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Abstract— This paper presents a path following controller 

that is suitable for asymmetrical planar robots with significant 

mass and limited motor torques. The controller is resistant 

against environmental forces, and inaccurate estimates of 

robot’s inertia, by estimating their effects with Unscented 

Kalman Filter. The controller outputs wheel torque commands 

which take in account the motor torque limits and given relative 

priority of internal control elements. The method presented is 

thoroughly explained and the simulation results demonstrate 

the performance of the controller. 

I. INTRODUCTION 

Differentially driven nonholonomic wheeled robots are the 
most common type of mobile robots. Their applications are 
widely spread across many industries such as service industry, 
agriculture, and defense. Although they somewhat lack in 
mobility when compared, for example, to 
pseudo-omnidirectional robots such as [1-4], differentially 
driven nonholonomic robots are in most cases more robust and 
affordable. In practice, most of these systems are provided 
with velocity control interfaces, such as the ROS differential 
drive controller interface [5] or those in the commercially 
available Pioneer and Khepera robots. Their performance, 
however, can be very restricted if full system dynamics, such 
as asymmetrical inertias at high-speed movements and 
external environmental factors (mud, rocks, etc.), are not 
appropriately considered.  

Vast volumes have been written about the control of 
nonholonomic wheeled mobile robots (for a recent review of 
path tracking control, see, for example, [6] and references 
therein). In early studies, most of the proposed control 
methods are on the kinematic level with limited regard for 
deeper dynamics. These kinematic controllers are based on the 
assumption that there is an ideal dynamic controller attached 
to the robot giving all the necessary velocities. In practice, it is 
hard to accomplish this kind of ideal dynamic controller and 
thus kinematic controllers are applicable only on the cases 
where the robot has low mass and its actuators are relatively 
high-powered. Of those controllers that involve deeper 
dynamics, many rely on the assumptions of centered mass, 
symmetrical inertia, known environmental forces and/or 
unchanging maximum torque the actuators can produce. 
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During recent years, there has been a considerable interest 
in improving the trajectory tracking control of wheeled mobile 
robots [7-14]. A wide variety of methods have been proposed, 
including back stepping approach [9, 11], model predictive 
control [12], disturbance observer-based control [13, 14], 
neural network-based control [15], prescribed performance 
bound-based control [10] and two time-scale filtering 
technique [9], just to name only a few. Although there has 
been a substantial progress on this subject, it can still be 
argued that in the presence of uncertainties, the precise 
tracking control of a mobile robot is an open question. This is 
mainly due to the fact that the dynamics of a mobile robot can 
be highly nonlinear. To gain a practical insight into the 
problem, one could consider such real world scenarios where 
the robot’s total mass and its distribution are only 
approximately known and in some cases time varying, for 
example, because of load and unload processes or intentional 
or unintentional movements of the load. 

To improve the trajectory-tracking performance, Martins 
et al. [16] proposed a velocity-based dynamical model that 
enables to compensate for system dynamics in 
velocity-controlled systems. Their approach also allows 
adaptation if physical parameters (i.e. center of mass, moment 
of inertia, torque of motors, etc.) are initially unknown or they 
change. Their model is not, however, able to account for 
asymmetrical weight distribution or torque limits of the 
motors. For torque-controlled systems, Ko [17] proposed 
bounded controllers that are able to account for torque limits 
and yet provide asymptotic convergence. However, the 
dynamical uncertainties are not considered. In [18], Onat and 
Ozkan proposed a multiple model approach to account for 
unknown and changing system dynamics. The benefit 
compared to the single adaptive dynamical model approaches, 
such as in [6], follows from the faster parameter convergence. 
This is due to the vast number of initial parameter candidates 
that cover the parameter space. Our approach, in the present 
study, is quite similar. However, we relied on a Bayesian 
approach, i.e., we used Unscented Kalman Filter (UKF) [19] 
techniques together with a more simplified dynamical model 
whose possible inaccuracies in the mass and its distribution  
are  compensated for by the UKF as it simply “sees” their 
effect as additional external forces that affect  the robot. 

In this paper, we propose a conceptually simple path 
following controller that can be used to control differentially 
driven mobile robots whose force to mass ratio is too low for 
kinematic controllers. In addition, as shown in the simulations, 
the controller is resistant against inaccurately modeled and 
changing inertia, changing environmental forces, and 
changing maximum wheel motor torques. Desired 
acceleration components can be given relative priorities and 
the controller outputs are wheel torque commands that take in 
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account these priorities and the limited maximum motor 
torques. The paper is organized as follows: Section II 
introduces the used robot model. In Section III, the controller 
is thoroughly described. Section IV shows the simulations and 
the conclusions are given in Section V.  

II. ROBOT MODEL AND MATHEMATICAL NOTATION 

 
Figure 1 shows the planar robot model used in the 

simulations. The environment is planar and has an inertial 
coordinate frame {G} attached to it. The robot body is rigid 
and non-deformable, has two identically oriented coordinate 
frames, {B} and {C}, attached to it. {B} is located between the 
wheels and {C} is located distance L away along {B}’s x-axis. 
The wheels are rigid, non-deformable, fixed, and their contact 
areas to the ground are approximated as points. Powered  
wheels are located on {B}’s y-axis and there is an unpowered 
castor wheel located at the rear. {T} is the target traversing on 
the given parametric path. It is oriented tangentially to the 
current path point and has an attached frame {H} located 
distance L away along its x-axis. For any given time-instant, 
and for each frame, there exists an inertial coordinate frame 
that has the same location and orientation, e.g., for any given 
time instant there is an inertial frame {BI} that coincides with 
{B}. 

