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Abstract—This paper presents the development and math-
ematical analysis of an open—channel flow model. A tanks—
in—series model relying on systems engineering perspectives
is constructed. Through a series of assumptions, the obtained
nonlinear model is approximated by a linear dynamics, and its
asymptotic modal behavior is analysed in infinite dimensions
using rigorous mathematical machinery. The analysis exploits
the repeating tridiagonal structure of the system matrix using
Chebyshev polynomials and elaborates the dependence of the
modal dynamics on the so-called flow coefficient, which accounts
for the description of the flow of the model. The analysis pre-
sented in this paper reveals that using constant flow coefficient
for flow description in cascade arrangement of liquid storages
results in physically meaningless asymptotic modal behavior.
The asymptotic modal behavior is well defined if the flow
coefficient is an affine function or higher—order polynomial of
the number of elements in the cascade structure.

Index Terms—Eigen analysis, modelling, open—channel flow.

A. Nomenclature

The set of reals, nonnegative reals, positive reals, positive
integers and complex numbers are denoted by R, R>q, R,
Z, and C respectively. The symbol Uy(x) denotes the
degree N Chebyshev polynomial of second kind, while :=
represents equality by definition. For vectors z € R", a7
denotes the transposition operator.

I. INTRODUCTION

Mathematical modeling of open-channel flow has been and
continues to be in the focal point of theoretical and applied re-
search for scientific and engineering communities. Dynamic
models have been developed for various demands ranging
from flood prediction to hydropower generation, providing
means for understanding the governing physical phenomena.
As of 2021, the utilization of knowledge captured by first-
principle models is essential in the analysis of the problem
of interest. However, with the advent of reasonably priced
computing power, dynamical behavior is often studied by
means of numerical simulation, while analytic considerations
have received considerably less attention.
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One of the governing engineering paradigms that dominate
the practice is the “model and simulate” approach. Supported
by a wide variety of commercial modeling software, it is
common to build the open channel flow modeling on the
one—dimensional Saint-Venant equations, which provide an
acceptably good tradeoff between modeling accuracy and
computational complexity [2]-[7]. The analysis of the re-
sulting model is then carried out by numerical evaluation of
the — by modern terminology — digital twin. Although this
approach is widespread and seems vital from the perspec-
tive of computational performance offered by recent digital
hardware, the related tasks, including analysis, parameter
identification, and control design, might be prohibitively
excessive, depending on the application.

On the contrary, the essence of engineering is not the
construction of models of any kind but the construction of
control-oriented mathematical representation: the extraction
(identification) of the dominating dynamical behavior of the
system of interest from first-principles and/or data. Control—
oriented models are essential in the understanding of complex
physical phenomena. With the sacrifice of some accuracy,
control-oriented models are usually remarkably plain and
representative with undemanding computational complexity.

The amount of material available on control-oriented
modeling of open—channel flow is immerse. However, the
majority of the related proposals put the construction
(e.g.assumptions, formulation of the governing equations,
simplifications, etc.) and the utilization of the resulting model
for control in the focal point of the research. The mathemati-
cal (analytic) analysis of models got considerably less interest
and usually favors frequency—domain descriptions [2], [3].

To fill the gap, this paper contributes to theoretical research
including a mathematical analysis of a control-oriented open
channel flow model. A model of open-channel flow is derived
and simplified through linearization using standard engineer-
ing machinery. The model development favours state—space
representation and proceeds in time—domain. The main con-
tribution of the paper is the study of the asymptotic behavior
of the resulting infinite—dimensional linear state-space model.
The dependence of flow coefficient on discretization (number
of control volumes) and its effect on the modal assembly of



the system of interest is elaborated.

