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Abstract—This paper considers joint uplink/downlink mode
selection and resource allocation problem in multi-cell systems
for flexible TDD frame structures. To combat the difficult
interference characteristics of such systems, a dynamic mode se-
lection and resource allocation scheme is derived using Lyapunov
optimization. The result is a cross-layer optimization scheme,
where a long-term time-average utility function of flow rates
and interference penalty is optimized by solving a series of
instantaneous subproblems. The proposed dynamic algorithm
provides a solution for the UL/DL mode selection and resource
allocation, guided by the accumulating network layer queues and
virtual queues. Furthermore, a heuristic method is considered to
decouple the difficult power constraint in the resource allocation
subproblem.

I. INTRODUCTION

Small cell systems and dynamic time division duplexing
(TDD) have been gaining traction as possible solutions to the
high data rate and low latency demands of the 5G technologies.
They have also been proposed as important research items in
the 3GPP New Radio standardization [1]. As the instantaneous
traffic demand between uplink (UL) and downlink (DL) can
vary greatly among the cells in small cell systems, dynamic
TDD with flexible frame structures is an obvious solution to
provide low latency services with high data rates. However,
varying the cells transmit UL and DL modes can induce
difficult interference characteristics, for example UL-DL cross-
link interference (CLI), where a user in an uplink cell is
interfering with a downlink user in the adjacent cell [2].

Previous research in single-input single-output (SISO) dy-
namic TDD CLI mitigation via mode selection has mostly
focused on various time-slot allocation algorithms, see [3]—
[5] and the references therein. Cell mode selection problems
have also been a focus in device-to-device communications,
for example [6], [7]. However, the single-antenna schemes lack
the interference mitigation benefits of beamforming.

The literature in beamforming-based interference mitigation
is plentiful. Considering the interference characteristics of
TDD systems with fixed UL and DL transmit modes of
the cells, the cross-link power leakage can be mitigated for
example via beamformer training schemes, [8], [9], where
precoded pilots are applied to iteratively train optimal beam-
formers. This approach along with the UL/DL mode selection
is considered in [10]; however, the approach proposed in [10]
is myopic and does not consider the long-term statistics of the
dynamic network.

We model the joint UL/DL mode selection and resource
allocation problem as a time-dynamic optimization problem.
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We adopt the Lyapunov drift-plus-penalty framework to derive
a dynamic control algorithm, which solves a series of instanta-
neous subproblems, providing a solution to the original long-
term time-dynamic problem [11]. The proposed dynamic algo-
rithm decouples the UL/DL mode selection and the resource
allocation, guided by the accumulating network layer and
virtual queues. Furthermore, we propose a heuristic method to
decouple the power allocation and beamformers in the resource
allocation subproblem.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a dynamic TDD multiple-input multiple-output
(MIMO) system, where B half-duplex M -antenna base sta-
tions (BSs) serve U users (UEs) with N-antennas each. We
denote the sets of all BSs and users by B = {1,..., B} and
U ={1,...,U}, respectively, and the set of data streams of
user u by £, = {1,..., L, }. We denote the BS serving user
u by b, and the set of users served by BS b by U.

Let m,; € CM*! and m,, € CN*! denote the precoders
associated with [th data stream of user w for DL and UL
transmissions, respectively. Then the DL signal received by
uth user at time ¢ can be expressed as
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where Hy,,(t) € CV*M s the channel matrix between
BS b, and user w, I:Ik,u(t) € CN*N jg the channel matrix
between users k and u, and n,;(t) is complex Gaussian noise
with covariance NI, notations d,;(¢) and d,,;(t) denote DL
and UL data symbols associated with [th stream of user u,
respectively. We assume that data symbols are normalized,
such that E[|d;(¢)|%] = E[|d,,(t)|*] = 1, Vu, .

Correspondingly, the UL received signal at BS b,, at time ¢
can be expressed as
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where Hy,,, () € CM*M g the channel matrix between
BSs b and by, and ny, (t) is complex Gaussian noise with
covariance Npl.