 

Figure 1.  Model of the robot. 

Unless explicitly noted otherwise, the notation used in this 

paper is of the form 𝑟𝐴,𝑇
 

𝐵 
𝐶 , where r is the scalar or vector 

representing the property, A is the object with this property, B 
is the frame the property is relative to, C is the frame in which 
the property is expressed in and T is additional info. For the 
sake of readability, B is omitted if the property is relative to 
{G}, C is omitted if the property is expressed in {G} and T is 
only used when additional clarification is needed. Path 
distance-wise (s-wise) derivatives are marked with prime 
(e.g., 𝛼′) and time-wise derivatives are marked with dot (e.g., 

𝜙̇𝑊𝑖 ). All the angles are in the range (-π, π]. {T}’s path 
velocity 𝑣𝑇 is always non-negative.  

The velocities, forces and masses are expressed using 
planar spatial vector algebra (SVA), as described by 
Featherstone in [20] and [21]. A spatial motion vector (SMV) 
describing the total momentary velocity of the robot in {BI} is 

 𝒗̂𝐵 
 

  

 = [

𝛼̇𝐵

𝑣𝐵𝑥

𝑣𝐵𝑦

] = [

𝛼̇𝐵

𝑥̇𝐴 
𝐵𝐼 + 𝑦𝐴 

𝐵𝐼 𝛼̇𝐵

𝑦̇𝐴 
𝐵𝐼

 

 
− 𝑥𝐴 

𝐵𝐼 𝛼̇𝐵

] = [
𝛼̇𝐵

𝑣𝐵 
 

0
], (1) 

where 𝛼̇𝐵 is the rotational velocity, ( 𝑥̇𝐴 , 𝑦̇𝐴 
𝐵𝐼

 
𝐵𝐼 ) is a known 

velocity of some body-fixed point and ( 𝑥𝐴 , 𝑦𝐴 
𝐵𝐼

 
𝐵𝐼 )  is the 

location of that point in {B}. Robot’s acceleration SMV is 
simply the element-wise derivative 

𝒂̂𝐵 
 

  

 = [

𝛼̈𝐵

𝑎𝐵𝑥

𝑎𝐵𝑦

] = [

𝛼̈𝐵

𝑥̈𝐴 
𝐵𝐼

 

 
+ 𝑦̇𝐴 

𝐵𝐼 𝛼̇𝐵 + 𝑦𝐴 
𝐵𝐼 𝛼̈𝐵 

𝑦̈𝐴 
𝐵𝐼 − 𝑥̇𝐴 

𝐵𝐼
 

 
𝛼̇𝐵  − 𝑥𝐴 

𝐵𝐼 𝛼̈𝐵

] =  [
𝛼̈𝐵

𝑎𝐵 
  

0
]. (2) 

With a differentially driven platform that has zero lateral 
velocity, the elements of 𝑣𝐵𝑦 , and the elements 𝑎𝐵𝑦 , cancel 

out and the SMVs simplify to their right side forms. A spatial 
force vector (SFV) representing a wrench experienced by the 
robot as expressed in {B} is 

 𝒇̂𝐵 
= [

𝜏𝐵

𝑓𝐵𝑥

𝑓𝐵𝑦

] = [

𝜏 + 𝑥𝐴𝑓𝑦 −  𝑦𝐴 𝑓𝑥

𝑓𝑥

𝑓𝑦

], (3) 

where 𝜏  is a free force couple and (𝑓𝑥, 𝑓𝑦) is a linear force that 

goes through a point (𝑥𝐴
 , 𝑦𝐴

 ). Spatial inertia matrix of the 
robot expressed at {B} is 

 𝑰̂𝐵 = [
𝐼𝑜 + 𝑚(𝑥𝑜

2 + 𝑦𝑜
2) −𝑚𝑦𝑜 𝑚𝑥𝑜

−𝑚𝑦𝑜 𝑚 0
𝑚𝑥𝑜 0 𝑚

], (4) 

where  𝐼𝑜 is the robot’s  rotational inertia at center of mass 
(COM), m is the mass and (𝑥𝑜

 , 𝑦𝑜
 ) is the location of COM as 

measured in {B}. The 3x3 planar inertia matrix is analytically 
invertible to  

 𝜱̂𝐵 =
1

𝐼𝑜−2𝑚𝑥𝑜𝑦𝑜
[

1 𝑦𝑜 −𝑥𝑜

𝑦𝑜
𝐼𝑜

𝑚
− 𝑥𝑜

2 −𝑥𝑜𝑦𝑜

−𝑥𝑜 −𝑥𝑜𝑦𝑜
𝐼𝑜

𝑚
− 𝑦𝑜

2

]. (5) 

The force equation of the robot as expressed in SVA is  

 𝒇̂𝐵 = 𝑰̂𝐵𝒂̂𝐵 + 𝒗̂𝐵 
 ×∗ 𝑰̂𝐵 𝒗̂𝐵  

 ,  (6) 

where symbol  ×∗  is the cross-product operator between a 
SMV and a SFV, which in the planar case results in 

