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Abstract—Computation of simplicial complexes of a large point
cloud often relies on extracting a sample, to reduce the associated
computational burden. The sampling of the point cloud should
minimally mutilate the features of the underlying object to
enable effective “feature extraction” that lies at the center of
modern data analysis techniques, e.g., machine learning. The
study considers sampling critical points of a Morse function
associated with a point cloud, to approximate the Vietoris-Rips
complex and to compute persistence homology. The effectiveness
of the approach is compared with the farthest point sampling
(FPS), in the context of two classification problems. The empirical
results suggest that sampling critical points of the Morse function
can be more effective than FPS when determining the persistence
homology for the cases where the critical points play a decisive
role.

Index Terms—Critical points, Face classification, Morse func-
tion, Persistence homology

I. INTRODUCTION

In recent years data sets have grown in size and dimension
with the proliferation of advanced data acquisition techniques.
We have been able to use such data meaningfully not only
because the computation power has increased to match the
size, but also due to the paradigm shift in data analysis
techniques that handle such data. A prime example is machine
learning (ML). As a result new applications and techniques are
emerging more frequently than ever before. Examples include
object classification with applications in medicine (e.g., brain
image analysis) and security (e.g., face classification) [1].

In many applications, items in data sets are higher dimen-
sional “point clouds” on which the computations are done
to represent them in a suitably identified feature space. Even
though, in certain cases the feature space is easily identifiable,
in many other cases identifying a feature space could be a
less obvious task. Making the matters less trivial, even when
there is an obvious set of features that realize a data set as
point cloud, “Whether those features enable an accurate and
practical representation of the data for the given task?” may
not be fully answered.

For example, the number of dimensions required to repre-
sent an object in the data set in a straightforward way may
be in the order of thousands or even millions (e.g., DNA
sequence). Not only the computational and storage cost of such
high dimensional data is a burden, but also many fundamental
assumptions in ML algorithms could fail in high dimensions.
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Thus effective ways of down-sampling an original point cloud
or representing data in a low dimensional point cloud is
necessary [2]-[4].

However, fast, computable, and meaningful feature extrac-
tion methods, if they exist and could be identified, provide an
efficient comparison of data. Thus, the problem of “feature
extraction” is an important step, as it may be less trivial. As a
result, algorithms that enable extracting meaningful features lie
at the center of modern data analysis techniques and research
(e.g., ML). For example, the vector of grayscale values of each
pixel represents each image in a grayscale digital image data
set as a point in a high dimensional Euclidean space. However,
different features of the image may represent the images in a
space that is more meaningful for a specified purpose [5]-[9].

The size of the data could be a burden for the task of
feature extraction itself, making sampling inevitable. However,
the sampling should be done in such a way that the resulting
point cloud is minimally mutilating the features of the under-
lying object.

To summarize, the following key challenges in the algo-
rithms aforementioned could be identified:

1) Feature extraction for efficient representation of data,

2) Feature extraction for efficient comparison,

3) Efficient sampling techniques which could facilitate fea-
ture extraction.

This paper is centered around the idea of extracting persis-
tence diagrams [5] as topological features, originated from the
critical points of a point cloud. The importance of topological
methods in image and signal processing applications have been
emphasized extensively in literature [10]-[19].

The main motivation for this work is to answer the question
“How one can device a sampling method that can support and
improve such feature extraction process?”. This paper assumes
that each data point in the data set itself can be understood as a
point cloud equipped with a real valued function defined on it.
For example, in a database of grayscale images, each image
itself can be thought of as a point cloud in 2-dimensional
space, with the function as the grayscale value of each pixel.

A. Our Contribution

We propose a sampling mechanism based on extracting
critical points of a “Morse function” [20] defined on a point
cloud. The effectiveness of the sampling is empirically tested
by using two classification problems.

The proposed method is based on the idea that by knowing
the critical points (up to some persistent level) of a point
cloud with a Morse function f, we should be able to efficiently
extract topological features, such as persistent homology, that
are closely associated with f. Thus, we consider sampling
critical points from an underlying point cloud equipped with



a Morse function, enabled by the computation of the Morse-
Smale (MS) Complex [21], [22], which is used to compute
topological features; specifically, persistence diagrams. Hence-
forth, we refer to the proposed sampling as MS sampling.

