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Abstract—This paper proposes a soft sensor to estimate the
elementary fuel characteristics in combustion–thermal power
plants. The proposed approach is data–driven. The input–
output data is generated by a digital twin. Application targets
circulating fluidized bed boiler, where furnace (combustion)
side is considered only. First, the nonlinear dynamics of the
furnace is approximated with a linear time–invariant dynamic
model. Then two separate methods, Kalman filter and internal
governor, are applied for state estimation. Results show that the
approach is viable and has low computational complexity, but
the weakly observable modes are difficult to predict accurately.

Index Terms—linear and nonlinear systems, estimations and
identification, monitoring and diagnostics

A. Nomenclature

Set of real numbers and positive integers are denoted by
R, and Z+ respectively. Vectors (matrices) appear using bold
regular x (bold capital M) typeset. Symbols (.)T , (.)−1 and
(.)†, represent transposition operator, inverse and Moore–
Penrose pseudoinverse.

I. INTRODUCTION

The Circulating Fluidized Bed (CFB) technology is the
mainstream of the industrial combustion–thermal power plant
installations. They are well suited for combusting solid
fuels of varying quality with high combustion efficiency [1].
Their working principle is to continuously mix bed materials
and fuel feed with strong upward airflow, which separates
the solid particles and gives the mixture desired fluid–like
combustion properties. Recirculation of solid particles from
flue gas path back to furnace further increases combustion
efficiency.

Fuel characteristics and furnace conditions determine the
properties of the resulting flue gas. The thermal energy of
flue gas is rejected to water–steam cycle by heat exchangers
located in flue gas duct. Simultaneously harmful particles
from combustion can cause fouling and corrosion on these
surfaces. This phenomenon has a significant impact on the
heat–to–power conversion efficiency of the power plant, as
it reduces the efficiency of heat transfer and degrades the

This work was conducted in the H2020 project COGNITWIN (grant
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life expectancy of the equipment. The decay of efficiency
has extreme importance in industrial applications, and the
outlined problem has been studied extensively in the litera-
ture. Efficiency loss can be controlled with knowledge of fuel
characteristics [2], [3]. Fuel characteristics can be determined
via laboratory experiments, and they are well defined for
standard fuels [4], [5].

The importance of fuel flexibility (ability to change fuel
type in a short time frame) is increasing and dominates the
industrial trends. Various waste–derived fuels are becoming
more and more integral part of the thermal power plant fuel
palette. However, it is highly unusual for an industrial plant
to be equipped with online, in–situ measurement of the fuel
composition. For example, in industrial waste fuel thermal
plants, fouling and corrosion–related issues are typically
handled by merely avoiding fuel quality variations; persistent
waste fuel type mixed with appropriate fossil fuel or additives
are used [6]–[8].

Despite the importance of the topic, according to the
best of the authors’ knowledge, very few tools exist for
online measurement of fuel characteristics. Some examples
are near–infrared–, and hot air drying sensors [9], [10]. To
address the aforementioned challenges, a promising alterna-
tive is the so–called soft sensor approach (computationally
estimating unknown process conditions based on existing
measurements). In case the underlying process model is
dynamic, the soft sensor can be stated as a state–estimation
problem. For example, [11] and [12] developed soft sensors
for the estimation of fuel moisture content.

This paper develops a soft sensor to estimate the fuel
characteristics in combustion–thermal CFB power plant ap-
plication. The soft sensor is data–driven and computationally
tractable. First, a linear time-invariant (LTI) approximation of
nonlinear furnace dynamics is achieved with subspace iden-
tification method. Then two separate methods for estimating
the fuel characteristics are applied and their estimation results
compared. All Input–Output (IO) data in this research is
generated by a digital twin (a mathematical model of the
physical plant) of the CFB boiler furnace.
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Fig. 1. The input–output structure of the furnace model. Vector ua ∈ R2

contains primary– and secondary air flows to furnace, vector uf ∈ R7

includes the elementary chemical composition of the fuel. The outputs are
measured at the discharge port of the furnace (intake of the flue–gas path),
consisting of flue gas mass flow qm, –temperature T and –concentrations of
CO2, H2O, O2, SO2 and N2.

The paper is organized as follows: Section II presents
how LTI system presentation was obtained from IO–data.
Section III implements Kalman Filter soft sensor, whereas
Section IV uses internal governor approach. Section V sum-
marizes the results and discusses needs for future develop-
ment.

