



Abstract— This paper presents a path following controller

that is suitable for asymmetrical planar robots with significant

mass and limited motor torques. The controller is resistant

against environmental forces, and inaccurate estimates of

robot’s inertia, by estimating their effects with Unscented

Kalman Filter. The controller outputs wheel torque commands

which take in account the motor torque limits and given relative

priority of internal control elements. The method presented is

thoroughly explained and the simulation results demonstrate

the performance of the controller.

I. INTRODUCTION

Differentially driven nonholonomic wheeled robots are the
most common type of mobile robots. Their applications are
widely spread across many industries such as service industry,
agriculture, and defense. Although they somewhat lack in
mobility when compared, for example, to
pseudo-omnidirectional robots such as [1-4], differentially
driven nonholonomic robots are in most cases more robust and
affordable. In practice, most of these systems are provided
with velocity control interfaces, such as the ROS differential
drive controller interface [5] or those in the commercially
available Pioneer and Khepera robots. Their performance,
however, can be very restricted if full system dynamics, such
as asymmetrical inertias at high-speed movements and
external environmental factors (mud, rocks, etc.), are not
appropriately considered.

Vast volumes have been written about the control of
nonholonomic wheeled mobile robots (for a recent review of
path tracking control, see, for example, [6] and references
therein). In early studies, most of the proposed control
methods are on the kinematic level with limited regard for
deeper dynamics. These kinematic controllers are based on the
assumption that there is an ideal dynamic controller attached
to the robot giving all the necessary velocities. In practice, it is
hard to accomplish this kind of ideal dynamic controller and
thus kinematic controllers are applicable only on the cases
where the robot has low mass and its actuators are relatively
high-powered. Of those controllers that involve deeper
dynamics, many rely on the assumptions of centered mass,
symmetrical inertia, known environmental forces and/or
unchanging maximum torque the actuators can produce.

V. Pitkänen is with the Biomimetics and Intelligent Systems Group,

University of Oulu, Finland. (ville.pitkanen@oulu.fi)

V. Halonen is with the Biomimetics and Intelligent Systems Group,
University of Oulu, Finland. (veikko.halonen@oulu.fi)

A. Kemppainen is with the Biomimetics and Intelligent Systems Group,

University of Oulu, Finland. (anssi.kemppainen@oulu.fi)
J. Röning is with the Biomimetics and Intelligent Systems Group,

University of Oulu, Finland. (juha.roning@oulu.fi)

During recent years, there has been a considerable interest
in improving the trajectory tracking control of wheeled mobile
robots [7-14]. A wide variety of methods have been proposed,
including back stepping approach [9, 11], model predictive
control [12], disturbance observer-based control [13, 14],
neural network-based control [15], prescribed performance
bound-based control [10] and two time-scale filtering
technique [9], just to name only a few. Although there has
been a substantial progress on this subject, it can still be
argued that in the presence of uncertainties, the precise
tracking control of a mobile robot is an open question. This is
mainly due to the fact that the dynamics of a mobile robot can
be highly nonlinear. To gain a practical insight into the
problem, one could consider such real world scenarios where
the robot’s total mass and its distribution are only
approximately known and in some cases time varying, for
example, because of load and unload processes or intentional
or unintentional movements of the load.

To improve the trajectory-tracking performance, Martins
et al. [16] proposed a velocity-based dynamical model that
enables to compensate for system dynamics in
velocity-controlled systems. Their approach also allows
adaptation if physical parameters (i.e. center of mass, moment
of inertia, torque of motors, etc.) are initially unknown or they
change. Their model is not, however, able to account for
asymmetrical weight distribution or torque limits of the
motors. For torque-controlled systems, Ko [17] proposed
bounded controllers that are able to account for torque limits
and yet provide asymptotic convergence. However, the
dynamical uncertainties are not considered. In [18], Onat and
Ozkan proposed a multiple model approach to account for
unknown and changing system dynamics. The benefit
compared to the single adaptive dynamical model approaches,
such as in [6], follows from the faster parameter convergence.
This is due to the vast number of initial parameter candidates
that cover the parameter space. Our approach, in the present
study, is quite similar. However, we relied on a Bayesian
approach, i.e., we used Unscented Kalman Filter (UKF) [19]
techniques together with a more simplified dynamical model
whose possible inaccuracies in the mass and its distribution
are compensated for by the UKF as it simply “sees” their
effect as additional external forces that affect the robot.

