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Abstract—Content caching is a promising approach to reduce
data traffic in the back-haul links. We consider a system where
multiple users request items from a cache-enabled base station
that is connected to a cloud. The users request items according
to the user preferences in a time-dependent fashion, i.e., a user
is likely to request the next chunk (item) of the file requested
at a previous time slot. Whenever the requested item is not in
the cache, the base station downloads it from the cloud and
forwards it to the user. In the meanwhile, the base station decides
whether to replace one item in the cache by the fetched item, or to
discard it. We model the problem as a Markov decision process
(MDP) and propose a novel state space that takes advantage
of the dynamics of the users’ requests. We use reinforcement
learning and propose a Q-learning algorithm to find an optimal
cache replacement policy that maximizes the cache hit ratio
without knowing the popularity profile distribution, probability
distribution of items, and user preference model. Simulation
results show that the proposed algorithm improves the cache
hit ratio compared to other baseline policies.

I. INTRODUCTION

Wireless networks have been experiencing a huge increase
in data traffic in recent years. However, despite the recent
advances in mobile radio networks, these networks cannot
keep up with the massive growth of data traffic [1]. Content
caching has been envisioned to improve the efficiency in
wireless content delivery by placing popular files close to the
users to reduce data traffic in the back-haul links. Content
caching can be divided into two main classes: 1) reactive
online cache refreshment [2], where the base station refreshes
the cache contents on the fly using the items fetched from the
cloud during the interactions between the base station and the
users, and 2) proactive offline cache refreshment [3]–[7], where
the cache is updated only during dedicated time intervals (e.g.,
off-peak periods). This paper deals with online caching.

We address an online cache refreshment problem in a
system where multiple users request items from a cache-
enabled base station that is connected to a cloud server via a
(costly) back-haul link. We focus on two fundamental aspects
in caching, which have been usually overlooked so far.
• Online cache replacement: whenever the requested item

does not exist in the cache and the item needs to be
fetched from the cloud, the cache controller must decide
whether to (i) use the fetched item to refresh the cache
by replacing one of the existing items, or (ii) discard the

item. This online cache refreshment is obtained nearly
at zero cost without allocating any additional resources,
e.g., time interval or bandwidth.

• User request model: unlike the most existing works where
the requests are generated only based on a popularity
distribution, we consider a more realistic model where
the users request items according to user preferences in
a time-dependent fashion, i.e., a user is likely to request
the next chunk of the file (e.g., a video or an audio file)
requested at a previous time slot.

We model the problem as an MDP and propose a novel state
space that takes advantage of the dynamics of the users’
requests. We use reinforcement learning and propose a Q-
learning algorithm to find an optimal caching policy that
maximizes the cache hit ratio. Simulation results show that
the proposed algorithm improves the cache hit ratio compared
to other baseline policies.

Related Works: In [3], the authors provided a probabilistic
model to synthesize user preferences from content popularity.
They also investigated the gain of optimizing the caching
policy by learning user preferences over content popularity.
The authors in [4] optimized the caching strategies of the users
and small base stations to minimize a system cost in a device-
to-device heterogeneous network. Differently from [3] and [4],
we assume that the content popularity is unknown.

Machine learning allows modern wireless caching networks
to be predictive and proactive. In [8], the authors reviewed
major families of machine learning algorithms with potential
applications in edge caching. Recently, reinforcement learn-
ing has also been applied in caching problems [2], [5]–[7].
The works [5], [6], and [7] consider proactive caching by
refreshing the cache during dedicated time intervals (e.g., off-
peak periods). Reinforcement learning techniques for online
cache refreshment have also been discussed in [2]. However,
the above works did not consider either the time-dependency
of user requests or the user preferences.