II. SYSTEM IDENTIFICATION

The development of soft sensors for the estimation of fuel
characteristics is based on dynamic model that captures the
dominant dynamics of the process of interest. The modeling
approach adopted by this paper is data–driven, that is, the
mathematical representation is constructed in a black–box
fashion, using only input–output data.

Due to lack of real power plant field measurements, the
IO data used for soft sensor development is synthetic and
generated by a digital twin. The digital twin used in this
work is property of Sumitomo SHI FW Energia Oy and
known under the name Hotloop [13], [14]. Hotloop is a
first–principle (white–box) model developed in–house for
representing the combustion dynamics of a CFB furnace. It
is extensively used in the design and analysis of CFB power
plants by the owner and is considered reliable in capturing
dynamic and steady–state performance.

Inherently, the Hotloop is highly nonlinear with more than
hundred input– and output signals. The magnitude of the
dimension of its state–space is 103. Hotloop is implemented
in MATLAB Simulink environment, and its analytical, digital
representation is hidden from the user.
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Fig. 2. An example of characteristics of some fuel. Any fuel can be
partitioned into its characteristics. Partitioning is defined by input vector
uf ∈ R7.

For identification, we only consider the most relevant
combustion related input signals and flue gas properties as
outputs which are obtainable (measured, observed) in real
installations. In what follows, a total of nine input– and seven
output signals were recorded during the digital experiments.
The IO structure of the CFB furnace model is depicted in
Fig. 1.

The input space is partitioned into air and fuel subspaces
represented by vectors ua ∈ R2 and uf ∈ R7. The input
sequence generated in the outlined subspaces must respect
the following constraints: ua,k ∈ {uhigh

a ,ulow
a } and

umin
f,i ≤ uf,i,k ≤ umax

f,i ,

7∑
i=1

uf,i,k = 1 (1)

for all k = 0, 1, . . . where uf,i,k denotes the mass fraction of
ith fuel component (i ∈ {1, . . . , 7}) at time k. Figure 2 de-
picts the fuel composition constraint while Table I quantifies
the ”box” constraints for air– and fuel feeds respectively.

A. IO data collection

System identification begins with the generation of the
input sequence and continues with the collection of simulated
output data. The identification approach requires that the
generated input sequence satisfies the persistently exciting
condition to be able to capture the dynamical behavior of
the model by input–output experiments. To achieve this, the
input sequence was generated by a random walk in the air
feed and fuel characteristics subspaces subject to the outlined
constraints. For the air feed this means a random binary
sequence generated by a coin flipping strategy with fifty–fifty
percent probability for each possible event ({uhigh

a ,ulow
a }) to

occur.
For the fuel characteristics, the input sequence is generated

by the recursion

uf,k+1 = bumin
f , uf,k + Aαk, umax

f e, uf,0 = u?f (2)

where u?f is a pre–defined steady input representing a
nominal fuel composition subject to constraints, the columns
of matrix A are orthonormal basis vectors of the nullspace
of e7 := [1 1 1 1 1 1 1]T and αk ∈ R6 is a random vector.
Its components are generated by sampling the continuous
uniform distribution in a close proximity of the origin, that
is, αi,k ∼ U[−δ,δ], δ ∈ R+ is a ”small” parameter for all

TABLE I
USED INPUT VARIABLES AND THEIR LIMITS

Furnace variablesa [kg/s]
Primary air Secondary air

High 34.0 20.0
Low 32.3 19.0

Fuel characteristicsb [−]
H2O ash C H N S O

Max 0.60 0.1 0.60 0.1 0.1 0.1 0.30
Min 0.25 0 0.25 0 0 0 0.15
aEither High or Low. These form input vector ua.
bBetween Min and Max. These form input vector uf .
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Fig. 3. Example of generated random walk input to Hotloop.

i ∈ {1, . . . , 6} and k = 0, 1, . . . (αi,k are uncorrelated in
both spatial and temporal dimensions).