We assume minimum mean-square error (MMSE) estima-
tion at the receiver [12]. Thus, the DL and UL symbols d,,;(t)
and d,,;(t) can be estimated as

du(t) = wihOyu(t),  da(t) =wht)y, @),

where w;(t) € CN*! and w,(t) € CM*! are linear
MMSE combiners associated with [th data stream of user u
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in DL and UL transmissions, respectively. Thus, the stream-
wise signal-to-interference-plus-noise ratio (SINR) on DL and
UL transmissions can be expressed as in (1) and (2), where
No = E[[wH, (()n,[?] and N, = E[lw¥, (t)n,, |?].

In this paper, we assume Gaussian signaling and stream-
wise detection. Thus, the receiver treats all the interfering
signals as additional noise. Therefore, the DL rate r,(t) and
UL rate r,,(t) for user u at time ¢ are assumed to be

ru(t) = D, 1082(1 + v (),
r () =D ier, loga (1 + 7, (1))

A. Network Queueing
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We consider a network-queue model similar to [11], where
the exogenously arriving data of user u at BS b, is first
admitted to a transport layer queue D, (t), then admitted to
network layer queue @, (t) according to flow control decisions
made in each time slot. The dynamics of the transport layer
queue D, (t) are given by

Dy(t+1)=[Dy(t) — Op(t)au]” + Xu(t),b € B,u € Uy, (4)

where a, = A™ is a fixed-size packet! outbound from the
transport layer queue D, (t) of user u, Oy(t) is a binary DL
flow control variable for all users u € U, associated with
BS b, and A,(t) is the exogenously arrival rate of user u
(which depends on application demand, e.g., speech, video,
etc.). From the transport layer queue, the data is admitted to
the network layer queue Q. (¢), which updates according to

Qut +1)=[Qu(t) — ru()]" + Op(t)au,b € B,u € U, (5)

where 7, (t) is the transmission rate, defined in (3).

Similarly, at each user v € U, the dynamics of transport and
network layer queues D, (t) and @ () for UL data traffic can
be expressed as o

D,(t+1)=[D,(t) — O,(t)a,]" + A, (t),b € B,u € Uy, (6)
Q,(t+1)=[Q (1) —r,®)]" +O4(t)a,,b € B,u €Uy, (7)

where )\, () is exogenous arrival, a,, = A™ is the fixed-size
data packet, and O, (¢) is a binary flow control variable in UL
for all users associated with BS b.

B. Problem Formulation

Our objective is to dynamically assign the UL/DL trans-
mission mode of the BSs (i.e., cells) based on the traffic
demand, while simultaneously maximizing the utility of the
dynamic TDD system. Under network stability, admitted data
Oyp(t)a, for all ¢ in the internal queue is transmitted to
the corresponding DL user over a finite period of time [11]

I'The outbound flow is fixed unless the transport layer queue contains less
data than the fixed value. Then a,, = min(D,(t), A™**).

(similarly, in the case of UL transmission). Thus, we define a
network utility function as
$(0,0)=Y" (X wylog(1+Opa,)+w,log(1+0,a,)), (8)
beBucly,
where w,, > 0 and w, > 0 are the user-specific pri-
ority weights, Oy = limy oot 3 0_ Oy(7), and O, =
]imt%oc% Zizl Oyp(7).

Furthermore, we want to mitigate the complicated inter-
ference scenario of the system through UL/DL mode se-
lection. To do this, let «;(t) and a,(t) denote aggregated
interference projected by BS b (in DL transmission) and the
users associated with BS b (in UL transmission), respectively.
We assume parameters ap(t) and o (t) can be obtalned via
network feedback. Let Obab = limy_ oo+ i Z Op(T)ap(T)
and Oy, = limioct Z Oy (T)ay (7). Then the long-
term projected interference penalty can be expressed as

f(a, Q) = ZbeB(Obab + Qb@b)' €))