In this paper, we propose a conceptually simple path
following controller that can be used to control differentially
driven mobile robots whose force to mass ratio is too low for
kinematic controllers. In addition, as shown in the simulations,
the controller is resistant against inaccurately modeled and
changing inertia, changing environmental forces, and
changing maximum wheel motor torques. Desired
acceleration components can be given relative priorities and
the controller outputs are wheel torque commands that take in

Path Following Controller for Differentially Driven Planar Robots

with Limited Torques and Uncertain and Changing Dynamics

V. Pitkänen, V. Halonen, A. Kemppainen, J. Röning

account these priorities and the limited maximum motor
torques. The paper is organized as follows: Section II
introduces the used robot model. In Section III, the controller
is thoroughly described. Section IV shows the simulations and
the conclusions are given in Section V.

II. ROBOT MODEL AND MATHEMATICAL NOTATION

Figure 1 shows the planar robot model used in the

simulations. The environment is planar and has an inertial
coordinate frame {G} attached to it. The robot body is rigid
and non-deformable, has two identically oriented coordinate
frames, {B} and {C}, attached to it. {B} is located between the
wheels and {C} is located distance L away along {B}’s x-axis.
The wheels are rigid, non-deformable, fixed, and their contact
areas to the ground are approximated as points. Powered
wheels are located on {B}’s y-axis and there is an unpowered
castor wheel located at the rear. {T} is the target traversing on
the given parametric path. It is oriented tangentially to the
current path point and has an attached frame {H} located
distance L away along its x-axis. For any given time-instant,
and for each frame, there exists an inertial coordinate frame
that has the same location and orientation, e.g., for any given
time instant there is an inertial frame {BI} that coincides with
{B}.

Figure 1. Model of the robot.

Unless explicitly noted otherwise, the notation used in this

paper is of the form 𝑟𝐴,𝑇

𝐵
𝐶 , where r is the scalar or vector

representing the property, A is the object with this property, B
is the frame the property is relative to, C is the frame in which
the property is expressed in and T is additional info. For the
sake of readability, B is omitted if the property is relative to
{G}, C is omitted if the property is expressed in {G} and T is
only used when additional clarification is needed. Path
distance-wise (s-wise) derivatives are marked with prime
(e.g., 𝛼′) and time-wise derivatives are marked with dot (e.g.,

𝜙̇𝑊𝑖). All the angles are in the range (-π, π]. {T}’s path
velocity 𝑣𝑇 is always non-negative.

The velocities, forces and masses are expressed using
planar spatial vector algebra (SVA), as described by
Featherstone in [20] and [21]. A spatial motion vector (SMV)
describing the total momentary velocity of the robot in {BI} is

 𝒗̂𝐵

 = [

𝛼̇𝐵

𝑣𝐵𝑥

𝑣𝐵𝑦

] = [

𝛼̇𝐵

𝑥̇𝐴
𝐵𝐼 + 𝑦𝐴

𝐵𝐼 𝛼̇𝐵

𝑦̇𝐴
𝐵𝐼

− 𝑥𝐴

𝐵𝐼 𝛼̇𝐵

] = [
𝛼̇𝐵

𝑣𝐵

0
], (1)

where 𝛼̇𝐵 is the rotational velocity, (𝑥̇𝐴 , 𝑦̇𝐴
𝐵𝐼

𝐵𝐼) is a known

velocity of some body-fixed point and (𝑥𝐴 , 𝑦𝐴
𝐵𝐼

𝐵𝐼) is the

location of that point in {B}. Robot’s acceleration SMV is
simply the element-wise derivative

𝒂̂𝐵

 = [

𝛼̈𝐵

𝑎𝐵𝑥

𝑎𝐵𝑦

] = [

𝛼̈𝐵

𝑥̈𝐴
𝐵𝐼

+ 𝑦̇𝐴

𝐵𝐼 𝛼̇𝐵 + 𝑦𝐴
𝐵𝐼 𝛼̈𝐵

𝑦̈𝐴
𝐵𝐼 − 𝑥̇𝐴

𝐵𝐼

𝛼̇𝐵 − 𝑥𝐴

𝐵𝐼 𝛼̈𝐵

] = [
𝛼̈𝐵

𝑎𝐵

0
]. (2)