The function bxmin, x, xmaxe, xmin = [xmin
1 , . . . , xmin

n ]T ∈
Rn, x = [x1, . . . , xn]

T ∈ Rn, xmax = [xmax
1 , . . . , xmax

n ]T ∈
Rn represents vectorial saturation, that is

bxmin, x, xmaxe :=

 xmin
i if xi < xmin

i

xi if xmin
i ≤ xi ≤ xmax

i

xmax
i if xi > xmax

i

(3)

for all i = 1, . . . , n.
Using the generated persistently exciting input sequence

[ua,k,uf,k]T , the digital twin’s output response yk was
recorded using a 20 sec sampling time on a long–enough
lookahead horizon. The output signal obtained by simulation
is noiseless. As measurement deviations are in scale 102 for
temperature and 10−2 for concentrations, they are all scaled
to magnitude 100 for equal importance in identification.

The simulation of the IO response was initiated from a
steady state IO condition corresponding to the ([u?a,u?f ]T , y?)
pair. For identification the excited dynamics around the
outlined steady state was considered which is represented
by the ([ua,k − u?a,uf,k − u?f ]T , yk − y?) IO data pair. For
example, input data of three different fuel characteristics used
for identification is shown in Figure 3.

B. LTI model identification

We now have a set of data with m inputs and p outputs.
Subspace identification method MOESP is well suited for
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Fig. 4. Comparison of one Hotloop and LTI-model output. The dashed
vertical line indicates amount of data (starting from time 0) was used is
subspace identification of selected model.

model identification directly from deterministic multiple–
input multiple–output data [15]. The applied computational
algorithm for MOESP is presented in [16].

Following the MOESP algorithm, a finite set of Han-
kel matrices can be made from obtained data set. Dif-
ferent data matrices follow from heuristic selection of
parameters n ∈ Z+ (the number of system states),
l ∈ Z+ (the size of extended observability ma-
trix Ol =

[
C CA . . . CAl−1]T ), and N ∈

Z+ (the size of extended controllability matrix CN =[
B AB . . . AN−1B

]
).

The state dimensions can be freely chosen, f.ex. n ∈
{2, 3, . . . , 20}. The extended observability matrix must be
strictly bigger than state dimension (l > n) and Hankel
matrix is recommended to have at least twice as many
columns (l) as rows (mN and pN for input- and output
Hankels respectively) for MOESP subspace identification.
With different combinations, a few hundred different LTI
system realizations are found. To select the most suitable
model from the set of found realizations, following criteria
is used:
• model is stable, i.e. max ‖λ(A)‖ < 1, where function
λ(.) returns eigenvalues of argument matrix,

• system is numerically observable, i.e. minσ(O) >
10−6, where function σ(.) returns singular values of
argument matrix, and

• produces the most accurate LTI–model outputs ŷ, i.e.
minimizes

∑
‖yk − ŷk‖

With this data and criteria, we selected LTI model with
seven state dimensions. Even with such low dimension of
state space (which is beneficial for computational reasons),
the input–output dynamics of found LTI model are visually
indistinguishable compared to original data (Fig. 4). How-
ever, with further numerical analysis it can be noted that the
estimation is biased, see for example Fig. 5. At later stages of
soft sensor development this bias may prove to be a problem.

III. KALMAN FILTER

Having identified the LTI system, we would now like to
use it for estimating system inputs uf . Kalman Filter is well
established method of estimating unknown states of a system
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Fig. 5. The statistical distribution of the error between the measured and
LTI model output xO2. Normal distribution curve has been fitted to the data,
and mean is marked with vertical line.



with only measurement data, no state information is needed.
To implement it, we need to augment the inputs of interest
into the states of the system, as done in (4). Note, we have
omitted the negligible D matrix.

[
xk+1

uf,k+1

]
=

[
A Bf

0 I

] [
xk

uf,k

]
+

[
Ba

0

]
ua,k

ŷk =
[
C 0

] [ xk
uf,k

]
(4)

where we have used u =
[
ua uf

]T
and, correspondingly

B =
[
Ba Bf

]
. Augmentation requires an assumption of

state dynamics, we have used identity matrix I to achieve
accurate steady–state (uf,k+1 = uf,k).

As was seen in Fig. 5, the LTI estimation of original
nonlinear system is biased. Even though Kalman Filter is
constructed on the assumption of zero–mean errors, the
biased error would not cause significant estimation error for
systems with high degree of observability. But low degree of
observability magnifies the bias into large estimation error. In
this case, the augmented system (4) has lowest observability
gramian singular value in the magnitude 10−7, and the
second lowest in 10−3, making Kalman Filter very sensitive
to bias.