Furthermore, let 7, = lims_ oot : ZT 17u(7) and T, =
hmtawt ZT 1 7 (7). Then, by using expressions (8) and (9),
the dynamic UL/DL mode selection and resource allocation
problem can be formulated as

maximize $(0,0) — Jf(0,0)

subject to Oy, ay < Ty, uw €U (10a)
Oy,a,<T,, uecl (10b)

SN M ())1? < 2p() Poax, b € B, ¥t (10c)
uEULEL,,

Sllm,,, () |I*<z,#)PYE be B,ucld,vt (10d)
lely,

T, =0, beB (10e)
z,=0,, beB (10f)
Op(t),04(t) € {0,1}, be BVt (10g)
Op(t) +O,(t) =1, be BVt (10h)
xp(t), 2, (t) € {0,1}, b€ B,V (10i)
zp(t) +z,(t) =1, be B,V (10j)

with variables {Oy(t), O, (t), zp(t), 2, (t) }oep and {my,(t),
m,,; (t), wu(t), W)} ueuiec, for all t € {1, 2, ...};
where § > 0 is a tradeoff parameter. The constraints (10a)-
(10b) ensure that the network is stable [11]. The constraints
(10c) and (10d) limit the total transmit power of each BS and
user, respectively. Note that the binary variables x;(t) and
x,(t) set zero or maximum power for UL/DL transmissions in
constraints (10c) and (10d). We impose long-term consensus
between variables {xy(t),z,(t)} and {Os(t), O,(t)} by the
constraints (10e)-(10f) in order for the UL/DL mode selection
to be guided by the higher layer of the network.



III. DYNAMIC ALGORITHM VIA LYAPUNOV OPTIMIZATION

To solve the problem of time averages (10), we utilize
Lyapunov optimization, namely the drift-plus-penalty method
[11]. We modify problem (10) such that it conforms to the
structure required for the drift-plus-penalty method, as follows:

¢(0(t),0(t)) - 6f(0,0)

maximize (t))
subject to constraints (10a) — (10j),

with variables {Oy(t), O, (t), zp(t), 2, (t) }oep and {my,(t),
m,; (t), Wy (t), Wo; () Yueu,iec, forallt € {1,2,...}; where

#(0(1t), 0(t)) = 1im; 00 %Zf—:leeB Zueub[wu log(1
+ Op(7)ay) +w, log(1 + 0y(7)a,)]-

Note that by using Jensen’s inequality, we can easily verify
that ¢(O(t), O(t)) is a lower bound on ¢(O, O). Thus, by
solving problem (11), we can find a solution for (10).

We impose the time-average inequality constraints (10a)-
(10b) and equality constraints (10e)-(10f) by transforming
them into a queue stability problem [11]. By following the
steps in [11, Ch. 5], we can show that constraints (10a) and
(10b) can be characterized by the queue dynamics (5) and (7),
respectively. Furthermore, let {U(t) }pe and {U,(t)}res be
virtual queues associated with constraints (10e) and (10f),
respectively, and updated according to

Ub(t+1) =Ub(t)fOb(t)+$b(t), bebB
Uyt +1) =Uy(t) — Oy(t) + z4(t), beB

We now define the Lyapunov function as

an

12)

L(@(t)):%[%:M(Qu(t)2+Qu(t)2)+b%;3(Ub(t)2+Qb(t)2)]
(13)
where O(t) = [Q1(t) ... Quy(t), Q,(1) .. Q, (), Ur(t)

- Upp|(t), Us(t) ... Ujp(t)]. Moving forward, we define
the Lyapunov drift, which describes the change in network
congestion between time slots as [11]

A(O(1) = E[L(O(t + 1)) — L(©(1)[O(1)],

where the expectation is taken with respect to the admission
policy and random channel states. Let

P(O(1), 0(t)) = X5 (X ers, wu log(1 + Op(t)a)
+ w, log(1+ 0y (t)a,))
F(O(1),0(t)) = > pen(Op(t)an(t) + Oy (t)ay(t))