 𝒗̂𝐵 ×∗=  [

0 −𝑣𝐵𝑦 𝑣𝐵𝑥

0 0 𝛼̇𝐵

0 𝛼̇𝐵 0
]. (7) 

III. PATH CONTROLLER 

The goal of the controller is to match the states of  {B} and 
{T} using limited torque commands.  The steps to do this are 
the following. Step1 (III.A); update position of {T} and path 
parameters. Step2 (III.B); adjust velocity of {T}. Step 3 
(III.D); determine low priority acceleration SMV. Step 4 
(III.E); determine high priority acceleration SMV. Step 5 
(III.F); using an estimate of environmental SFV, calculate the 
total SFV needed for the robot to have the high priority 
acceleration SMV of step four. Step 6 (III.G); calculate how 
much there is left in the limited motor force pool after the 
realization of the SFV of step five. Step 7 (III.G); calculate 
how the low priority SMV of step three needs to be scaled for 
it to be feasible with what is left of the force pool. Step 8 
(III.G); give final torque commands to motors. Step 9 (III.H); 
use UKF to estimate the current environmental forces, which 



  

includes the effects of the robot’s non-perfect mass estimates, 
for the next control cycle. 

A. Target’s Path and Orientation 

The following method for calculating {T}’s momentary 
path is the one introduced in [22] and used in authors’ 
previous work [23].  

1) Offline Preparation 
The path is described by a parametric Beziér spline 𝑩(𝑢) =

[𝑥𝑇(𝑢) 𝑦𝑇(𝑢)]𝑇 , 𝑢 ∈ [0,1] . Its coordinate values, their 
u-wise derivatives, its curvatures (𝑐𝑇

 =𝛼𝑇
′ ) that can derived 

from them, and the path distance s are pre-calculated and 
stored at increasing values of u, thus mapping these values of 
traversed path-distance s. As the relationship between u and s 
is highly non-linear, this mapping must be done using 
numerical integration methods, such as Legendre-Gauss. In 
this paper, 30 values of u per 1 meter of s were used.  

2) Run-time Calculations 

During the run-time, the stored values are interpolated with 

the assumption that they change nearly linearly with respect 

to the change in s which is simply the time-wise integral of 

𝑣𝑇. The interpolated u-wise derivatives are then transformed 

to distance-wise derivatives: 

 

𝑥𝑇
′ =  

𝑑𝑥𝑇

𝑑𝑠
=

𝑑𝑥𝑇

𝑑𝑢

𝑑𝑢

𝑑𝑠
,  𝑥𝑇

′′ =  
𝑑2𝑥𝑇

𝑑𝑠2 =
𝑑2𝑥𝑇

𝑑𝑢2 (
𝑑𝑢

𝑑𝑠
)

2

+
𝑑𝑥𝑇

𝑑𝑢

𝑑2𝑢

𝑑𝑠2  , 

𝑦𝑇
′ =  

𝑑𝑦𝑇

𝑑𝑠
=

𝑑𝑦𝑇

𝑑𝑢

𝑑𝑢

𝑑𝑠
,  𝑦𝑇

′′ =  
𝑑2𝑦𝑇

𝑑𝑠2 =
𝑑2𝑦𝑇

𝑑𝑢2 (
𝑑𝑢

𝑑𝑠
)

2

+
𝑑𝑦𝑇

𝑑𝑢

𝑑2𝑢

𝑑𝑠2 ,  

𝑐𝑇
′ =

𝑑𝑐𝑇

𝑑𝑠
=

𝑑𝑐𝑇

𝑑𝑢

𝑑𝑢

𝑑𝑠
= 𝛼𝑇

′′, 
𝑑𝑢

𝑑𝑠
= ((

𝑑𝑥

𝑑𝑢
)

2

+ (
𝑑𝑦

𝑑𝑢
)

2

)
−0.5

. (8) 

 

B. Target’s Path Velocity 

Path velocity of the virtual target point {T} is determined by 
the x-distance of {C} as “seen” by {H}   

 𝑣𝑇 = {
 0, (𝑣𝐵 < 0) 𝑜𝑟 (𝑘𝑇,𝑣 𝑥𝐶𝐻 

𝐻 < −1)

𝑣𝐵(1 +  𝑘𝑇,𝑣 𝑥𝐶)𝐻 
𝐻 , 𝑒𝑙𝑠𝑒

 , (9) 

where 𝑣𝐵is the robot’s measured forward velocity, 𝑘𝑇,𝑣 is a 

positive tuning parameters and 

 

𝑥𝐶𝐻 
𝐻𝐼 = ( 𝑥𝐶 −  𝑥𝐻

 ) 
 𝑐𝑜𝑠(𝛼𝑇 ) +  ( 𝑦𝐶 −  𝑦𝐻

 ) 
 𝑠𝑖𝑛(𝛼𝑇 ), (10) 

𝑥𝐻 
 = 𝑥𝑇

 
 
 +  𝐿𝑐𝑜𝑠(𝛼𝑇 ), 𝑦𝐻 

 = 𝑦𝑇
 

 
 +  𝐿𝑠𝑖𝑛(𝛼𝑇 ), (11) 

𝑥𝐶 
 = 𝑥𝐵

 
 
 +  𝐿𝑐𝑜𝑠(𝛼𝐵 ), 𝑦𝐶 

 = 𝑦𝐵
 

 
 +  𝐿𝑠𝑖𝑛(𝛼𝐵 ) .  (12) 

Effectively, the higher the positive value of 𝑥𝐶 𝐻 
𝐻𝐼  is, the faster 

{T} moves on its path to “catch up”. Likewise, the higher the 
absolute value of negative 𝑥𝐶𝐻 

𝐻𝐼  is, the slower {T} moves, or 
even stops, to “wait”. This way, small position errors are 
compensated by the virtual {T}, not by the actual robot.   