The results of fuel characteristics estimation with soft
sensor implementing Kalman Filter are shown in Fig. 6. Error
of estimation is defined as uf,k− ûf,k and presented as per-
centage compared to total deviation in the value of each fuel
characteristic (max {ui,1, . . . , ui,N}−min {ui,1, . . . , ui,N}).
With visual inspection some inputs are estimated well, but
sensitivity to weakly observable subspace is confirmed.

IV. INTERNAL GOVERNOR

Also another fuel characteristics estimation method, based
on internal governor, is proposed for soft sensor implemen-
tation. It will use full state information, but is expected to
handle biased model error. Idea is to find such fuel charac-
teristics input vector that matches the LTI model outputs to
measured outputs. The implementation follows these steps:

1) Augment the state of identified model with integrator.
2) Create closed–loop state controller using fuel charac-

teristics as feedback.
3) Find proper gain matrix K for state feedback.
Augmenting the state space with integrator dynamics guar-

antees reaching of reference value in steady–state, assuming
the system is stable. We introduce additional state vector
z and modify the state space model in such a way that in
steady–state the LTI-model output vector ŷ = Cx is equal
to the output obtained from Hotloop simulation y (i.e. the
reference for the integrator), as in (5).

[
xk+1

zk+1

]
=

[
A 0
−C I

]
︸ ︷︷ ︸

Ã

[
xk
zk

]
︸ ︷︷ ︸
x̃k

+

[
Ba

0

]
ua,k +

[
Bf

0

]
︸ ︷︷ ︸

B̃

uf,k +

[
0
I

]
yk

ŷk =
[
C 0

] [xk
zk

]
(5)

Internal governor approach is based on taking steady–
state input vector u∗f,k as fuel characteristics estimate. This
obviously makes sense only if the steady–state input vector
u∗f,k is unique. Uniqueness can be verified by solving LTI
system for steady–state, i.e. xk+1 = xk, which leads to linear
problem of format (6).

u∗f,k = (C(I−A)−1Bf )
†b (6)

, where vector b = ŷk −C(I−A)−1Baua,k.
If the rank of the pseudoinversed matrix equals the size of

unknown vector, the solution is unique. For this application
this condition is satisfied, and we can proceed. The smallest
eigenvalue is in magnitude 10−5, though, reflecting the
continuing difficulty of weak observability.

Next we will close the loop by implementing static state
feedback. The controlled input will be the fuel characteristics
input vector uf,k =

[
K1 K2

]
x̃k, where matrix K is the

state gain matrix. It is divided into two segments (with respect
to original state variables and the new integrator variables)
for notational clarity. When this is inserted into (5), we get
(7).

[
xk+1

zk+1

]
=

[
A + BfK1 BfK2

−C I

] [
xk
zk

]
. . .

+

[
Ba

0

]
ua,k +

[
0
I

]
yk

ŷk =
[
C 0

] [xk
zk

]
(7)

The final task is to choose the matrix K in such way that
the homogenous part of integrator augmented closed–loop
system is stable. This can be achieved by pole placement
method. We perform similarity transformation with matrix
T to obtain diagonal matrix Λ, where the diagonal values
are the set (stable) poles of the closed–loop system (8).

T−1(Ã+ B̃K)T = Λ (8)

where Ã and B̃ are given, Λ contains the set poles, K can
be freely selected and T is the unknown.

With respect to the unknown matrix T , (8) can be written
in Sylvester equation form (9).

ÃT − TΛ = −B̃ KT︸︷︷︸
G

(9)

where matrix G can be chosen arbitrarily.
Sylvester equation (9) will have an invertible solution T

if and only if the following conditions are satisfied:
• (Ã,B̃) is controllable.
• (Λ,G) is observable.
• Ã and Λ have no common eigenvalues.
The first condition can be added as selection criteria when

choosing the most suitable LTI model in identification stage,
the latter two can be checked while selecting the set pole
locations Λ and the arbitrary matrix G.
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Fig. 6. Soft sensor performance with Kalman Filter on test data set. For
each characteristic, 25th and 75th percentile of error variation are lower-
and upper edges of the box, center line of the box is the median, extreme
errors are marked as whiskers, and possible outliers as separate crosses.

When solution to Sylvester equation is found, static state
feedback gain K can be directly back calculated from
K = GT−1 (found T is known to be invertible) and state
space presentation of (7) can be completed.

Closed–loop system’s dominant time–constant is set to be
smaller than simulation timestep (sampling time). Therefore
x̃k+1 = x̃k for internal governor soft sensor within each
step k. The used fuel characteristics input uf,k = Kx̃k is
recorded as the soft sensor output.