The approach is compared with classic farthest point sam-
pling (FPS). When compared with FPS, in addition to the
potential advantage of considering critical points, there are
several other advantages of the proposed method: 1) MS
complex can be computed in a parallel framework and can
attain acceptable time complexities. 2) The proposed method
considers an additional structure, a Morse function, for the
sampling. 3) Witness complex [23] computes persistent ho-
mology efficiently by building a simplified complex; however,
relies on providing a dependable set of “landmark points”.
Critical points can be an effective representation of landmark
points, as opposed to manually or randomly selected set of
points.

We apply the proposed method for two classification prob-
lems: classifying 3-D objects consisting of 7 categories and
classifying human faces according to ethnicity. Numerical
experiments suggest that the proposed mechanism can achieve
efficient sampling as compared to FPS for the purpose of
computing persistence homology.

B. Organization

The rest of this paper is organized as follows. Section II
skims through previous work and relevant concepts in com-
putational topology. Section III presents the methodology we
propose. Applications of the proposed algorithm are presented
in Section V, followed by conclusions in Section VI.

II. BACKGROUND

In this section, we outline the topological concepts and tools
that are used in this paper. For more details, we refer the reader
to [24].

Given a point cloud S, a data structure designated as a
complex is constructed. There are many ways of generating
complexes; however, this work focuses on Vietoris-Rips (VR)
complex [24, § III]. We denote the VR complex associated
with persistence level r by VRg(r).

Such a complex gives rise to homology groups, one for each
non-negative integer p, denoted by H,(S). For an increasing
sequence of persistence levels, 7o < 1 < --- < r, there
exists a sequence of complexes. For example, in the case of
VR complex, we have VRg(ro) € VRg(r1) C -+ VRg(ry,).
Such a sequence is designated as a filtration.

A filtration determines a sequence of homology groups.
Moreover, inclusions in the filtration give rise to maps on
the homology. The persistent homology groups are computed
based on these maps. Under these maps new elements in the
homology groups can be “born” and existing ones can “die”.
These births and the deaths of homology classes are then
encoded into persistence diagrams.

Persistence diagrams [24, p. 181] are multi-sets of points
in the extended plane IR U {co, —o0}, one for each dimension
p. In particular, we draw points at (r;,7;) with multiplicity
(19, where piJ is the the number of p-dimensional homology

classes born at persistence level r; and dying at level r;. Persis-
tence diagrams are the topological signatures used throughout
this paper to compare point clouds.

One can measure the dissimilarity between two persistence
diagrams by using appropriately defined metrics [24, § VIIL.2].
For example, this paper, as in [9], uses Wasserstein distance
with parameter ¢, defined as

1/q
Wq<D1,Dz>=[ in an—n(xngo} (1)
€D,

n:D1— D>
xr

to compare two persistence diagrams D; and D,, where 7
ranges over all bijections from Dy to Dy [24].

Let M be a manifold. A smooth function f : M — R is a
Morse function, if all critical points are non-degenerate. One
can think of f as a height function on M. We refer the reader
to [20] for more details. This paper relies on such a function
defined on the point cloud S. Computation of the MS complex
up to a given a persistence level was considered in [25], on
which we rely on, to extract critical points.

III. METHODOLOGY

The proposed methodology is outlined in Algorithm 1.

Algorithm 1

Input:
o X ={X1,Xs, -, X,}, where each X; € X itself is a
point cloud with a distance metric d;.
e fi: X; — R, a Morse function whose critical points are
to be sampled.
« Persistence level 7.
e ¢, parameter to Wasserstein distance.
¢ D, the maximum dimension of the persistence homology
computed.
Steps:
1) For each X; € X
a) Extract the set X of critical points of f; from X;
using MS algorithm with persistence level r.
b) For each £ € {0,1,...,D}, compute the k-
dimensional persistence diagrams Dy (XT).
2) For each pair of X7, X;
a) Compute the distance ¢(X;, X;) given by

c(Xi, Xj) = m’?X{Wq(Dk(X[), Di(X7))}. (2)

b) Form the distance matrix M whose (i, j) entry is
C(Xi, XJ)
3) Classify X based on M.