II. SYSTEM MODEL

A. Network Model

We consider the system model illustrated in Fig. 1. We
assume that a cache-enabled base station serves a set of
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Fig. 1: System model

K = {1, 2, . . . ,K} users. The base station is connected to
the cloud server via a back-haul link. The cloud server has a
library of files F = {1, 2, . . . , F}, where each large file f ∈ F
is divided into Lf small chunks (items1). We assume that
all the chunks in the library are of the equal size. The base
station is equipped with a cache storage of limited size M ,
M <

∑F
f=1 Lf , i.e., the base station can store only M items

in its cache storage.
The system operates in a slotted fashion, i.e., time is divided

into slots which are labeled with a discrete index t ∈ N. We
assume that at each slot, only one user requests an item
and that request is served by the base station within the
same slot. At each slot, a centralized controller selects a
user randomly according to a user activity distribution pk,
k ∈ K,

∑K
k=1 pk = 1, where pk is the probability that user

k is selected to send its request at that slot.
Each user’s request must be served either by fetching the

requested item from the cloud or by utilizing the content
currently available in the cache of the base station. If the
requested item is not in the cache, the base station downloads
the item from the cloud and serves the user’s request. In this
case, the base station will also decide if the downloaded item
should be stored in the cache for its possible reuse in the
future, i.e., the base station either replaces one item in the
cache storage by the downloaded item, or discards it.

Let at ∈ A denote the caching action of the base station
at time t, where A = {0, 1, . . . ,M} is the action space; 0
means that the fetched item is discarded whereas each m,
m = 1, . . . ,M , means that the fetched item replaces the mth
item in the cache storage. At each time slot t, the caching
action at ∈ A is selected according to a policy. Accordingly,
we aim to find the best policy to maximize the long-term cache
hit ratio. The cache hit ratio is the ratio of the number of
requests directly answered by the base station using the cache
storage to the total number of requests. Thus, it measures how
effective the caching policy is in reducing the data traffic in
the back-haul link.

1In this paper, we use the words ”item” and ”chunk” interchangeably.

B. User Request Model

In practice, if a user requests one chunk of a file (e.g., a
video or an audio file) at time slot t, the same user is likely
to request the next chunk of that file at a subsequent time
slot. Formally, let ζ be the continuation probability, i.e., the
probability that a user continues selecting the next chunk of
the file that was chosen in its previous request. Suppose that
user k is selected to send its request and lth item of file f was
selected in its previous request. Then,
• If l < Lf , there are two cases: 1) with probability ζ, user
k selects (l+1)th chunk of file f , and 2) with probability
1 − ζ, user k changes the file, i.e., it first chooses a
file index f according to pf |k and then a chunk index
l according to pl|k,f . The conditional distribution pf |k,
f ∈ F , is called user preference. We assume that both
pf |k and pl|k,f are not known to the base station.

• If l = Lf , user k first chooses a file based on pf |k and
then selects lth chunk of the file with probability pl|k,f .

III. REINFORCEMENT LEARNING BASED ONLINE
CACHING POLICY

A. MDP Modeling and Problem Formulation

We model the online cache replacement as a Markov
decision process (MDP) and, consequently, search for the
best policy to maximize the cache hit ratio using reinforce-
ment learning [9]. The MDP model is specified by the tuple
{S,A,P (st+1|st, at) , Rt, γ}, where
• S is the set of system states. The state at time

slot t, denoted as st contains the request history
over past H slots of 1) the M items currently
stored in the cache, and 2) the currently requested
item. More precisely, st = (ht,0,ht,1, . . . ,ht,M ), where
ht,m = [ht,m,1, . . . , ht,m,H ] ∈ BH is a binary vector.
If ht,m,i = 1, m = 1, . . . ,M , i = 1, . . . ,H , the current
cache content m was requested at slot t− i; otherwise
ht,m,i = 0. Similarly, ht,0,i = 1 means that the currently
requested item was (also) requested at slot t− i. It is
important to point out that in order to keep track of the
system state we need an additional table that stores the
request history of all

∑F
f=1 Lf items during the previous

H slots. By representing this table as a matrix of size∑F
f=1 Lf ×H , a state st consists of M + 1 rows of

this matrix. Note that the state space is designed to take
advantage of the dynamics of user requests. Namely, the
state at each slot not only includes the rate of requests
for the items but also incorporates the exact time slots
when the items were requested during the past H slots.
Thus, this information represents the dynamic features of
time-dependent requests along time.