With a differentially driven platform that has zero lateral
velocity, the elements of 𝑣𝐵𝑦 , and the elements 𝑎𝐵𝑦 , cancel

out and the SMVs simplify to their right side forms. A spatial
force vector (SFV) representing a wrench experienced by the
robot as expressed in {B} is

 𝒇̂𝐵
= [

𝜏𝐵

𝑓𝐵𝑥

𝑓𝐵𝑦

] = [

𝜏 + 𝑥𝐴𝑓𝑦 − 𝑦𝐴 𝑓𝑥

𝑓𝑥

𝑓𝑦

], (3)

where 𝜏 is a free force couple and (𝑓𝑥, 𝑓𝑦) is a linear force that

goes through a point (𝑥𝐴
 , 𝑦𝐴

). Spatial inertia matrix of the
robot expressed at {B} is

 𝑰̂𝐵 = [
𝐼𝑜 + 𝑚(𝑥𝑜

2 + 𝑦𝑜
2) −𝑚𝑦𝑜 𝑚𝑥𝑜

−𝑚𝑦𝑜 𝑚 0
𝑚𝑥𝑜 0 𝑚

], (4)

where 𝐼𝑜 is the robot’s rotational inertia at center of mass
(COM), m is the mass and (𝑥𝑜

 , 𝑦𝑜
) is the location of COM as

measured in {B}. The 3x3 planar inertia matrix is analytically
invertible to

 𝜱̂𝐵 =
1

𝐼𝑜−2𝑚𝑥𝑜𝑦𝑜
[

1 𝑦𝑜 −𝑥𝑜

𝑦𝑜
𝐼𝑜

𝑚
− 𝑥𝑜

2 −𝑥𝑜𝑦𝑜

−𝑥𝑜 −𝑥𝑜𝑦𝑜
𝐼𝑜

𝑚
− 𝑦𝑜

2

]. (5)

The force equation of the robot as expressed in SVA is

 𝒇̂𝐵 = 𝑰̂𝐵𝒂̂𝐵 + 𝒗̂𝐵
 ×∗ 𝑰̂𝐵 𝒗̂𝐵

 , (6)

where symbol ×∗ is the cross-product operator between a
SMV and a SFV, which in the planar case results in

 𝒗̂𝐵 ×∗= [

0 −𝑣𝐵𝑦 𝑣𝐵𝑥

0 0 𝛼̇𝐵

0 𝛼̇𝐵 0
]. (7)

III. PATH CONTROLLER

The goal of the controller is to match the states of {B} and
{T} using limited torque commands. The steps to do this are
the following. Step1 (III.A); update position of {T} and path
parameters. Step2 (III.B); adjust velocity of {T}. Step 3
(III.D); determine low priority acceleration SMV. Step 4
(III.E); determine high priority acceleration SMV. Step 5
(III.F); using an estimate of environmental SFV, calculate the
total SFV needed for the robot to have the high priority
acceleration SMV of step four. Step 6 (III.G); calculate how
much there is left in the limited motor force pool after the
realization of the SFV of step five. Step 7 (III.G); calculate
how the low priority SMV of step three needs to be scaled for
it to be feasible with what is left of the force pool. Step 8
(III.G); give final torque commands to motors. Step 9 (III.H);
use UKF to estimate the current environmental forces, which

includes the effects of the robot’s non-perfect mass estimates,
for the next control cycle.

A. Target’s Path and Orientation

The following method for calculating {T}’s momentary
path is the one introduced in [22] and used in authors’
previous work [23].

1) Offline Preparation
The path is described by a parametric Beziér spline 𝑩(𝑢) =

[𝑥𝑇(𝑢) 𝑦𝑇(𝑢)]𝑇 , 𝑢 ∈ [0,1] . Its coordinate values, their
u-wise derivatives, its curvatures (𝑐𝑇

 =𝛼𝑇
′) that can derived

from them, and the path distance s are pre-calculated and
stored at increasing values of u, thus mapping these values of
traversed path-distance s. As the relationship between u and s
is highly non-linear, this mapping must be done using
numerical integration methods, such as Legendre-Gauss. In
this paper, 30 values of u per 1 meter of s were used.