The paper is organized as follows: section II details the
construction of the open-channel flow model using a standard
engineering approach. Assumptions, derivation, simplifica-
tions for analysis are considered here. Section III presents
the mathematical apparatus used for the study of the derived
model in infinite dimensions. First, an analytic formula is
derived to describe the eigenvalues of the system matrix, and
using this, the convergence of dominant poles of the system
is elaborated under the dependence of flow coefficient on the
discretization. Finally, section IV provides a summary of the
presented work and draws the conclusions.

II. OPEN—CHANNEL FLOW MODEL: AN ENGINEERING
APPROACH

To construct the mathematical model, here a systems
engineering approach is adopted, aiming to represent the
open channel flow in a canal by hydrodynamic interaction of
liquid storages (tanks). Let the canal be divided into N € Z_
equally sized finite control volumes referred to as tanks. The
control volumes are separated by infinitely thin hoovering
walls which prevent matter to cross the boundaries of the
control volume. Fluid can enter and leave each finite volume
beneath the separation walls as depicted in figure 1 and 2.
The elevation profile of the canal on the (y,z) and (x,y) planes
are arbitrary. Let parameter L € R, [m] denote the arc
length of the elevation profile which shall be referred to as
the length of the canal throughout this article. For simplicity,
it is assumed that the canal has a rectangular cross section
wetted by the fluid and a constant width w € R [m]. Fluid
can enter and leave the canal only at the intake (upper) and
discharge (lower) boundaries (see figure 1), represented by
inflow Q™*(t) € R>o [m?/sec] and outflow Q°"*(¢) € Rx
[m?®/sec], no external sources (e.g. precipitation, evaporation,
spill loss etc.) are considered.

Regular assumptions are considered to model the fluid flow
between coupled tanks: (1) fluid is incompressible, (2) flow
develops by elevation difference due to gravity, (3) thermal
interactions of fluid storages and (in general) thermodynamic
effects are neglected. The governing equations are derived
using conservation principles for mass and linear momentum.
The conservation of mass can be written as

QM) —Qi (t), i=2
Qi (t) —Qixa(t), i=2,...,N—1 (1)
Q; (t) — Qv (), i=N

where h;(t) € R>¢ [m] is the (average) height of the fluid
column in tank i, Q;(t) € R [m3/sec] denotes the fluid
flow between tank ¢ — 1 and ¢ for all ¢ € [2,N] N Z,
and variable ¢ € R>( indexes time. Respectively, the vec-
tor h(t) = [hi(t),...,hn(t)]T gives the zero—order—hold
(ZOH) approximation of the fluid surface profile in the canal
at time t.

The conservation of linear momentum is considered in its
steady-state form. Here, the law of momentum conservation

Lwdh; _
N dt

Separation

walls
L g Control .
volume ¢
| w
Free surface
i of the tluid
Q™ ~
L 7t
zZ N
hi

Elevation profile Qe

Fig. 1. The arrangement of the tanks—in—series model along the canal.

is represented by the so called valve equation which can be
written as follows:

Qi (t) =
Cyv,i(N)sgn(hi—1(t) — hi(t))V/|hi-1(t) = hi(t)] ()

where parameter C. ;(N) [m2°/sec] lives under different
names within the engineering community including flow
coefficient, flow factor or discharge coefficient just to mention
a few. The function sgn(.) is the sign function, and |.| denotes
absolute value.

It must be pointed out that in the context of the outlined
modeling approach the discharge coefficient C, has a high
impact on the credibility of the obtained model. It captures
the fine details of the flow in the canal accounting for the
dissipation of energy due to friction. Its analytical form and
derivation is far from simple. Its value is usually varying (in
time and space) subject to canal geometry, fluid properties,
flow conditions and regime (i.e. laminar, turbulent) etc.

Putting (1) and (2) together results in a nonlinear ordinary
differential equation (ODE) system of the form

ht) = f (h(t), Q™ (), Q" (1)) 3)

where vector of fluid column heights h(t) =
[R1(t),...,hn(t)]T € RN represents the state vector
of the system of interest and the boundary conditions
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Fig. 2. Control volume representation of a canal section.



