proposed 2.26(6.54) 3.66 0.0534 100 

 
The results for the challenging dataset are shown in Table 5. 

Clearly the proposed method works the best. It correctly 
measures the heart rate of all the videos. Both Li 2014 and 
Balakrishnan 2013 perform well for this dataset and measure 
90% of the videos correctly. Poh 2011 also works well for this 
challenging dataset, although pose variations degrade the 
performance of this method. Although this dataset show 
serious illumination variations, the video modalities captured 
using the RealSense camera addresses this issue with our 
proposed method. 

CONCLUSION  

In this paper we demonstrated the use of the low-cost Intel 
RealSense RGBD camera to measure heart rate. 
Simultaneously exploiting the depth and NIR information, we 
proposed a method that is invariant to illumination and face 
pose, therefore opening the application of touch-less hear rate 
monitoring to new scenarios such as night driving and 
monitoring in the wild. 

ACKNOWLEDGEMENT 

This work was sponsored by the Academy of Finland, 
Infotech Oulu and partially supported by ONR, ARO, NSF and 
NGA. 

REFERENCES 

[1] A. Asthana, S. Zafeiriou, S. Cheng, and M. Pantic. Robust 
discriminative response map fitting with constrained local 
models. In CVPR, 2013. 

[2] G. Balakrishnan, F. Durand, and J. Guttag. Detecting pulse from 
head motions in video. In CVPR, 2013. 

[3] R. Basri and D.W. Jacobs. Lambertian reflectance and linear 
subspaces. TPAMI, 2003. 

[4] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of 
Software Tools, 2000. 

[5] G. Cennini, J. Arguel, K. Akşit, and A. van Leest. Heart rate 
monitoring via remote photoplethysmography with motion 
artifacts reduction. Optics express, 2010. 

[6] K. Chan and Y. Zhang. Adaptive reduction of motion artifact 
from photoplethysmographic recordings using a variable step-
size lms filter. In Proceedings of IEEE on Sensors, 2002. 

[7] T. Deselaers and V. Ferrari, Global and Efficient Self-Similarity 
for Object Classification and Detection, CVPR 2010 

[8] F. X. Gamelin, S. Berthoin, and L. Bosquet. Validity of the 

polar s810 heart rate monitor to measure rr intervals at rest. 
Medicine and Science in Sports and Exercise, 2006. 

[9] M. H. Hayes. 9.4: Recursive least squares. Statistical Digital 
Signal Processing and Modeling, 1996. 

[10] K. HumpPAeys, T. Ward, and C. Markham. Noncontact 
simultaneous dual wavelength photoplethysmography: a further 
step toward noncontact pulse oximetry. Review of scientific 
instruments, 2007. 

[11] V. Jeanne, M. Asselman, B. den Brinker, and M. Bulut, Camera-
based heart rate monitoring in highly dynamic light conditions, 
International Conference on Connected Vehicles and Expo, 
2013 

[12] S. Kwon, H. Kim, and K. S. Park. Validation of heart rate 
extraction using video imaging on a built-in camera system of a 
smartphone. In EMBS, 2012. 

[13] C. Li, C. Xu, and et al. Distance regularized level set evolution 
and its application to image segmentation. IEEE Trans. on 
Image Processing, 2010. 

[14] X. Li, J. Chen, G. Zhao and M. Pietikäinen, Remote heart rate 
measurement from face videos under realistic situations. CVPR 
2014 

[15] M.-Z. Poh, D. J. McDuff, and R. W. Picard. Non-contact, 
automated cardiac pulse measurements using video imaging and 
blind source separation. Optics Express, 2010. 

[16] M.-Z. Poh, D. J. McDuff, and R. W. Picard. Advancements in 
noncontact, multiparameter physiological measurements using a 
webcam. IEEE Trans. on Biomedical Engineering, 2011.  

[17] S. Prahl. Optical absorption of hemoglobin. http:// 
omlc.ogi.edu/spectra/hemoglobin/, 1999. 

[18] J. Shi and C. Tomasi. Good features to track. In CVPR, 1994. 
[19] H. Simon. Adaptive filter theory. Prentice Hall, 2002. 
[20] M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic. A 

multimodal database for affect recognition and implicit tagging. 
IEEE Trans. on Affective Computing, 2012. 

[21] M. P. Tarvainen, P. O. Ranta-aho, and P. A. Karjalainen. An 
advanced detrending method with application to PAv analysis. 
IEEE Trans. on Biomed. Eng., 2002. 

[22] C. Tomasi and T. Kanade. Detection and tracking of point 
features. CMU, 1991. 

[23] W. Verkruysse, L. O. Svaasand, and J. S. Nelson. Remote 
plethysmographic imaging using ambient light. Optics express, 
2008. 

[24] P. Viola and M. Jones. Rapid object detection using a boosted 
cascade of simple features. In CVPR, 2001. 

[25] P.Welch. The use of fast fourier transform for the estimation of 
power spectra: a method based on time averaging over short, 
modified periodograms. IEEE Trans. on Audio and 
Electroacoustics, 1967. 

[26] H. Wu, M. Rubinstein, E. Shih, J. Guttag, F. Durand, W. 
Freeman, Eulerian video magnification for revealing subtle 
changes in the world. ACM Trans. Graph. 2012 

[27] X. Xiong and F. De la Torre, Supervised Descent Method and 
its Applications to Face Alignment, CVPR 2013 

[28] S. Xu, L. Sun, and G. K. Rohde, Robust efficient estimation of 
heart rate pulse from video, Biomedical Optics Express, 2014  

[29] B. S. Zheng, M Murugappan, S. Yaacob, Human Emotional 
Stress Assessment through Heart Rate Detection in a 
Customized Protocol Experiment, IEEE Symposium on 
Industrial Electronics and Applications, 2012. 

[30] S. Tulyakov, X. Alameda-Pineda, E. Ricci, L. Yin, J. F. Cohn, 
Nicu Sebe, Self-Adaptive Matrix Completion for Heart Rate 
Estimation from Face Videos under Realistic Conditions, CVPR 
2016 

[31] http://www.intel.com/content/www/us/en/architecture-and-
technology/realsense-3d-camera.html 