2) Run-time Calculations

During the run-time, the stored values are interpolated with

the assumption that they change nearly linearly with respect

to the change in s which is simply the time-wise integral of

𝑣𝑇. The interpolated u-wise derivatives are then transformed

to distance-wise derivatives:

𝑥𝑇
′ =

𝑑𝑥𝑇

𝑑𝑠
=

𝑑𝑥𝑇

𝑑𝑢

𝑑𝑢

𝑑𝑠
, 𝑥𝑇

′′ =
𝑑2𝑥𝑇

𝑑𝑠2 =
𝑑2𝑥𝑇

𝑑𝑢2 (
𝑑𝑢

𝑑𝑠
)

2

+
𝑑𝑥𝑇

𝑑𝑢

𝑑2𝑢

𝑑𝑠2 ,

𝑦𝑇
′ =

𝑑𝑦𝑇

𝑑𝑠
=

𝑑𝑦𝑇

𝑑𝑢

𝑑𝑢

𝑑𝑠
, 𝑦𝑇

′′ =
𝑑2𝑦𝑇

𝑑𝑠2 =
𝑑2𝑦𝑇

𝑑𝑢2 (
𝑑𝑢

𝑑𝑠
)

2

+
𝑑𝑦𝑇

𝑑𝑢

𝑑2𝑢

𝑑𝑠2 ,

𝑐𝑇
′ =

𝑑𝑐𝑇

𝑑𝑠
=

𝑑𝑐𝑇

𝑑𝑢

𝑑𝑢

𝑑𝑠
= 𝛼𝑇

′′,
𝑑𝑢

𝑑𝑠
= ((

𝑑𝑥

𝑑𝑢
)

2

+ (
𝑑𝑦

𝑑𝑢
)

2

)
−0.5

. (8)

B. Target’s Path Velocity

Path velocity of the virtual target point {T} is determined by
the x-distance of {C} as “seen” by {H}

 𝑣𝑇 = {
 0, (𝑣𝐵 < 0) 𝑜𝑟 (𝑘𝑇,𝑣 𝑥𝐶𝐻

𝐻 < −1)

𝑣𝐵(1 + 𝑘𝑇,𝑣 𝑥𝐶)𝐻
𝐻 , 𝑒𝑙𝑠𝑒

 , (9)

where 𝑣𝐵is the robot’s measured forward velocity, 𝑘𝑇,𝑣 is a

positive tuning parameters and

𝑥𝐶𝐻
𝐻𝐼 = (𝑥𝐶 − 𝑥𝐻

)
 𝑐𝑜𝑠(𝛼𝑇) + (𝑦𝐶 − 𝑦𝐻

)
 𝑠𝑖𝑛(𝛼𝑇), (10)

𝑥𝐻
 = 𝑥𝑇

 + 𝐿𝑐𝑜𝑠(𝛼𝑇), 𝑦𝐻

 = 𝑦𝑇

 + 𝐿𝑠𝑖𝑛(𝛼𝑇), (11)

𝑥𝐶
 = 𝑥𝐵

 + 𝐿𝑐𝑜𝑠(𝛼𝐵), 𝑦𝐶

 = 𝑦𝐵

 + 𝐿𝑠𝑖𝑛(𝛼𝐵) . (12)

Effectively, the higher the positive value of 𝑥𝐶 𝐻
𝐻𝐼 is, the faster

{T} moves on its path to “catch up”. Likewise, the higher the
absolute value of negative 𝑥𝐶𝐻

𝐻𝐼 is, the slower {T} moves, or
even stops, to “wait”. This way, small position errors are
compensated by the virtual {T}, not by the actual robot.

C. Acceleration Priorities

The choices how to divide the acceleration commands

between lower and higher priority ones, and the exact

formulation of these commands, presented in this paper are

only examples that can be modified according to the scenario.

However, the following idea should be retained when a fixed

path is used. If the poses of {B} and {T} are identical, and

𝛼̇𝐵 = 𝛼𝑇
′ 𝑣𝐵, then the rotational acceleration the robot needs

to stay on the path with the current forward velocity and

acceleration is

 𝛼̈𝐵 = 𝛼𝑇
′′𝑣𝐵

2 + 𝛼𝑇
′ 𝑎𝐵. (13)

As 𝑣𝐵
 can not be instantaneously changed, the element 𝛼𝑇

′′𝑣𝐵
2

should given priority, at least during non-emergency
operation, as not actuating it would cause the robot to drift
from a path whose curvature is currently changing. Element
𝛼𝑇

′ 𝑎𝐵 , whose analogue is the rotational acceleration which
happens when a car accelerates on a circular track, should be
kept as low priority as 𝑎𝐵 can be controlled with proper torque
commands.