QM (t) € Rsp, Q°"(t) € Ry may be regarded as
exogenous inputs.

A. Preparation of the model for analysis

The previous section provided a well-known, standard en-
gineering approach to mathematically capture the dynamical
behavior of the system of interest. The resulting model is
ready for numerical evaluation once the details get fixed
(parameters, geometry, boundary conditions, discharge co-
efficients, etc.), which undoubtedly involves a tremendous
effort.

However, as pointed out already, the author’s contribution
is the analytical evaluation (analysis) of (3). The analysis
aims to understand the asymptotic behavior of the introduced
canal model, which involves the study of convergence (di-
vergence) of dynamical behavior as the number of control
volumes N goes to infinity. However, once derived, one
can observe that the outlined model in its general form is
analytically untractable for large N; thus, it requires further
“treatment” for analytic considerations.

To begin with, let us point out that the square root function
which appears on the right-hand side of (2) violates the
criteria of Lipschitz continuity at (h;—1(¢t) — hi(t)) = 0
(free surface of the fluid is horizontal in the canal). The lack
of the Lipschitz condition introduces an issue regarding the
uniqueness of solutions of (3) in case the model is initialized
to still water conditions. The problem is resolved by the
introduction of the following approximation:

2 for |z| < 0,
Vi(z) = Vor _ ()
sgn(x)y/|z| otherwise

where z € R and J, € Ry is an arbitrarily chosen pa-
rameter. The approximation satisfies the Lipschitz criteria by
providing a linear approximation of the square root function
in the (small) vicinity of zero controlled by the parameter ¢,..
Additionally, let zp(y,t) denote the free surface (elevation
profile) of the fluid. Given these, the following assumptions
are introduced:

Assumption 1: The dependence of the discharge coefficient
on the location of the control volume can be eliminated by
adjusting of the hoovering height of the separation walls.

and

Assumption 2: |zp (Y2, t) — zp(y1,t)| < 0z|y2 — y1| for all
Y1, y2 € [0,yr] and t € R>o.

In other words, it is assumed that the flow is subcritical,
and the free surface of the fluid is smooth (Lipschitz con-
tinuous subject to &,) under the investigated inflow/outflow
conditions. This assumption aligns well with the observed
behavior of long canals with relatively mild slopes (e.g.
natural river, irrigation canal). Consequently, the dynamics
of waterfalls, hydraulic jumps, and large amplitude wave
propagations are out of the scope of modeling and related
analysis.

Putting these together, the flow eqution (2) can be approx-
imated by

Cv(N)
Oz

which together with (1) form a linear ODE approximation of
the dynamics of the canal:

Qi (t) =

(hi—1(t) — hi(t)) (5)

;o Cy(N)N N
h(t) = 5. Lw Ah(t) + 7 BQ(t) (62)
where A € RM*N B e RM*2 and Q) :=

[Q™ (%), Q°"*(t)]T denotes the vector of exogenous inputs.
State transition matrix A is tridiagonal, with the following
pattern:

-1 1
(6b)
where all elements in the main diagonal are —2 except the

first and last which are —1 and the off-diagonal elements of
the tridiagonal structure are set to one. The control matrix

1 0
0 0
B= : (6¢)
0 0
0 -1

In summary, model (6) provides the baseline for the
analysis presented in the sequel.

III. ANALYSIS OF THE MODEL

The previous section detailed the development and sim-
plification of the open—channel flow model of interest in
time domain using state—space representation. This section is
devoted to the mathematical analysis of the developed model
with respect to its asymptotic behavior, which is obtained by
increasing the number of control volumes (thus the dimension
of (6)) without bounds.