• A = {0, ...,M} is the set of caching actions described
in Section II-A. The action selected by the base station
at time slot t is denoted by at.

• P (st+1|st, at) is the state transition probability that maps
a state-action pair at time step t onto a distribution of
states at time step t+ 1.



• Rt is the immediate reward function, where Rt = 1 when
a cache hit occurred, otherwise Rt = 0.

• γ ∈ (0, 1] is the discount factor. It is used to weight the
immediate reward relative to future rewards. Typically,
we set γ < 1 to guarantee that the cumulative reward is
finite given that the immediate reward is bounded [9].

The long-term accumulated reward is defined as
Gt =

∑∞
τ=0 γ

τRτ+t. We aim to maximize the expected
long-term accumulated reward, E [Gt] = E [

∑∞
τ=0 γ

τRτ+t],
which is equal to maximizing the expected long-term cache
hit ratio. The policy π = π(at|st) is defined as a mapping
from state st to a probability of choosing action at. Thus,
our goal is to find an optimal policy,

π∗ = argmax
π

Eπ
[∑∞

τ=0 γ
τRτ+t | π

]
(1)

B. State-value and Action-value Functions

State-value and action-value functions are defined to eval-
uate the policy π. The state-value function of a state s under
a policy π, denoted by vπ (s), is the expected return when
starting in state s and following the policy π thereafter,

vπ (s)
.
= Eπ

[∑∞
τ=0 γ

τRτ+t|st = s
]
,∀s ∈ S. (2)

The action-value function, denoted by qπ (s, a), represents the
value of taking action a in state s under the policy π and
calculated as the expected return starting from s, taking the
action a, and thereafter following the policy π,

qπ (s, a)
.
= Eπ

[∑∞
τ=0 γ

τRτ+t|st=s, at=a
]
,∀s ∈ S, a ∈ A.

(3)
The optimal action-value function for state s and action a is
defined as q∗ (s, a)

.
= maxπ qπ (s, a). If q∗ (s, a) is available,

the optimal policy π∗ is obtained simply by choosing action
a that maximizes q∗ (s, a) in each state.

The state-value and action-value functions in (2) and (3)
can be rewritten in a recursive fashion as

vπ(s)=
∑
a π(a|s)

∑
s′ p(s

′|s, a)(r + γvπ(s
′)), (4)

qπ(s, a)=
∑
s′ p(s

′|s, a) (r + γ
∑
a′ π(a

′|s′)qπ(s′, a′)) , (5)

where p(s′|s, a) ∈ P (st+1|st, at) is the probability of trans-
ferring to state s′ when choosing action a in state s. The
set of linear equations in (4) and (5) are known as the
Bellman equations for state-value and action-value functions,
respectively. The Bellman equations express a relationship
between the value of a state and the values of its successor
states.

The distribution of probabilities p(s′|s, a) is determined by
state transition probabilities P (st+1|st, at). If P (st+1|st, at)
is available, we can use dynamic programming to find the
optimal policy by using value iteration and policy improve-
ment [9, Chapter 4]. These kinds of methods operating based
on models are called model-based methods. When the model
of P (st+1|st, at) is not available, we must use model-free
reinforcement learning and learn the state-value and action-
value functions by experience.

Algorithm 1 Online Caching Policy via ε-greedy Q-learning

1: Initialize s0 randomly and Q(s, a) = 0,∀s, a
2: for t = 1, 2, 3, . . . do
3: if the requested item exists in the cache then
4: at = 0, Rt = 1
5: else
6: at is chosen according to the following probability

at =

{
argmaxa∈AQ(st, a) ,w.p. 1− εt
a random action a ∈ A ,w.p. εt

7: Rt = 0
8: end if
9: wait for the next request and compute st+1

10: update
Q (st, at)← (1− αt)Q (st, at) + αt (Rt + γmaxaQ (st+1, a))

11: end for

C. Q-learning Based Online Caching Policy

Q-learning is an online model-free reinforcement learning
algorithm that directly estimates the q∗(s, a),∀s ∈ S, a ∈ A,
and finds the optimal policy iteratively. In the Q-learning
method, the learned action-value function, Q, directly ap-
proximates the optimal action-value function q∗. However,
all that is required for correct convergence, i.e., Q → q∗,
is that all the state-action pairs continue to be updated. To
satisfy this condition, typically it is proposed to use the
”exploration-exploitation” method for action selection. The
ε-greedy algorithm is one of the algorithms for trading off
exploration and exploitation [9, Sect. 6.5].