D. Low Priority Accelerations

In the simulations, the following sigmoid function was used
to calculate the robots desired forward acceleration

𝑎𝐵,𝑣𝑐 = 2𝑎𝐵,𝑚𝑎𝑥 (−
1

2
+ (1 + 𝑒

−𝑘𝐵,𝑣(𝑣𝐵,𝑐𝑙−𝑣𝐵))
−1

), (14)

where 𝑎𝐵,𝑚𝑎𝑥 is the robot’s maximum allowed forward

acceleration, 𝑣𝐵,𝑐𝑙 is the robot’s desired forward velocity,

𝑣𝐵is the robots measured forward velocity, and 𝑘𝐵,𝑣 a tuning

parameter. This equation could incorporate more info such as
knowledge of upcoming path curvature or obstacle proximity,
but such additions are outside the scope of this paper. Forward
acceleration command 𝑎𝐵,𝑣𝑐 would cause 𝛼𝑇

′ 𝑎𝐵,𝑣𝑐 angular

acceleration and so the final angular acceleration command
caused by 𝑎𝐵,𝑣𝑐 is

 𝛼̈𝐵,𝑣𝑐 =
𝛼𝑇

′ 𝑎𝐵,𝑣𝑐

1+√(𝑥𝐵−𝑥𝑇)2+(𝑦𝐵−𝑦𝑇)2
, (15)

where the function in the denominator is used to suppress the
effect of the path on the robot when the robot is away from the
target. The final low priority acceleration is now

 𝒂̂𝐵,𝑙𝑝

 = [

𝛼̈𝐵,𝑙𝑝

𝑎𝐵𝑥,𝑙𝑝

𝑎𝐵𝑦,𝑙𝑝

] = [
𝛼̈𝐵,𝑣𝑐

𝑎𝐵,𝑣𝑐

0

]. (16)

As 𝒂̂𝐵,𝑙𝑝 is of a lower priority, it will be scaled if so required

by the limited wheel torques. How this happens is detailed in
the later sections.

E. High Priority Accelerations

1) Caused by Path

The angular acceleration needed to keep the robot on a path of

changing curvature is 𝛼𝑇
′′𝑣𝐵

2 , so the priority acceleration

command based on the changing curvature, and error in the

location, is

 𝛼̈𝐵,𝑐𝑐 =
𝛼𝑇

′′𝑣𝐵
2

1+√(𝑥𝐵−𝑥𝑇)2+(𝑦𝐵−𝑦𝑇)2
. (17)

2) Other Priority Accelerations
Depending on the scenario, various acceleration

commands can be given priority. In the simulations of this
paper, orientation correction, 𝛼̈𝐵,𝑒𝑐, is given priority as correct

orientation is critical for path following. The target orientation
of the robot is facing toward {H}, i.e.,

 𝛼𝐵,𝑡𝑟𝑔𝑡
 = atan (

𝑦𝐻−𝑦𝐵

𝑥𝐻−𝑥𝐵
) +

𝜋

2
−

𝜋

2

𝑥𝐻−𝑥𝐵

|𝑥𝐻−𝑥𝐵|
 (18)

and it’s rate of change is

 𝛼̇𝐵,𝑡𝑟𝑔𝑡
 =

(𝑦̇𝐻
 −𝑦̇𝐵)(𝑥𝐻−𝑥𝐵)− (𝑥̇𝐻

 −𝑥̇𝐵)(𝑦𝐻−𝑦𝐵)

(𝑥𝐻−𝑥𝐵)2+(𝑦𝐻−𝑦𝐵)2 , (19)

 𝑥̇𝐻
 = 𝑥𝐻

′ 𝑣𝑇 = (𝑥𝑇
′

 − 𝑐𝑇

 𝐿𝑠𝑖𝑛(𝛼𝑇))𝑣𝑇 , (20)

 𝑦̇𝐻
 = 𝑦𝐻

′ 𝑣𝑇 = (𝑦𝑇
′

 + 𝑐𝑇

 𝐿𝑐𝑜𝑠(𝛼𝑇))𝑣𝑇. (21)