To achieve this objective, first, the development of the
eigenvalues of the system matrix A (appears in (6)) shall be
studied with respect to the growth of dimensions. The system
matrix preserves the tridiagonal structure (6b) irrespective
of its size for all N > 3, which is utilized during the
development of the results. Additionally, the understanding
of Chebyshev polynomials is essential to proceed with the
calculations in the sequel, thus, let us summarize some of
the corresponding results of the related topic:

Remark 1: The Chebyshev polynomial of second kind
Uy (z) is a univariate polynomial of degree N. It satisfies
the following equality:

Un (cos(8)) sin(#) = sin ((N +1)6) 7

which oftentimes used to define Uy (x). Additionally,



Remark 2: The Chebyshev polynomial of second kind
Un (z) satisfies the following recurrence relation

UN (.Z’) =2z UN,1 (1}) — UN,Q (.Z') (88.)
for all N > 2, N € Z,, with initial condition
Ui (z) = 2. (8¢)

For further details on Chebyshev polynomials see [9].

The importance of Chebyshev polynomials (thus the in-
troduction of the outlined remarks) stems from the fact that
these play a fundamental role in the analytic evaluation
of determinants of tridiagonal matrices [1]. Similarly to
this particular case, tridiagonal matrices frequently appear
in physical and engineering applications, embody cascade
symmetry, and usually have repeating patterns. These fea-
tures (if presented in a particular form) can be captured
by Chebyshev polynomials which allow the development of
analytic formulas quantifying the eigenvalues of the matrix
of interest. The analytic representation makes it possible
to study the eigen—structure of such matrices in infinite
dimensions. Regarding this, the following lemma presents
a fundamental result which shall be utilized in the sequel.

Lemma 1: For a tridiagonal matrix M € CN*N of the
form

2¢ 1
1 2x 1
M= , zeC 9
1 2 1
1 2z
det(M) = Uy(x). (10)

proof. 1: See [1]. OJ
Using this, one of the main contributions of this paper is
stated by the following lemma:

Lemma 2: The eigenvalues s; of the tridiagonal matrix
A € RVXN (defined by (6b)) are

T
S COS(N)

forali=1,...,N, N €Z,.

proof. 2: For N < 3 formula (11) is verified analytically.
In these cases, the eigenvalues are: s; = 0 (N = 1), 51 = —2,
52:0(N:2)and51:73,52:71,53:0(N:3
respectively) which agree with the statement.

For N > 3 let us introduce the characteristic polynomial
pa(s) = det(A — sI). Furthermore, let us define a new
variable x through the affine mapping s = —2 — 2z. Then,
pa(x) is defined by

Y

20 +1 1
1 2z 1
1 2x 1
palx) = . (12)
1 2z 1
1 2x 1
1 2x4+1

Let K € CV*N denote the matrix appears on the right
hand side of (12) and let K1 € CV-UxWV-D [, ¢
C(V=2)x(N=2) pe Ks first two principal minors such that

N 2041 1|0
K= _ |1 2 (13)
a 0 : ‘Kg

Consequently, K; (K3) is obtained by removing the first
row and column (first two rows and columns) from K. Using
these, pa(x) can be expressed as

pa(z) = 2z + 1)det (K1) — det(K>) (14)

by expanding the determinant of K along the first row. The
determinants of K; and K5 are then computed by expanding
along their last row. Utilizing the result provided by lemma
1 the following expressions are obtained:

det(Ky) = (22 4+ 1)Un—2(x) — Un—3(x)

=Un_1(x) + Un—2(x) (15a)
det(K3) = 2z + 1)Un_3(x) — Un—_a(x)
=Un_2(z) + Un_3(2) (15b)

where (15a) and (15b) are derived by applying the recurrence
relation (8) to the expressions defining the determinants (indi-
cated above the numbered equalities determining det(/(1) and
det(K,) respectively). By putting (8), (14) and (15) together,
the characteristic polynomial p4(z) and the characteristic
equation of matrix A in variable = can be expressed as
follows:

pa(z) =2(z + YUn -1 (z) = 0. (16)