Then we can find a solution for problem (11), by minimizing,
for each time ¢, the following drift-plus—penalty function:

(14)

A(O(t)) - CE[4(O(t),0(t)) - £ (O(t), O(t)) |O(t)], (15)
subject to constraints
Sucty, 2ier, M @)|? < 2p(t) Poax, be B (16a)
SeeJmy (OIP <z, (t) Po,  beBucld (16b)
Ou(t), 0,(t) € {0,1}, beB (16¢)
Ou(t) +Oy(t) =1, beB (16d)
xp(t), 2y (t) € {0,1}, beB (16e)
z(t) +z,(t) =1, beB. (16f)

Note that in (15), C' > 0 is a design variable that facilitates
a tradeoff between minimizing the drift and maximizing the

objective of problem (11). To expand on the drift-plus-penalty
expression, let us first derive the Lyapunov drift. Substituting
(13) to (14), and using the queue dynamic expressions (5), (7)
and (12), the Lyapunov drift becomes

A(O(1) = E[L(O(t + 1)) — L(©(1))[6(1)]
S G+ Y ueu Qu)E[(Op(t)au) — ru(t)[O(1)]
+ 2 weu @,(WEO (e, —r, (H)[O@)] (17
+ 2 es Un(DE[z5(t) — Op(1)|O(2)]
+ 2 en U (OE[z,(8) — Oy (1)[O(2)]
where G is a positive constant given by
G 2 3( Xueu El(Os(t)au)® + ru(t)?|0()]
+ Xueu Bl(Qy(H)a,)? + 1, ()*10(2)]
+ 2 pen[Elzs(t)*+0u()*|O(0)+E[z, (1)*+0,(t)*|0(1)]]).
To minimize the drift-plus-penalty (15), we utilize opportunis-
tic minimization of expectation [11, Ch. 1.8]. Thus, (15) can

be minimized by solving a series of decoupled subproblems,
detailed in Algorithm 1.

Algorithm 1: Algorithm for solving the UL/DL mode se-
lection and resource allocation problem (10)

1) Flow control: Find Oy(t) and O,(¢), for each b:

minimize 3, ¢, Qu()0y(B)au + Q, (0 (1)a, |
{w>u> mmw
C(6(0(1).0(1) = 5/(0(1). O(1)
subject to  Oy(t), 0 (t) € {0 1}
Ou(t) + O, (t) =

2) Resource allocation (RA):
minimize 3 ,c5|Us(B)0(t) + Uy (6)z, (1)
= Ceu|Qutra®) + Q ()1, (1)
subject to  constraints (16a) — (16f)
3) Update queues {Qu, Q. buctss {Un Uy boes.

Algorithm 1 observes current queue backlogs ©(¢) and
finds solution for (10) by solving flow control and resource
allocation (RA) subproblems. Step 1 finds the flow control
variables {Oy(t), Oy(t)}sep, and is decoupled among the
BSs. The solution can be determined by evaluating the two
points of the constraint set, i.e., {Oy(t) = 1,0,(t) = 0}
and {Op(t) = 0,0,(t) = 1}, Vb. In step 2 the transmit and
receive beamformers are optimized, and for this, an algorithm
is derived in the next section.

IV. ALGORITHM DERIVATION FOR RA

RA problem in Algorithm 1 is a weighted sum-rate maxi-
mization (WSRMax) problem along with an additional linear
terms in the objective function. The WSRMax problem is
known to be NP-hard [13]. In this section we provide a fast
but possibly suboptimal algorithm to solve RA problem of
Algorithm 1. Our approach follows a similar procedure to
[10], by utilizing successive convex approximation (SCA) in
conjunction with alternating optimization. In the following, we
omit the time index ¢ to simplify the notation.