The desired angular acceleration for minimizing both
𝛼𝐵,𝑡𝑟𝑔𝑡

 and 𝛼̇𝐵,𝑡𝑟𝑔𝑡is produced by a critically damped virtual

spring

 𝛼̈𝐵,𝑒𝑐 = −
𝐾c(𝛼̇𝐵

 − 𝛼̇𝐵,𝑡𝑟𝑔𝑡
)+𝐾𝐾(𝛼𝐵

 −𝛼𝐵,𝑡𝑟𝑔𝑡

)

𝐾𝑀
, (22)

i.e., a PD-controller whose parameters are selected so that

𝐾c
2 = 4𝐾𝑀𝐾𝐾 . This orientation correction method is

primarily indented for small scale pose errors but works also
for larger scale errors. The total high priority acceleration
SMV is therefore now

 𝒂̂𝐵,ℎ𝑝

 = [

𝛼̈𝐵,ℎ𝑝

𝑎𝐵𝑥,ℎ𝑝

𝑎𝐵𝑦,ℎ𝑝

] = [
𝛼̈𝐵,𝑐𝑐 + 𝛼̈𝐵,𝑒𝑐

0
0

]. (23)

Other likely candidates for priority accelerations, among
others, are those needed for emergency stops and immediate
obstacle avoidance.

F. High Priority Force Allocation

For the robot to retain its current 𝒗̂𝐵
 , the

𝒗̂𝐵
 ×∗ 𝑰̂𝐵 𝒗̂𝐵

 portion of equation (6) and environmental forces

𝒇̂𝐵,𝑒𝑛𝑣 (whose formation is described later) need to be

compensated for. In addition, force needs to be spent to
produce high priority acceleration 𝒂̂𝐵,ℎ𝑝

 . The total SFV of

these high priority forces is therefore

𝒇̂𝐵,ℎ𝑝 = [

𝜏𝐵,ℎ𝑝

𝑓𝐵𝑥,ℎ𝑝

𝑓𝐵𝑦,ℎ𝑝

]=−𝒇̂𝐵,𝑒𝑛𝑣 + 𝒗̂𝐵
 ×∗ 𝑰̂𝐵 𝒗̂𝐵

 + 𝑰̂𝐵 𝒂̂𝐵,ℎ𝑝
 . (24)

With differentially driven platforms, 𝑓𝐵𝑦,ℎ𝑝 is produced by the

lateral ground-wheel friction and is therefore disregarded.

Production of 𝒇̂𝐵,ℎ𝑝 requires the following forces from the

wheels

𝑓𝑊1,ℎ𝑝
 =

𝜏𝐵,ℎ𝑝
 + 𝑓𝐵𝑥,ℎ𝑝 𝑦𝑊2 𝐵

𝐵

− 𝑦𝑊1 𝐵
𝐵 + 𝑦𝑊2 𝐵

𝐵 , 𝑓𝑊2,ℎ𝑝
 =

𝜏𝐵,ℎ𝑝
 + 𝑓𝐵𝑥,ℎ𝑝 𝑦𝑊1 𝐵

𝐵

𝑦𝑊1 𝐵
𝐵 − 𝑦𝑊2 𝐵

𝐵 .(25)

𝒇̂𝐵,ℎ𝑝 effectively shifts the force window that is available for

𝒂̂𝐵,𝑙𝑝 (Figure 2, left). For example, an environmental force

(e.g., gravity when going uphill, steep bump on the ground)
pushing against the robot allows it to have a higher negative
value for 𝑎𝐵𝑥,𝑙𝑝 but also limits the highest possible positive

value it can get.

G. Acceleration Feasibility Estimation

The wheel forces needed for 𝒂̂𝐵,𝑙𝑝, are calculated similarly

as in the previous section

 𝒇̂𝐵,𝑙𝑝 = [

𝜏𝐵,𝑙𝑝

𝑓𝐵𝑥,𝑙𝑝

𝑓𝐵𝑦,𝑙𝑝

]= 𝑰̂𝐵 𝒂̂𝐵,𝑙𝑝 (26)