C. Acceleration Priorities 

The choices how to divide the acceleration commands 

between lower and higher priority ones, and the exact 

formulation of these commands, presented in this paper are 

only examples that can be modified according to the scenario. 

However, the following idea should be retained when a fixed 

path is used. If the poses of {B} and {T} are identical, and 

𝛼̇𝐵 = 𝛼𝑇
′ 𝑣𝐵, then the rotational acceleration the robot needs 

to stay on the path with the current forward velocity and 

acceleration is  

 𝛼̈𝐵 = 𝛼𝑇
′′𝑣𝐵

2 +  𝛼𝑇
′  𝑎𝐵. (13) 

As 𝑣𝐵
  can not be instantaneously changed, the element 𝛼𝑇

′′𝑣𝐵
2  

should given priority, at least during non-emergency 
operation, as not actuating it would cause the robot to drift 
from a path whose curvature is currently changing. Element 
𝛼𝑇

′  𝑎𝐵 , whose analogue is the rotational acceleration which 
happens when a car accelerates on a circular track, should be 
kept as low priority as 𝑎𝐵 can be controlled with proper torque 
commands. 

D. Low Priority Accelerations 

In the simulations, the following sigmoid function was used 
to calculate the robots desired forward acceleration 

𝑎𝐵,𝑣𝑐 = 2𝑎𝐵,𝑚𝑎𝑥 (−
1

2
+ (1 + 𝑒 

−𝑘𝐵,𝑣(𝑣𝐵,𝑐𝑙−𝑣𝐵))
−1

), (14) 

where 𝑎𝐵,𝑚𝑎𝑥  is the robot’s maximum allowed forward 

acceleration, 𝑣𝐵,𝑐𝑙  is the robot’s desired  forward velocity, 

𝑣𝐵is the robots measured forward velocity, and  𝑘𝐵,𝑣 a tuning 

parameter. This equation could incorporate more info such as 
knowledge of upcoming path curvature or obstacle proximity, 
but such additions are outside the scope of this paper. Forward 
acceleration command 𝑎𝐵,𝑣𝑐  would cause 𝛼𝑇

′  𝑎𝐵,𝑣𝑐  angular 

acceleration and so the final angular acceleration command 
caused by 𝑎𝐵,𝑣𝑐  is 

 𝛼̈𝐵,𝑣𝑐 =
𝛼𝑇

′ 𝑎𝐵,𝑣𝑐

1+√(𝑥𝐵−𝑥𝑇)2+(𝑦𝐵−𝑦𝑇)2
, (15) 

where the function in the denominator is used to suppress the 
effect of the path on the robot when the robot is away from the 
target. The final low priority acceleration is now 

  𝒂̂𝐵,𝑙𝑝 
 

  

 = [

𝛼̈𝐵,𝑙𝑝

𝑎𝐵𝑥,𝑙𝑝

𝑎𝐵𝑦,𝑙𝑝

] = [
𝛼̈𝐵,𝑣𝑐

𝑎𝐵,𝑣𝑐

0

]. (16) 

As 𝒂̂𝐵,𝑙𝑝 is of a lower priority, it will be scaled if so required 

by the limited wheel torques. How this happens is detailed in 
the later sections. 

E. High Priority Accelerations 

1) Caused by Path 

The angular acceleration needed to keep the robot on a path of 

changing curvature is 𝛼𝑇
′′𝑣𝐵

2 , so the priority acceleration 

command based on the changing curvature, and error in the 

location, is 

 𝛼̈𝐵,𝑐𝑐 =
𝛼𝑇

′′𝑣𝐵
2

1+√(𝑥𝐵−𝑥𝑇)2+(𝑦𝐵−𝑦𝑇)2
. (17) 

 

2) Other Priority Accelerations 
Depending on the scenario, various acceleration 

commands can be given priority. In the simulations of this 
paper, orientation correction, 𝛼̈𝐵,𝑒𝑐, is given priority as correct 

orientation is critical for path following. The target orientation 
of the robot is facing toward {H}, i.e., 

  𝛼𝐵,𝑡𝑟𝑔𝑡 
 = atan (

𝑦𝐻−𝑦𝐵

𝑥𝐻−𝑥𝐵
) +

𝜋

2
−

𝜋

2
 

𝑥𝐻−𝑥𝐵

|𝑥𝐻−𝑥𝐵|
 (18) 



  

and it’s rate of change is 

 𝛼̇𝐵,𝑡𝑟𝑔𝑡 
 =  

( 𝑦̇𝐻 
 −𝑦̇𝐵)(𝑥𝐻−𝑥𝐵)− ( 𝑥̇𝐻 

 −𝑥̇𝐵)(𝑦𝐻−𝑦𝐵)

(𝑥𝐻−𝑥𝐵)2+(𝑦𝐻−𝑦𝐵)2 , (19) 