We begin by introducing auxiliary variables /3,; and B
to upper-bound the denominators of the SINR expressions (l)
and (2), respectively. Then, by relaxing the SINR constraints,
the RA problem can be written as

maximize ), [Quru + Qufu] — Y e [beb + ngb]
subject to constraints (16a), (16b), (16e), (16f)
Y < [WHy wmy|?/Bu,u el € L, (18a)
Yy < Wi Hy m, [?/8 u €Ul € L, (18b)
Bur = No + Yjecoqy Wi, umy; |
+ 2 heu\fu} 2iec., | Hp g |2

+> YlwhHemy *uel,le L,
kEU\Uy LEL

B = No+ Ejee,py Wi HE, ,m,;°
+ Dker fuy 2rec, W Hy, oy (18d)

+Y Dwh iy, my 2 uel,l € Ly,
keU\Uy lEL,

(18¢c)

with variables {m,;, m,,
B, tueuec, and {xp, 2, bves.

In order to simplify algorithm derivation, we utilize alternat-
ing optimization to design receiver combiners {w;, w,,;} and
transmit precoders {m,;,m,;}. That is for fixed precoders,
receiver combiners {w,;, w,;} are set to scaled optimal
MMSE solution [14]. Then for fixed MMSE receivers, transmit
precoders {m,;,m,;} are designed. This process is repeated
until convergence.

Unfortunately, the design of transmit precoders, even for
fixed receivers, is a non-convex optimization problem due to
constraints (18a), (18b), and (16e). In the sequel we derive an
SCA based approach to convexify the nonconvex constraint
functions, and solve problem (18) for fixed {w;, w,;}.

Constraint functions (18a) and (18b) can be expressed as
difference-of-convex (DC) functions. Thus, the best convex ap-
proximation of these constraints can be obtained by replacing
their R.H.S. expressions with their first order Taylor approx-
imations. The best convex approximation of constraint func-
tions (18a) and (18b), around fixed local points {mul,éul}
and {mul,éul}, can be expressed as

B Buls

Wauls, Wui Yuls lul

Wl H,, 2 @i HE w,whH gy,

Yul <

Bul Bul(ﬁul - Bul) (19)
+ 2Re[mungluuWUZWEleuu(mUl - ﬁliﬂ)/ﬁul}
|ﬂqu Ly le uW o W, Hb B
lul — B - w2 9
—ul ’Bul (éul - éul) (20)
+ 2Re[tny, Hy, . w, Wi HY , (m,, —m,)/B8

To tackle the combinatorial nature of (18), we relax the hard
binary constraint (16e), and employ a regularization function

to enforce a binary solution for vector x = [z1,...,7p,
Zq,..., |, given by
h(x) =3 ep (log(zs + €) +log(zy +6), (2D

where e is a small positive constant. Using the above regular-
ization function, the new objective of (18) becomes

Zueu[QuTu + Qufu] - ZbeB [beb + Qb@b} — ph(x),

where ¢ > 0 is a regularization coefficient that emphasizes
a binary solution for x. The new objective is a nonconvex
DC function. As with constraints (18a) and (18b), we can
convexify it by using the first order Taylor approximation of
h(x) around a local point X = [Z1,...,Zp,Z1,...,Lp]
h(x;%) =3 e [log(:i’b +¢€) + log(Z, +¢€)
(@ — )/ (E + ) + (, — ) /(& + ©)]

Finally, omitting the constant terms of (22), we can express

the convex approximation of problem (18) as

maximize Y, [Qury + Quﬁu} =Y en [Usty + Uy
— 0 hen [0/ (@ +€) + 12,/ (Z, + €)]
subject to constraints (16a), (16b), (18¢), (18d), (19
xp,xp € 10,1, b€ B
p+2x, =1,b€eB.

(22)

):(20)
(23a)

(23b)

A. Heuristic Decoupling of Precoders and Power Allocation

In the RA problem of Algorithm 1, UL/DL power
allocation variables {xp,2,}rep and precoders/combiners
{m;,m,;, w,;,w,;} are coupled due to constraints (10c)
and (10d). A heuristic decoupling can be applied by setting
xp(t) = Op(t) and z,(t) = O,(t) (or, by observing the long-
term statistics of Oy (¢) and O (¢) from the solutions of step 1
of Algorithm 1), Vb,¢t. This heuristic can be justified by the
fact that problem (18) is already guided by the transport-layer
mode selection through the queues @, Qu Uy and U,, the
state of which determines the power allocation variables.