In the sequel, we briefly discuss the steps of Algorithm 1. We
assume that the data set X = {X;, Xo, -+, X,,} consists of n
points, where each X itself is a point cloud. We also assume
each X; to be a subset of a metric space with metric d; and
equipped with a function f; : X; — R.



A. Sampling: Step (la)

Main goal of the sampling is to extract a well represented set
of points X which can efficiently approximate the underlying
space of X;. The MS algorithm [25, Algorithm 1] is used with
persistence level r to obtain X . For an illustration, see Fig. 3-
(a) and (b).

B. Persistence Diagrams: Step (1b)

Persistence homology in dimensions £k = 0,1,...,D is
computed and the associated persistence diagrams are desig-
nated by Dy(X7). The value of K may be chosen based on
the application.

C. Metricizing X for Classification: Step (2) and (3)

In this step, Wasserstein distances W, between persistence
diagrams obtained in Step (1b) are computed. These distances
are then used to metricize X based on (2). From this a distance
matrix M is computed to be used in a preferred classification
algorithm.

IV. COMPUTATIONAL COMPLEXITY

The time complexity of FPS is O (nlogn), where n is the
number of points in the point cloud [2]-[4]. In the case of MS
sampling, the critical points of the Morse function defined on a
point cloud can be obtained by using an approximate discrete
Morse-Smale (DMS) complex in O (nlogn) [26]. If the point
cloud is in 3-D, the computations can be further efficient. More
specifically, for 3-D point clouds, the critical points of the
Morse function can be obtained in O(cn), where ¢ is an upper
bound on the number of critical points [27]. Note that the
results of [26] and [27] relies on that the number of critical
points of the Morse function is bounded. In general, authors
of [25] show that the critical points of the Morse function can
be computed in O(n?). Developments in parallel frameworks
for computing DMS complexes with better time complexities
are discussed in [28]—[31].

V. APPLICATIONS

In this section, we test the proposed Algorithm 1 in a shape
classification problem and a face classification problem. The
goal is essentially to compare and contrast the potentials of
MS sampling [§ III-A] and commonly used FPS. To overcome
the limitations in the numerosity of chosen data sets, we have
used 6-fold cross-validation ! in both applications to estimate
the accuracy of the classifiers. The cross-validation estimate
of the classification error is defined by [32, sec. 7.10]

1 n

where I; the indicator function of miss-classifying the ¢ data
cloud and n is the number of objects. We compute the accuracy
of the classifier by 1 — C'V.

3

'In general, 5 or 10-fold cross-validation are recommended as a good
compromise [32, sec. 7.10]; however, we use 6 as it divides both data sets
in to equal size bins.

Training and Testing Phase: In both classification problems,
the corresponding data set X is divided randomly into 6
considered partitions. We denote the partitions by B; and
the complement of B; by A;. For each j € {1,...6},
we run Algorithm 1 with A; as the input X to obtain the
corresponding distance matrix M;. In the training phase, we
consider k-nearest neighbors (k-NN) classification method
with k = 1,2,3, and test the resulting classifier on B;. The
accuracy 1 — CV is computed as discussed above.

All numerical simulations were carried out for three persis-
tence levels, i.e., r = 3, with ¢ = 1, and D = 2. The proposed
algorithm is compared with an algorithm which replaces
MS sampling by FPS, but with the same k in the nearest
neighbour classifier. While the number of points returned by
MS sampling can vary, FPS relies on specifying it. Therefore,
for a fair comparison, in the case of FPS the average of the
number of points returned by MS sampling over all images is
used. Thus, both algorithms on average use the same number
of points.

A. Shape Classification

1) Preparing the Data Set: We consider a publicly available
database of 3-D shapes [33]. This database comprise of 66
shapes from seven different classes: camel, cat, elephant, face,
flaming, head, and horse. Each class contains several different
poses of the same shape.