 𝑥̇𝐻 
 = 𝑥𝐻

′ 𝑣𝑇 = ( 𝑥𝑇
′

 
  −  𝑐𝑇

 𝐿𝑠𝑖𝑛(𝛼𝑇 ))𝑣𝑇 , (20) 

 𝑦̇𝐻 
 = 𝑦𝐻

′ 𝑣𝑇 = ( 𝑦𝑇
′

 
 + 𝑐𝑇

 𝐿𝑐𝑜𝑠(𝛼𝑇 ))𝑣𝑇. (21) 

The desired angular acceleration for minimizing both 
𝛼𝐵,𝑡𝑟𝑔𝑡 

  and 𝛼̇𝐵,𝑡𝑟𝑔𝑡is produced by a critically damped virtual 

spring 

  𝛼̈𝐵,𝑒𝑐 = −
𝐾c( 𝛼̇𝐵  

 − 𝛼̇𝐵,𝑡𝑟𝑔𝑡 
 )+𝐾𝐾( 𝛼𝐵 

 −𝛼𝐵,𝑡𝑟𝑔𝑡 
 

 
)

𝐾𝑀
, (22) 

i.e., a PD-controller whose parameters are selected so that 

𝐾c
2 = 4𝐾𝑀𝐾𝐾 . This orientation correction method is 

primarily indented for small scale pose errors but works also 
for larger scale errors. The total high priority acceleration 
SMV is therefore now  

  𝒂̂𝐵,ℎ𝑝 
 

  

 = [

𝛼̈𝐵,ℎ𝑝

𝑎𝐵𝑥,ℎ𝑝

𝑎𝐵𝑦,ℎ𝑝

] = [
𝛼̈𝐵,𝑐𝑐 + 𝛼̈𝐵,𝑒𝑐

0
0

]. (23) 

Other likely candidates for priority accelerations, among 
others, are those needed for emergency stops and immediate 
obstacle avoidance. 

F. High Priority Force Allocation 

For the robot to retain its current 𝒗̂𝐵 
 , the 

𝒗̂𝐵 
 ×∗ 𝑰̂𝐵 𝒗̂𝐵  

 portion of equation (6) and environmental forces 

𝒇̂𝐵,𝑒𝑛𝑣  (whose formation is described later) need to be 

compensated for. In addition, force needs to be spent to 
produce high priority acceleration 𝒂̂𝐵,ℎ𝑝 

 . The total SFV of 

these high priority forces is therefore   

𝒇̂𝐵,ℎ𝑝 = [

𝜏𝐵,ℎ𝑝

𝑓𝐵𝑥,ℎ𝑝

𝑓𝐵𝑦,ℎ𝑝

]=−𝒇̂𝐵,𝑒𝑛𝑣 + 𝒗̂𝐵 
 ×∗ 𝑰̂𝐵 𝒗̂𝐵  

 + 𝑰̂𝐵 𝒂̂𝐵,ℎ𝑝 
 . (24) 

With differentially driven platforms, 𝑓𝐵𝑦,ℎ𝑝 is produced by the 

lateral ground-wheel friction and is therefore disregarded. 

Production of  𝒇̂𝐵,ℎ𝑝   requires the following forces from the 

wheels 

𝑓𝑊1,ℎ𝑝 
 =

𝜏𝐵,ℎ𝑝 
 + 𝑓𝐵𝑥,ℎ𝑝 𝑦𝑊2 𝐵

𝐵
 
 

− 𝑦𝑊1 𝐵
𝐵 + 𝑦𝑊2 𝐵

𝐵 , 𝑓𝑊2,ℎ𝑝 
 =

𝜏𝐵,ℎ𝑝 
 + 𝑓𝐵𝑥,ℎ𝑝 𝑦𝑊1 𝐵

𝐵
 
 

𝑦𝑊1 𝐵
𝐵 − 𝑦𝑊2 𝐵

𝐵 .(25) 

 

𝒇̂𝐵,ℎ𝑝 effectively shifts the force window that is available for  

𝒂̂𝐵,𝑙𝑝  (Figure 2, left). For example, an environmental force 

(e.g., gravity when going uphill, steep bump on the ground) 
pushing against the robot allows it to have a higher negative 
value for 𝑎𝐵𝑥,𝑙𝑝 but also limits the highest possible positive 

value it can get. 

G. Acceleration Feasibility Estimation 

The wheel forces needed for 𝒂̂𝐵,𝑙𝑝, are calculated similarly 

as in the previous section 

 𝒇̂𝐵,𝑙𝑝 = [

𝜏𝐵,𝑙𝑝

𝑓𝐵𝑥,𝑙𝑝

𝑓𝐵𝑦,𝑙𝑝

]= 𝑰̂𝐵  𝒂̂𝐵,𝑙𝑝 (26) 

𝑓𝑊1,𝑙𝑝 
 =

𝜏𝐵,𝑙𝑝 
 + 𝑓𝐵𝑥,𝑙𝑝 𝑦𝑊2 𝐵

𝐵
 
 

− 𝑦𝑊1 𝐵
𝐵 + 𝑦𝑊2 𝐵

𝐵 , 𝑓𝑊2,𝑙𝑝 
 =

𝜏𝐵,𝑙𝑝 
 + 𝑓𝐵𝑥,𝑙𝑝 𝑦𝑊1 𝐵

𝐵
 
 

𝑦𝑊1 𝐵
𝐵 − 𝑦𝑊2 𝐵

𝐵 . (27) 