Our proposed Q-learning based method is shown in Al-
gorithm 1. The base station updates the estimated Q(st, at)
in each iteration. In each step that the requested item exists
in the cache, the optimal action is at = 0, i.e., we do not
have any changes in the cache contents. Otherwise, if the
requested item does not exist in the cache, one can either take
a random action or choose the greedy action. This algorithm
more or less mimics a greedy algorithm as it generally exploits
the best available option, but every once in a while the
ε-greedy algorithm explores the other available options. In
Algorithm 1, the probability of taking a random action at
time slot t is denoted as εt, and thus the probability of
exploiting the greedy action is 1 − εt. In other words, at
time slot t, the exploitation happens with probability 1 − εt,
i.e., at = argmaxa∈AQ(st, a), and the exploration occurs
with probability εt, where the base station takes a random
action a ∈ A. Parameter εt determines the trade-off between
exploration and exploitation. During initial iterations, it is in
general beneficial to allow more exploration, i.e., to set εt high,
in order to learn the underlying dynamics. On the other hand,
in stationary settings and once enough observations are made,
small values of εt are more preferable, i.e., increase tendency
to exploitation.

IV. SIMULATION RESULTS

In this section, simulation results are presented to demon-
strate the benefits of the proposed Q-learning caching policy.



A. Simulation Setup

The simulation scenario consists of a base station and K =
3 users. The library contains F = 10 files. The popularity
distribution for files is modeled by the Zipf distribution with
parameter β. Thus, the probability that file f is requested is
pf = f−β∑F

f′=1
f ′−β

, 1 ≤ f ≤ F , where the files are indexed

in the descending order of popularity. When β = 0, the Zipf
distribution is the same as the uniform distribution.

For simplicity, we assume that each file is divided into Lf =
3 chunks. In practice, when a user chooses a file according to
its preference, the user is more likely to start from the first
chunk of that file. On this account, we model the probability
distribution of items by the Zipf distribution with parameter
βf,k as pl|f,k = l−βf,k/

∑Lf
l′=1 l

′−βf,k , 1 ≤ l ≤ Lf . Note
that other popularity profile distributions, kernel functions, and
probability distribution of items are also applicable since the
Q-learning approach learns the features from the history of
requests to find the optimal policy.

To link the user preferences to the popularity distribution of
the files, we model the joint probability that file f is chosen
by user k as in [3], i.e., pk,f = pf

g(Xk,Yf )∑K
k′=1

g(Xk′ ,Yf )
, where

pf is the popularity distribution of the files, Xk and Yf are
chosen uniformly random from [0, 1], and g(Xk, Yf ) ∈ [0, 1]
is a kernel function used to control the correlation between the
kth user and the f th file. The higher the value of g(Xk, Yf )
the higher the probability that user k requests file f . When
g(Xk, Yf ) = 0, the f th file will never be chosen by the kth
user. Various kernel functions such as power and Gaussian
kernels can be applied. We use the power kernel function

that is given as g(Xk, Yf ) = (1− |Xk − Yf |)
(

1
µ3
−1
)
∈ [0, 1],

0 < µ < 1, where µ is a parameter that controls the average
similarity among the user preferences. We set µ = 0.3. Note
that the user activities are obtained as the marginal distribution,
i.e., pk =

∑
f∈F pk,f , and user preferences are obtained as the

conditional probabilities, i.e., pf |k =
pk,f
pk

, f ∈ F , k ∈ K.
We evaluate the performance of the proposed algorithm

in terms of cache hit ratio. Four common baseline caching
policies are considered: 1) least recently used (LRU), 2) least
frequently used (LFU), 3) first-in-first-out (FIFO), and 4)
random policy. In the LRU policy, the base station keeps track
of the most recent requests for every cached item. The cached
item that is least recently requested will be replaced by the
new item. In the LFU policy, the base station keeps track of
the number of total requests for every cached item. The cached
item that is requested the least many times will be replaced by
the new item. In the FIFO policy, the base station keeps track
of the time at which the item was cached; when the cache
storage is full, the cached item that was stored the earliest
will be replaced by the new item.