The data set X = {X;,Xs,...,Xes}, where n = 66,
is such that each X; C IR®, corresponding some 3-D point
cloud of a shape, see Fig. 1. For all i € {1,...,66}, the
Morse function f; : X; — IR is taken to be f;(z,y,z2) = z,
that simply assigns the height to each point (z,y,z) € X,.

2) Numerical Results and Discussion: Numerical simu-
lations were carried out for the persistence levels: r =
1.00,0.99, and 0.98. For each r above, the corresponding
average number of critical points from MS sampling are
66, 18, and 13, respectively, per shape. Fig. 1(a) and (b) show
representations of MS sampling applied to a data point X;, at
persistent levels » = 0.99 and r = 0.98, yielding 16 points
and 11 points, respectively. Similarly, Fig. 1(c) and (d) show
the FPS sampling applied to the same data point. Fig. 1 shows
that the critical points X from MS sampling is very different
to those of FPS sampling.

Fig. 2 shows the performance of the k-NN classifiers for
k = 1,2, 3, with MS sampling and FPS sampling. In particular,
the solid circles represent the accuracy level, 1 —C'V [compare
with (3)], of each classifier. The individual accuracy levels of
the classifiers designed with MS sampling and FPS are also
depicted by using associated box-plots to get an idea of the
consistency of the classifiers within the 6-fold cross validation
framework. The accuracy 1 — C'V of the classifiers based on
MS sampling outperform that of the FPS based classifiers
in all considered scenarios except in the case of r = (.99
with 2-NN. When the number of sampled points on average
is 66, (i.e., r = 1 for MS sampling), the performance of
MS sampling and FPS sampling is comparable, see Fig. 2(a).
However, when the number of points on average is smaller [see
Fig. 2(b)-(c)], the classifiers based on FPS sampling shows



(@) (b)
Fig. 1: MS Sampling with: (a) » = 0.99, (b) » = 0.98. FPS with (c) 18 points, (d) 13 points. Image courtesy of [33].
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Fig. 2: Shape data set simulation results from 6-fold cross validations: (a) MS sampling with » = 1 and FPS with 66 points.
(b) MS sampling with » = 0.99 and FPS with 18 points. (¢) MS sampling with » = 0.98 and FPS with 13 points.

higher variance, whereas those based on MS sampling show
low variance and consistency even with reduced sample size.
For example, in these scenarios, at least 7 out of 36 (i.e.,
19.4%) classifiers designed with FPS yield accuracy levels
below 0.6. In contrast, only one out of 36 classifiers based on
MS sampling yields an accuracy level below 0.6 that amounts
to a 2.8%. Results further show that the worst-case accuracy
level of the classifiers based on FPS can go even below 0.5
when the number of sampled points are smaller, see Fig. 2(b),
2-NN case and Fig. 2(c), 1 and 3-NN cases. In contrast,
classifiers based on MS sampling, even with a smaller number
of sampled points report no accuracy levels below 0.5, see
Fig. 2(b)-(c). The above, together with the interquartile ranges
of the box plots, show that the classifiers designed with MS
sampling is more consistent than those with FPS.

B. Face Simulation Results

1) Preparing the Data Set: We consider a database of face
images, which consist of 90 face images arbitrarily chosen
from the on-line face database FERET [34]. As a preprocess-
ing step, we resize each image into 100 pixel x 150 pixel
grayscale. The data set X = {X;, Xs,..., Xoo} is such that
each X; corresponds to a 2-D grid M = {1,2,...,100} x
{1,2,...,150} and a function f; : M — G, where G =
{0,1,...,255} and for each pixel (u,v), fi(u,v) is the
grayscale value. Thus;

Xi ={(u,v) e M | fi(u,v) < 255}.

The Morse function on X is chosen to be f;.

Note that the data set X is not labelled. Therefore, as
a benchmark, we consider the following classifier which is
experimentally devised. The goal is to first split the data set
X into two groups, namely Asians and non-Asians, where
the grouping was conducted by combining the results of N
independent experiments 2. In _]é)articular, the outcome of j-
th experiment is a labeling ygj € {-1,1} associated with
X, ,1=1,...,90, which is performed by a personnel based
on their decision. The labels —1 and +1 denote Asians and
non-Asians, respectively. The outcome of the N experiments
are then combined by using the majority vote to get y;, i.e.,

y; = sign {Zivzl yz(")} 1. The resulting y;, together with X,
¢t =1,...,90 is used in the training and testing phase of our

classifiers. In this particular case we use N = 3.