If the point( 𝑓𝑊1,𝑙𝑝, 𝑓𝑊2,𝑙𝑝 
 ) 

    is inside the area of shifted 

available forces (Figure 2, left), then no additional steps are 
needed as the desired acceleration is fully feasible. If that is 
not the case, additional steps need to be taken to calculate how  
𝒂̂𝐵,𝑙𝑝 needs to be scaled to be feasible.  If 𝒂̂𝐵,𝑙𝑝 is constructed 

as in section III.D, an analogy for this feasibility check is how 
a driver estimates how much acceleration is possible, or is 
controlled braking necessary, while driving on a circular track.  
From above, we get the following wheel force relation 

  𝑓𝑊2,𝑙𝑝 = −
( 𝜏𝐵,𝑙𝑝 

 + 𝑓𝐵𝑥,𝑙𝑝 
 𝑦𝑊1 𝐵

𝐵 )

( 𝜏𝐵,𝑙𝑝 
 + 𝑓𝐵𝑥,𝑙𝑝 

 𝑦𝑊2 𝐵
𝐵 )

𝑓𝑊1,𝑙𝑝. (28) 

If this relation is maintained, then the proportion between 
𝑎𝐵𝑥,𝑙𝑝  and 𝛼̈𝐵,𝑙𝑝  is also maintained. The wheel forces are 

calculated simply by finding the intersections between the 
force line and the sifted force window (Figure 2). Finding 
intersections between a line and rectangle is a simple and well 
understood problem, the details of which are therefore omitted 
from this paper. With two intersections, the one closer to the 
ideal point (𝑓𝑊1,𝑙𝑝, 𝑓𝑊2,𝑙𝑝) is selected.  This results in a scaling 

and/or sign change of  𝒂̂𝐵,𝑙𝑝, but as the linear relation between 

𝑎𝐵𝑥,𝑙𝑝 and 𝛼̈𝐵,𝑙𝑝 is maintained, the robot will not deviate from 

the path. This case will result in the saturation of one wheel’s 
force command. With no intersections, the current situation 
heavily exceeds the capabilities of the wheels, for example 
because of large environmental forces or too high cornering 
speed. In this case, the closest corner to the line is selected and 
the force commands will be saturated for both wheels, i.e., 
there is likely to be unwanted deviation in the acceleration but 
only as little as possible given the current situation. One 
intersection at the exact corner is only theoretically possible 
and would result in the same saturation of both force 
commands as above.  

 

Figure 2.  Directly feasible 𝒂̂𝐵,𝑙𝑝, portionally feasible  𝒂̂𝐵,𝑙𝑝, unfeasible 

𝒂̂𝐵,𝑙𝑝.  

The final force commands to the wheels are therefore either 
𝑓𝑊1,𝑐𝑙 

 =  𝑓𝑊1,ℎ𝑝 
 + 𝑓𝑊1,𝑙𝑝 

 , 𝑓𝑊2,𝑐𝑙 
 =  𝑓𝑊2,ℎ𝑝 

 + 𝑓𝑊2,𝑙𝑝 
  (29) 

if 𝑓𝑊1,𝑙𝑝 and 𝑓𝑊2,𝑙𝑝 were fully feasible and 

𝑓𝑊1,𝑐𝑙 
 =  𝑓𝑊1,ℎ𝑝 

 + 𝑓𝑊1,𝑓 
 , 𝑓𝑊2,𝑐𝑙 

 =  𝑓𝑊2,ℎ𝑝 
 + 𝑓𝑊2,𝑓 

  (30) 

if they were not. These forces result in the following SFV  

 𝒇̂𝐵,𝑐𝑙 
= [

𝜏𝐵,𝑐𝑙

𝑓𝐵𝑥,𝑐𝑙

𝑓𝐵𝑦,𝑐𝑙

] = [
−𝑓𝑊1,𝑐𝑙 𝑦𝑊1 𝐵

𝐵 −  𝑓𝑊2,𝑐𝑙 𝑦𝑊2 𝐵
𝐵

𝑓𝑊1,𝑐𝑙 + 𝑓𝑊2,𝑐𝑙

0

]. (31) 

H. Environmental Force Estimation for Next Control Cycle 

The environmental forces are estimated using a direct 
implementation of UKF, as described in [19] (equations 



  

7.80-7.90, using option 2) with the following values.; 𝒘̂0
 =

[0 0]𝑇 , 𝒘̂𝑘−1
 = [𝜏𝐵,𝑒𝑛𝑣 𝑓𝐵𝑥,𝑒𝑛𝑣] 𝑇 ,𝑷𝑤𝑜

 = [
𝑃𝑖𝑛𝑖𝑡 0

0 𝑃𝑖𝑛𝑖𝑡
]

 

,  

 𝑹𝑘−1
𝒓 = [

𝑃𝑁𝐶 0
0 𝑃𝑁𝐶

]
 

, 𝑹𝑘
𝒆 = [

𝑀𝑁𝐶 0
0 𝑀𝑁𝐶

]
 