The decoupling makes problem (18) a known WSRMax
under a fixed UL/DL mode, which can be solved separately
at the BSs using, for example, over-the-air training [8], [9].
However, decoupling the variables in this manner is a subopti-
mal solution, and can degrade the overall system performance.

V. NUMERICAL RESULTS

We consider a system with B = 7 BSs each with M = 4
antennas, and U = 14 users each with NV = 2 antennas. Users
are equally divided among the BSs (i.e., two users per BS).
We consider single-stream transmission, i.e., L, = 1, Vu. The
users are equidistant from their serving BSs with positions
randomized every 50 time slots, with a pathloss of 20 dB,
and there is 3 dB separation between cells. The DL transmit
powers are set to Pp.x = 10 dB for all BSs, the UL transmit
powers PYE = P /|Uy| for all users, and the noise level is
set such that SNR is 15 dB. We use Clarke’s channel model,
with 300 paths and stationary UEs.

We model the arriving data in DL as A, (¢) ~ Pois(py,), Vu,
where p,, is the average arrival rate, and in UL as A, (¢) ~
Pois(p u) Vu. We consider asymmetric arrival, where a set of
five BSs (denoted by BPL) are under heavy DL traffic with
{pu.p,} = {3,0.1} bits/slot, u € Up, b € BPL, and the set of
the other two (BY") are under heavy UL traffic with {p.,p }=
{0.1, 3} bits/slot, u € Uy, b € BUL. The user priority weights
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Fig. 1. Network-layer queue evolution as a function of time.

are set as w,, = p,, and w,, = P, Vu. For flow control, we set
A = AT = Jog, (1 + Poax M ), and the trade-off parameter
is set to § = 10. The regularization parameter enforcing the
binary solution for {x,x;} is set to the average of |O(t)|.

To illustrate the performance of Algorithm 1, we first plot
the queue evolution of the system for C' = 500 in Fig. 1. The
guided method (red line), is obtained by solving problem (18)
for the resource allocation, while the decoupled method (blue
line) follows the heuristics of Section IV-A. TDMA mode
allocation is plotted as reference, where we alternatingly set
all BSs to DL or UL mode on consecutive time slots. From the
figure we can see that the proposed algorithm achieves stable
steady state after 400 time slots, while TDMA is unstable.
Furthermore, in terms of queue stability, there is virtually no
difference between using the guided and heuristic methods.
The queue evolution behaviour is similar for other values of
C, but the results are not provided due to space limitation.

Next, we investigate the performance of Algorithm 1 for
different values of C', shown in Fig. 2. The results are averaged
over 2000 time slots, and in case of TDMA, due to its
instability, we use the achieved average rates (7,,u € U)
instead of flow rates (Opa,,u € Up,b € B) to calculate the
objective value. From the top graph of Fig. 2 we can see that
for high enough value of C, the proposed algorithm performs
significantly better than the TDMA reference case. This is
due to high value of C' emphasizing the objective, which is a
measure of interference and data flow between the transport
and network layers, and for which TDMA has difficulties
handling the asymmetric traffic. The interference portion of
the objective was noticed to be very small due to the multi-
antenna users, which can already mitigate much of the inter-
cell interference via beamforming. Here we can also see the
performance drop due to the heuristic decoupling of Section
IV-A, as the resource allocation can no longer optimize the
power allocation variable along the beamformers/combiners.
Finally, from the bottom graph of Fig. 2 we can see that
the queue backlog increases with C, as the drift portion of
(15) is less emphasized, but there are only minor differences
in the steady states between the guided and heuristic mode
selection methods. We’ve omitted the TDMA backlog due to
its instability.