2) Numerical Results and Discussion: Fig. 3(a) and (b)
show representations of MS sampling applied to a data point
X; in X, at persistent levels r = 0.87 and r = 0.6, yielding
160 points and 95 points, respectively. Note that the points in
X7 are not uniformly distributed in Fig. 3(a) and (b); however,
the points are concentrated at “landmark points” of X;, which
are apparently crucial to build a rich representation of the
original X; with VR complexes. However, note that FPS does
not discriminate special features of the face when sampling,
see Fig. 3(c) and (d).

2Such a classifier is to be designed with careful attention. However, the
focus of this paper is extraneous to the development of the aforementioned
classifier. Therefore, here we consider a simple experimentally driven classifier
as a benchmark based on what we compare MS sampling and FPS sampling.
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Fig. 3: MS Sampling with: (a) » = 0.87, (b) r = 0.6. FPS with (c) 220 points, (d) 119 points. Image courtesy of FERET [34].
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Fig. 4: Face data set simulation results from 6-fold cross validations: (a) MS sampling with r = 0.87 and FPS with 220 points.
(b) MS sampling with » = 0.76 and FPS with 156 points. (c) MS sampling with » = 0.6 and FPS with 119 points.

Fig. 4, shows the performance of the k-NN classifiers for
k =1,2,3, with MS sampling and FPS sampling applied to
the face data set X. Similar to Fig. 2, the accuracy levels
of each classifiers is indicated by solid circles. Moreover,
the individual accuracy levels of the classifiers pertaining to
6-fold cross validation are presented by using box-plots. In
general, the observations are consistent with those of the
shape classification [Fig. 2]. The accuracy levels of all the
classifiers based on MS sampling outperform those based
on FPS. Moreover, when the number of sampling points on
average is smaller, the accuracy levels pertaining to the FPS
based classifiers become more deteriorated. For example, in
certain cases, the worst-case accuracy levels become on the
order of 0.4, see Fig. 4(b), 2-NN case and Fig. 4(c), 2-NN
case. However, the performance of the classifiers based on
MS sampling remains nearly unchanged, irrespective of the
number of sampling points used on average. Moreover, the
worst-case accuracy levels of the classifiers based on MS
sampling have never gone below 0.5. Thus, even in the case
of face classification, the MS sampling based classifiers show
more consistent properties than those based on FPS.

VI. CONCLUSION

This paper has considered using a sample of critical points
of a Morse function f with respect to a given persistence
level to compute the persistence homology of the underlying
space of a point cloud. It has been empirically shown that,

compared to farthest point sampling (FPS), Morse Smale (MS)
sampling can better aid the computation of the persistence
homology. This idea was tested using two applications: a
shape classification problem and a face classification problem.
In both applications, MS sampling based computation of the
persistence homology performed better than that with FPS. It
has been observed that MS based computation has comparable,
or even better, performance compared to the computation
that uses FPS sampling with as twice as many points. In
other words, MS sampling based computation of persistence
homology is less sensitive to a decrease in the sample size and
is still capable of yielding consistent results.

In particular, the results suggest that the proposed method is
more effective than FPS for the cases where the critical points
of f play a decisive role in determining persistence homology.
However, the theoretical substantiation of the aforementioned
statement is still an open problem.

Several advantages of the method, over other sampling
methods such as FPS were observed for the purpose of
computing persistence homology. For example, a different ap-
proach than using VR complex is the use of witness complex,
which reduces the computational burden. Sampling of critical
points can be used as an input of landmark points to the
witness complex. Thus, the advantage of the proposed method
in the computation of the witness complex using critical
points as landmark points is worth investigating. Another
future direction is to consider the adaptability of the proposed



approach to discrete MS complexes, which can be computed
more efficiently.
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