B. Results

Fig. 2 depicts the learning curves of each algorithm for
β = 0.5, βf,k = 0.5, ζ = 0.7, and cache storage capacity
M = 3. As we can see in Fig. 2, the proposed Q-learning
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Fig. 2: Convergence behavior of the proposed algorithm and baseline
methods in terms of cache hit ratio for β = 0.5, βf,k = 0.5, ζ = 0.7,
and cache storage capacity M = 3.

algorithm outperforms the other methods. However, the pro-
posed algorithm does not benefit initially. This behavior is due
to the characteristic exploration-exploitation trade-off of the Q-
learning method, as discussed in Section III-C. In particular,
during the first 105 iterations, we set εt = 0.95 to allow
more exploration and after that we set εt = 0.05 to allow
more exploitation. Additionally, Fig. 2 illustrates the effect of
the length of request history H on the system performance.
As H increases, the gap between the proposed method and
other baseline policies increases. This is because the developed
algorithm utilizes more information at each state, improving
the cache hit ratio. Note that the enhanced performance comes
at the cost of complexity: when H increases, the cardinality
of the state space increases exponentially, commonly known
as the curse of dimensionality.

Next, we focus on the average cache hit ratio obtained
by averaging each algorithm over 10 episodes whereas each
episode takes 5×106 iterations. For the rest of the results, we
use H = 5 for our proposed algorithm. Fig. 3 illustrates the
average cache hit ratio obtained by our Q-learning algorithm in
comparison with the baseline methods for different values of
parameter β. Our proposed algorithm outperforms the baseline
methods for all values of β. Recall that β = 0 means uniform
distribution for popularity. When β increases, the average
cache hit ratio increases as well, because the Zipf distribution
becomes more concentrated so that the first few popular files
account for the majority of requests. Thus, by storing the
popular chunks of the popular files in the cache, more and
more requests are answered by using the cache storage.

Fig. 4 shows the effect of the cache storage capacity M
on the long-term cache hit ratio. As expected, by increasing
the cache storage capacity M , the cache hit ratio increases
because more items can be stored in the cache.

Fig. 5 illustrates the impact of the continuation probability
ζ on the average cache hit ratio. When ζ = 0, each item
becomes selected at a time slot t merely based on the file and
item popularity distributions that are concentrated towards the
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Fig. 5: Average cache hit ratio obtained by our Q-learning algorithm
in comparison with other baseline methods as a function of ζ when
M = 3, β = 0.5, and βf,k = 0.5.

first files and chunks according to Zipf parameters β = 0.5
and βf,k = 0.5, respectively. As ζ slightly increases, the users
do not only tend to the most popular items, but occasionally,
continue requesting the successive chunks of a file. Conse-

quently, the predictability of the requests decreases and, thus,
the average cache hit ratio of all methods decreases. On the
other hand, when ζ keeps increasing and eventually reaches
ζ = 1, the users always continue selecting a next chunk of the
previously chosen file, which again decreases the uncertainty
of requests. For these high values of ζ, since the developed
algorithm can learn the request patterns with the aid of the
proposed state definition, it performs significantly better than
the baselines.

V. CONCLUSIONS

In this paper, we modeled an online cache replacement
problem as an MDP and proposed a Q-learning method based
on the reinforcement learning framework to find the optimal
caching policy to maximize the cache hit ratio. The proposed
scheme does not need any information about the popularity
profile distribution, probability distribution of items, and user
preferences model. Simulation results showed that our Q-
learning based approach significantly improved the cache hit
ratio in comparison to the baseline methods. Possible future
directions include the approaches for tackling the curse of
dimensionality, e.g., via deep Q-learning.
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