, 𝒙𝑘
 =

[
𝜏𝐵,𝑐𝑙

𝑓𝐵𝑥,𝑐𝑙
] , 𝒃̂ = 𝒗̂𝐵 

 ×∗ 𝑰̂𝐵 𝒗̂𝐵  
 , and 𝑮(𝒙𝑘

 , 𝒘̂𝑘
− ) = [𝜱̂𝑩(𝒇̂𝐵,𝑐𝑙 +

𝒇̂𝐵,𝑒𝑛𝑣 − 𝒃̂ )]
2𝑡𝑜𝑝

 ,  with “2top” subscript indicating that only 

the top 2 values of the vector are used. The estimated 
environmental SFV  

 𝒇̂𝐵,𝑒𝑛𝑣 
= [

𝒘̂𝑘
 

0
] = [

𝜏𝐵,𝑒𝑛𝑣

𝑓
𝐵𝑥,𝑒𝑛𝑣

𝑓
𝐵𝑦,𝑒𝑛𝑣

] (32) 

is used during the next control cycle. The UKF also effectively 
compensates for model inaccuracies, such as incorrect robot 
inertia estimates, by simply estimating their effect as part of 

the 𝒇̂𝐵,𝑒𝑛𝑣.  

 

IV. SIMULATIONS 

A. Simulation Setup 

The simulations shown in this section were done with V-REP 
simulator [24] using the Vortex [25] physics-engine plugin. 
The control cycle was 10ms and the internal time-step of the 
dynamics engine was the default 5ms. The robot was 
composed of two 16kg wheel modules attached to 10kg rigid 
cuboid frame and it carried a non-centrally positioned 28kg 
fixed payload. The robot also had a free-turning caster wheel 
whose dynamics were not considered in the controller, and 
thus its effects, along with the effects of the wheels’ rotational 
inertia and exact wheel-ground contact interaction, on the 
robot’s dynamics were intentionally left as modeling errors for 
the UKF to estimate as additional environmental forces. The 
parameters used in the simulations are summarized in Table 1.  

TABLE I.  SIMULATION PARAMETERS 

𝑥𝑜,𝑟𝑒𝑎𝑙 = −0.17𝑚 

𝑦𝑜,𝑟𝑒𝑎𝑙 = 0.10𝑚 

𝑣𝐵,𝑐𝑙 = 1 + 0.5 cos(𝑡) 

               𝑜𝑟 

𝑣𝐵,𝑐𝑙 = 1.5 + 0.5 cos(𝑡) 

𝐿 = 0.5 

𝑘𝑇,𝑣 = 1 

 𝑘𝐵,𝑣 = 2 

𝑚𝑟𝑒𝑎𝑙 = 70𝑘𝑔 

𝐼𝑜,𝑟𝑒𝑎𝑙 = 21𝑘𝑔 𝑚2 

𝑓𝑊1,𝑠𝑡𝑎𝑙𝑙 =  300𝑁 𝑜𝑟 150𝑁  

𝑓𝑊2,𝑠𝑡𝑎𝑙𝑙 = 300𝑁 𝑜𝑟 150𝑁   

𝑣𝑊1,𝑚𝑎𝑥

= 5𝑚/𝑠  

𝑣𝑊2,𝑚𝑎𝑥

= 5𝑚/𝑠  

𝑀𝑁𝐶 = 0.50 

𝑃𝑁𝐶 = 100 

𝑃𝑖𝑛𝑖𝑡 = 50 

𝛼𝑈𝐾𝐹 = 0.1 

𝛽𝑈𝐾𝐹 = 2 

𝜅𝑈𝐾𝐹 = 0 

𝐾c
 = 1 .2 

𝐾𝑀 = 0.25 

 𝐾𝐾 = 1.44 

 

For each time-instant, the maximum available force of 
each wheel is related to its stall force 𝑓𝑊𝑖,𝑠𝑡𝑎𝑙𝑙 , no-load speed  

𝑣𝑊𝑖,𝑚𝑎𝑥  and current speed 𝑣𝑤𝑖  in the following way 

 𝑓𝑊i,𝑚𝑎𝑥 = 𝑓𝑊i,𝑠𝑡𝑎𝑙𝑙 (1 −
𝑣𝑊i

𝑣𝑊i,𝑚𝑎𝑥
). (33) 

In practice, 𝑓𝑊i,𝑚𝑎𝑥  could also have additional limitations 

such as the estimated ground-wheel contact quality.  

To demonstrate how the controller compensates for 

changing payloads and inaccurate robot inertia estimates, 𝑰̂𝐵 
was manually corrupted such that initially = 0.25𝑚𝑟𝑒𝑎𝑙  , 𝐼𝑜 =
0.25𝐼𝑜,𝑟𝑒𝑎𝑙 , 𝑥𝑜 = 3𝑥𝑜,𝑟𝑒𝑎𝑙 , and 𝑦𝑜 = 3𝑦𝑜,𝑟𝑒𝑎𝑙 . After each lap 

on the test path, these values were updated such that 𝑚𝑘+1 =
2𝑚𝑘 , 𝐼𝑜,𝑘+1 = 2𝐼𝑜,𝑘 , 𝑥𝑜,𝑘+1 = (3 − 𝑘)𝑥𝑜,𝑟𝑒𝑎𝑙 , and 𝑦𝑜,𝑘+1 =
(3 − 𝑘)𝑦𝑜,𝑟𝑒𝑎𝑙 . 