Soft sensor performance of estimating fuel characteristics
with internal governor on verification data is shown in Fig. 7.
This is the same visualization as was done for implementation
with Kalman Filter earlier in Fig. 6. Clearly better mean
value for estimation is reached, while standard deviation has
increased slightly; values for these statistical parameters are
presented in Table II for comparison. Soft sensor performance
continues to vary for different characteristics, following the
observability of modes. A section of verification data and
corresponding internal governor –method estimates for all
seven fuel characteristics is shown in Fig. 8.

V. SUMMARY

In this paper, a soft sensor for estimating the elementary
chemical composition of the combusted fuel in thermal

TABLE II
MEANS AND STANDARD DEVIATIONS OF FUEL CHARACTERISTICS

ESTIMATION ERROR IN KALMAN FILTER– AND INTERNAL GOVERNOR
APPROACHES.

H2O ash C H N S O
KF mean 0.35 0.42 -0.31 -0.04 -0.13 0.01 -0.27
IG mean 0.00 0.11 -0.08 0.01 -0.26 0.01 0.16
KF std 0.37 0.31 0.27 0.06 0.19 0.05 0.31
IG std 0.46 0.51 0.46 0.09 0.19 0.08 0.48
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Fig. 7. Soft sensor performance with internal governor procedure on test
data set. 25th and 75th percentile, median, extreme points and outliers are
marked as in Fig. 6.

power plant was developed. The application was a circulating
fluidized bed furnace. Subspace identification method was
applied to approximate the (nonlinear) combustion dynamics
with a linear time–invariant system from IO–data. Then two
separate methods were used to complete the soft sensor:

1) Kalman filter approach: Reformulate the obtained LTI
model by augmenting the elementary chemical compo-
sition of fuel from model inputs to model states, state
estimate with the augmented model.

2) Internal governor approach: Reformulate the obtained
LTI model by augmenting an integrator and static state
controller. Find the unique fuel input that produces the
measured outputs and use it as the estimate.

Proposed fuel characteristics soft sensors were tested with
simulated data. All simulations were noiseless. Kalman Filter
approach was seen to be inaccurate due to biased modeling
error magnification by weak observability. Internal governor
approach was able to produce better results in visual inspec-
tion, but same curse of weak observability was still seen.

For practical plant operation purposes, the overall high/low
trend information of fuel characteristics is sufficient. Fuel
characteristics can be estimated within trend accuracy with
the proposed soft sensors. Sufficiently accurate results are
produced in simulation environment. Further analysis of
establishing the criteria for choosing the best LTI state space
model representation could improve performance of proposed
soft sensor.

Estimation of fuel characteristics can be used to minimize
the undesired, power plant efficiency reducing phenomena.
Future plan is to apply this method online in real plant.
This online estimator is envisioned to rely on subspace
identification procedure of Hotloop simulated data with sim-
ilar process conditions as the plant is currently running in.
Outstanding problems for such application include taking
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Fig. 8. The real- and estimated value of the seven fuel characteristic sorted
from most accurate to least accurate.

measurement noise characteristics into account and matching
the measurements points of the plant and the simulator from
both software– and instrumentation hardware point–of–view.

REFERENCES

[1] Makkonen, P., “Foster Wheeler CFB with the New INTREX™ Super-
heater,” VGB POWERTECH, Volume 80, Issue 2, pp.30–34, 2000.

[2] Richard W. Bryers, “Fireside slagging, fouling, and high-temperature
corrosion of heat-transfer surface due to impurities in steam-raising
fuels,” Progress in Energy and Combustion Science, Volume 22, Issue
1, pp. 29–120, 1996.

[3] L-E. A.Mand, B. Leckner, “The role of fuel volatiles for the emission
of nitrogen oxides from fluidized bed boilers a comparison between
designs,” Twenty-Third Symposium (International) on Combustion, pp.
927–933, 1990.

[4] Piispanen M.H.,Niemela M.E.,Tiainen M.S.,Laitinen R.S., “Prediction
of bed agglomeration propensity directly from solid biofuels: A look
behind fuel indicators,” Energy and Fuels, Volume 26, Issue 4, pp.
2427–2433, April 2012

[5] Anita Pettersson, Maria Zevenhoven, Britt-Marie Steenari, Lars-Erik
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