VI. CONCLUSIONS

We have proposed a dynamic UL/DL mode selection and
resource allocation algorithm, that can dynamically account
for the varying traffic demands of small cell systems. The
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Fig. 2. Top: Objective value as a function of C.

Bottom: Total network-layer backlog as a function of C.

proposed algorithm aims to maximize the long term network
utility. The algorithm derivation is based on Lyapunov opti-
mization, and provides a sequence of subproblems to solve the
original problem. The numerical results show clear advantages
of the proposed algorithm over the TDMA reference case
under asymmetric traffic scenarios.

REFERENCES

[1] 3GPP TSG RAN WG, “Study on new radio access technology: Physical
layer aspects (3GPP TR 38.802 version 14.2.0 release 14),” Tech. Rep.,
3rd Generation Partnership Project 3GPP, www.3gpp.org, 2017.

[2] ——, “Revised WID on cross link interference (CLI) handling and
remote interference management (RIM) for NR (3GPP RP-182864),”
Tech. Rep., 3rd Generation Partnership Project 3GPP, www.3gpp.org,
2018.

[3] W. Jeong and M. Kavehrad, “Cochannel interference reduction in
dynamic-TDD fixed wireless applications, using time slot allocation
algorithms,” IEEE Trans. Commun., vol. 50, no. 10, pp. 1627-1636,
2002.

[4] P. Omiyi, H. Haas, and G. Auer, “Analysis of TDD cellular interference
mitigation using busy-bursts,” IEEE Trans. Wireless Commun., vol. 6,
no. 7, pp. 2721-2731, 2007.

[5] I Sohn, K. B. Lee, and Y. S. Choi, “Comparison of decentralized time
slot allocation strategies for asymmetric traffic in TDD systems,” IEEE
Trans. Wireless Commun., vol. 8, no. 6, pp. 2990-3003, 2009.

[6] H. ElSawy, E. Hossain, and M. Alouini, “Analytical modeling of mode
selection and power control for underlay D2D communication in cellular
networks,” IEEE Trans. Commun., vol. 62, no. 11, pp. 4147-4161, Nov.
2014.

[7] A. Tolli, J. Kaleva, and P. Komulainen, “Mode selection and transceiver
design for rate maximization in underlay D2D MIMO systems,” in Proc.
IEEE Int. Conf. Commun., Jun. 2015, pp. 4822-4827.

[8] P. Jayasinghe, A. Tolli, J. Kaleva, and M. Latva-aho, “Bi-directional
beamformer training for dynamic TDD networks,” IEEE Trans. Signal
Processing, vol. 66, no. 23, pp. 6252-6267, Dec. 2018.

[9] P. Komulainen, A. Tolli, and M. Juntti, “Effective CSI signaling and

decentralized beam coordination in TDD multi-cell MIMO systems,”

IEEE Trans. Signal Processing, vol. 61, no. 9, pp. 2204-2218, May

2013.

A. Tolli, J. Kaleva, G. Venkatraman, and D. Gesbert, “Joint UL/DL mode

selection and transceiver design for dynamic TDD systems,” 2016, pp.

630-634.

M. J. Neely, “Stochastic network optimization with application to

communication and queueing systems,” Synthesis Lectures on Commu-

nication Networks, vol. 3, no. 1, pp. 1-211, 2010.

D. Tse and P. Viswanath, Fundamentals of wireless communication.

Cambridge university press, 2005.

[13] Z. Luo and S. Zhang, “Dynamic spectrum management: Complexity

and duality,” IEEE J. Select. Topics Signal Processing, vol. 2, no. 1, pp.

57-73, Feb. 2008.

G. Venkatraman, A. To6lli, M. Juntti, and L. Tran, “Traffic aware resource

allocation schemes for multi-cell MIMO-OFDM systems,” IEEE Trans.

Signal Processing, vol. 64, no. 11, pp. 2730-2745, Jun. 2016.

[10]

[11]

[12]

[14]