B. Simulation Results 

Figure 3 shows the robot’s start position and five rounds of 
traversing (black line), a path similar to 5m wide and 10m long 
figure eight (orange line). Two setups with different force and 
velocity parameters were tested. In setup A 𝑓𝑊𝑖,𝑠𝑡𝑎𝑙𝑙 =

300𝑁, 𝑣𝐵,𝑐𝑙 = 1 + 0.5 cos(𝑡). In setup B 𝑓𝑊𝑖,𝑠𝑡𝑎𝑙𝑙 = 150𝑁, 𝑣𝐵,𝑐𝑙 = 1.5 +

0.5 cos(𝑡). With setup A the lap time was approximately 29s 
and with setup B 22s. In setup A the robot had enough 
available force to maneuver with the given velocity without 
saturating the force output of either wheel. This resulted in low 
pose error (Figure 4) that increased significantly only in laps 
four (time 88-117s) and five (time 118-146s) where the 
controller was given very corrupted inertia estimates.  

  

Figure 3.  Robot’s path of five rounds around figure eight test path. Left, 

setup A. Right setup B. 

 

 

Figure 4.  Pose error. Up, setup A. Down setup B. 

In contrast, with setup B the robot had, intentionally for 
demonstration purposes, too little available force for the given 
velocity demands, resulting in the frequent wheel force output 
saturations as seen in Figure 5. Despite this, the pose error did 
not grow excessively. The reason for this is partly visible in 
Figure 6’s differences between  𝑣𝐵,𝑐𝑙  and 𝑣𝐵 . They were 

caused by the acceleration feasibility estimation of section 
III.G which scaled 𝒂̂𝐵,𝑙𝑝 with respect to the available force in 

order to keep the robot on the path. 



  

 

 

Figure 5.  Maximum and control forces of wheels  with setup B. Up, left 

wheel. Down, right wheel. 

 

Figure 6.  Velocities with setup B. 

Figure 7 shows the estimated 𝒇̂𝐵,𝑒𝑛𝑣 with setup B case. It 

can be divided into three segments. During 0-46s, the inertia 
estimates were too small, resulting in visible oscillation, 
especially in 𝑓𝐵𝑥,𝑒𝑛𝑣 . During 44-66s, the inertia estimates were 

correct, which can be seen as fairly constant 𝑓𝐵𝑥,𝑒𝑛𝑣. Up until 

this point, the magnitude of 𝒇̂𝐵,𝑒𝑛𝑣 remained almost constant 

as the other dynamics that were not modeled, especially those 

of the castor wheel, dominated over the faulty estimate of 𝑰̂𝐵. 

After 66s, the increasingly more manually corrupted 𝑰̂𝐵began 

to have a more visible effect on 𝒇̂𝐵,𝑒𝑛𝑣, especially during the 

fifth lap starting at 88s, at which point the mass and rotational 
inertia estimates were four times their actual size and the 
COM location estimate outside the robot.  

 

Figure 7.  𝒇̂𝐵,𝑒𝑛𝑣 estimated by the UKF with setup B. 

As can be seen by comparing Figures 4 and 7, the 
performance of the controller does decrease with inaccurate 

estimate of 𝑰̂𝐵, but not excessively so because its effect simply 
becomes part of the total environmental force that is estimated 
and compensated by the controller. An additional 5 lap test 
with fixed 10cm high cuboid obstacles is shown on the left 
side of Figure 8. Apart from the obstacles the setup was 
identical to setup A except that 𝑣𝐵,𝑐𝑙 = 1.5 . The obstacle height 
and shape were selected so that the robot would not be able to 
go over them without some momentum, and the higher 𝑣𝐵,𝑐𝑙 
was used give the robot that necessary momentum. 

 In summary, Figures 3-8 demonstrate how the controller 
can produce force commands that do realize desired 
accelerations when feasible, and mitigate the occurring pose 
error when the situation exceeds the force output of the 
motors. To underline the importance of sections III.G and 
III.H, the middle of Figure 8 shows one round of the test with 
setup B, except that the environmental force was not estimated 

(i.e., 𝒇̂𝐵,𝑒𝑛𝑣 = [0,0,0]𝑇  ), and with 𝑰̂𝐵  estimation as in the 

second lap, while the right side of Figure 8 shows the original 
test with setup B, except that the feasibility estimation of 
section III.G. was not performed (i.e., always 𝑓𝑊1,𝑐𝑙 =
 𝑓𝑊1,ℎ𝑝 + 𝑓𝑊1,𝑙𝑝 , 𝑓𝑊2,𝑐𝑙 =  𝑓𝑊2,ℎ𝑝 + 𝑓𝑊2,𝑙𝑝  and commands 

exceeding wheel force limits were simply set to the properly 
signed 𝑓𝑊1,𝑚𝑎𝑥 or 𝑓𝑊2,𝑚𝑎𝑥). 

   

Figure 8.  Left, low obstacles (wheel paths also visible). Middle, no 

environmental force estimation. Right, no feasibility estimation. 

V. CONCLUSION 

This paper introduced a conceptually simple controller for 
differentially steered mobile robots of significant 
asymmetrical mass and limited motor forces. The proposed 
controller performed well in the simulations, even when the 
inertia estimates were corrupted from 25% to 400% of their 
actual values. While the proposed controller does not remove 
the need for proper trajectory planning, it is an additional 
safeguard against modeling errors and unpredictable 
environmental forces when the robot is used, intentionally or 
not, at the limits of its performance. Future work for the 
proposed controller includes field testing and various 
refinements, such as incorporating the effect of the wheel’s 
rotational inertia, extension of the controller to function with 
steerable wheels, and refining the used UKF.  
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