The equality above is satisfied in case Un_1(x) = 0 or
(xz+41) = 0. First, let us determine the roots of the Chebyshev
polynomial. It follows from (7) that

Un—1(cos()) sin(d) = sin(N6). (17

Since sin(Nf) = 0 and sin(f) # 0 for all § = i7rN~!
(tel,...,N—1), (17) implies that

e (3)) -

foralli =1,..., N—1. Secondly, condition x4 1 = 0 yields
xn = —1. Putting these together, the roots of p4(x) (defined
by the characteristic equation (16)) are

(18)



xi:cos(m), Vi=1,...,N (19)

N

due to the fact that cos(N7wN~!) = —1 which accommodates
the Nth root (zxy = —1). Using (19) and the formerly
introduced equality s; = —2 — 2z;, the roots of the char-
acteristic polynomial p4(s), thus the formula expressing the
eigenvalues of A shall result in (11) which completes the
proof. [J

The eigenvalue formula (11) samples the function s(z) =
—2—2cos(x), on the domain z € (0, | with sampling instant
Az = wN~!. The graph of s(x) is depicted in figure 3.
Correspondingly, irrespective of the magnitude of the number
of control volumes N, one root is located at the origin
that captures the integrator dynamics of the tanks—in—series
model. The rest of the modes exhibit smooth exponential
decay as the eigenvalues of A are negative reals between
minus four and zero.

S(x)
-4 ‘
0 X ™
Fig. 3. The graph of the eigenvalue function s(x) = —2 — 2cos(x) of
matrix A.

A. Asymptotic analysis

The asymptotic analysis of the model aims to examine
the conditions under which (6) has a physically meaningful
asymptotic behavior. That is, the convergence of the dynam-
ics of (6) is in the focal point of the analysis as the number
of control volumes N goes to infinity. However, convergence
is (just) a necessary condition as it is desired that the limit
dynamics is interpretable in a physical sense. To achieve vital
progress the following assumption is considered:

Assumption 3: The flow coefficient C,(N) is positive
definite and analytic in IV, for all N € Z,..

With that said, the modes of (6) are defined by exponential
functions exp(A;t) where

is obtained by magnifying the eigenvalues of A by a factor
determined by geometry and the flow coefficient. Using
assumption 3, it is easy to verify that for any given ¢

lim A\;(N) = —o0.
N—00

Thus, the ¢th mode of the system of interest represents an
infinitely fast dynamics as the number of control volumes
increases without bounds. For a canal having physically
meaningful dimensions such dynamical behaviour (modes)
shall be neglected.

To resolve this issue, let us start counting the modes from
”backwards”, that is,

C.(N)N ke

where k = 0,...,(IN — 1). In systems engineering Ay _g
are referred to as dominant poles (modes) due to the fact
that these represent the largest time constants (slowest con-
vergence rates) in the system’s response to inputs. Since
—AN—k € R the time constant is defined as

AN—k(N) =

T :=3An_r|"" 1)

for all kK = 1,...,(N — 1). Used widely in systems engi-
neering community, by definition, the time constant measures
the rate of convergence of a smooth exponential decay.
The relation between time constant and convergence rate is
inversely proportional: the higher the time constant the slower
the convergence and vice versa.

Due to the fact that —2 — 2 cos(z) is analytic on x € R,
the eigenvalue function can be stated as

(22 (- 5)) -

k)2 n i ( 1)i ke \ %

— (2 —1ag; | —

N s Z\N
where ag; € Ry¢ for all © > 2, 4 € Z,. Formula (22) is
obtained by deriving the Taylor expansion of —2 — 2 cos(7 —

) around = = 0. Using this, the kth (dominant) mode of (6)
is determined by

(22)

An_p(N) =

for all kK = 0,...(N — 1). In what follows, for any finite
ke{l,...,(N-1)},

0 if deg(Cy(N))=0
if deg(Cy(N))=1
if deg(Cy(N)) >1

lim AN—k(N) = A}(V—k (24)
N—o00 .

—00



where deg(.) denotes polynomial degree and —A%_, € R>¢
is finite. Note that, here, the counting starts form £ = 1 since
the Nth dominant pole Ay = O irrespective of N.

Using (23) and (24) the following conclusions are drawn:

e System (6) has a pole located at zero referred to as
integrator mode irrespective of the number of control
volumes. The integrator mode represents the mass—
balance dynamics of a single tank (fluid storage) as-
suming incompressibility.

o If the flow coefficient C, is set to a constant value,
the dominant modes of (6) approach zero with finer
discretization. Consequently, the system’s response to
changes in boundary conditions shall include modes that
exhibit infinitely slow convergence (time constants grow
without bounds). The physical behavior corresponding
to the dominant modes (excluding the integrator one) is
physically meaningless.

o Convergence of the dominant poles (thus convergence
of the dynamic behavior) is achieved in case the flow
coefficient is an affine function of the number of control
volumes. The convergence implies that the asymptotic
behavior is physically meaningful.

o Divergence of the dominant poles is observed if the
flow coefficient is a second—or—higher order polynomial
of the number of control volumes. Consequently, the
system’s response to changes in boundary conditions
shall include one integrator mode while the rest embody
infinitely fast convergence (time constants approach
zero). From the perspective of dynamical behavior, the
infinite-dimensional system shall exhibit simple integra-
tor dynamics and thus can be replaced by a single tank.
The asymptotic behavior is physically meaningful.

It must be emphasized that: the derived conclusions tar-
get the modal construction of the system of interest. The
obtained results are fundamental but preliminary: the study
presented here does not consider the weighting and excitation
of the modes which play a key role in the formation of
the observable dynamics of the system. In order to have a
complete picture of the dynamical behavior of (6), the modal
controllability and observability aspects shall be included and
further studied.

IV. SUMMARY AND CONCLUSIONS

This paper developed a control-oriented model for open—
channel flow and presented a mathematical analysis of its
asymptotic behavior. The model development relied on stan-
dard systems engineering machinery: open—channel flow in
a canal is represented by the dynamics of fluid storages
(tanks) in cascade arrangement. The behavior of the fluid
is captured by dynamic mass and steady—state momentum
conservation laws assuming incompressibility and omitting
thermodynamic aspects. The conservation of linear momen-
tum is represented by the widely—known valve equation.

The modeling effort resulted in a nonlinear model having
state—space description in time domain. Treated by a series of
realistic assumptions, a linear representation of the introduced

model is obtained. The state transition matrix of the approx-
imating linear system has a tridiagonal structure, including
repeating patterns. This particular feature was captured by
Chebyshev polynomials which allowed the development of
analytic formula quantifying the eigenvalues of the matrix of
interest and, correspondingly, the study of the modal structure
of the linear system by increasing the discretization (number
of interacting tanks) without bounds referred to as asymptotic
analysis.

The asymptotic analysis elaborated the dependence of the
modal structure of the system in infinite dimensions on
the so-called flow coefficient, which appears in the valve
equation determining the flow between tanks. The flow
coefficient accounts for the loss of linear momentum due to
friction, thus, it is a key ingredient of the developed model. In
literature targeting engineering applications it is oftentimes
treated as constant. On the contrary, this paper introduces the
flow coefficient as a polynomial function of the discretization
parameter (number of tanks).

The asymptotic analysis revealed that: (1) used with con-
stant flow coefficient, the tanks—in—series model develops
physically meaningless modal behavior as the time con-
stants corresponding to the dominant poles increase without
bounds, (2) convergence to a well defined modal behavior is
obtained in case the flow coefficient is an affine function
of the discretization parameter. The obtained results are
fundamental but preliminary: the modal controllability and
observability aspects which play a key role in the formation
of the observable dynamics of the system shall be further
studied.
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