𝑓𝑊1,𝑙𝑝
 =

𝜏𝐵,𝑙𝑝
 + 𝑓𝐵𝑥,𝑙𝑝 𝑦𝑊2 𝐵

𝐵

− 𝑦𝑊1 𝐵
𝐵 + 𝑦𝑊2 𝐵

𝐵 , 𝑓𝑊2,𝑙𝑝
 =

𝜏𝐵,𝑙𝑝
 + 𝑓𝐵𝑥,𝑙𝑝 𝑦𝑊1 𝐵

𝐵

𝑦𝑊1 𝐵
𝐵 − 𝑦𝑊2 𝐵

𝐵 . (27)

If the point(𝑓𝑊1,𝑙𝑝, 𝑓𝑊2,𝑙𝑝
)

 is inside the area of shifted

available forces (Figure 2, left), then no additional steps are
needed as the desired acceleration is fully feasible. If that is
not the case, additional steps need to be taken to calculate how
𝒂̂𝐵,𝑙𝑝 needs to be scaled to be feasible. If 𝒂̂𝐵,𝑙𝑝 is constructed

as in section III.D, an analogy for this feasibility check is how
a driver estimates how much acceleration is possible, or is
controlled braking necessary, while driving on a circular track.
From above, we get the following wheel force relation

 𝑓𝑊2,𝑙𝑝 = −
(𝜏𝐵,𝑙𝑝

 + 𝑓𝐵𝑥,𝑙𝑝
 𝑦𝑊1 𝐵

𝐵)

(𝜏𝐵,𝑙𝑝
 + 𝑓𝐵𝑥,𝑙𝑝

 𝑦𝑊2 𝐵
𝐵)

𝑓𝑊1,𝑙𝑝. (28)

If this relation is maintained, then the proportion between
𝑎𝐵𝑥,𝑙𝑝 and 𝛼̈𝐵,𝑙𝑝 is also maintained. The wheel forces are

calculated simply by finding the intersections between the
force line and the sifted force window (Figure 2). Finding
intersections between a line and rectangle is a simple and well
understood problem, the details of which are therefore omitted
from this paper. With two intersections, the one closer to the
ideal point (𝑓𝑊1,𝑙𝑝, 𝑓𝑊2,𝑙𝑝) is selected. This results in a scaling

and/or sign change of 𝒂̂𝐵,𝑙𝑝, but as the linear relation between

𝑎𝐵𝑥,𝑙𝑝 and 𝛼̈𝐵,𝑙𝑝 is maintained, the robot will not deviate from

the path. This case will result in the saturation of one wheel’s
force command. With no intersections, the current situation
heavily exceeds the capabilities of the wheels, for example
because of large environmental forces or too high cornering
speed. In this case, the closest corner to the line is selected and
the force commands will be saturated for both wheels, i.e.,
there is likely to be unwanted deviation in the acceleration but
only as little as possible given the current situation. One
intersection at the exact corner is only theoretically possible
and would result in the same saturation of both force
commands as above.

Figure 2. Directly feasible 𝒂̂𝐵,𝑙𝑝, portionally feasible 𝒂̂𝐵,𝑙𝑝, unfeasible

𝒂̂𝐵,𝑙𝑝.

The final force commands to the wheels are therefore either
𝑓𝑊1,𝑐𝑙

 = 𝑓𝑊1,ℎ𝑝
 + 𝑓𝑊1,𝑙𝑝

 , 𝑓𝑊2,𝑐𝑙
 = 𝑓𝑊2,ℎ𝑝

 + 𝑓𝑊2,𝑙𝑝
 (29)

if 𝑓𝑊1,𝑙𝑝 and 𝑓𝑊2,𝑙𝑝 were fully feasible and

𝑓𝑊1,𝑐𝑙
 = 𝑓𝑊1,ℎ𝑝

 + 𝑓𝑊1,𝑓
 , 𝑓𝑊2,𝑐𝑙

 = 𝑓𝑊2,ℎ𝑝
 + 𝑓𝑊2,𝑓

 (30)

if they were not. These forces result in the following SFV

 𝒇̂𝐵,𝑐𝑙
= [

𝜏𝐵,𝑐𝑙

𝑓𝐵𝑥,𝑐𝑙

𝑓𝐵𝑦,𝑐𝑙

] = [
−𝑓𝑊1,𝑐𝑙 𝑦𝑊1 𝐵

𝐵 − 𝑓𝑊2,𝑐𝑙 𝑦𝑊2 𝐵
𝐵

𝑓𝑊1,𝑐𝑙 + 𝑓𝑊2,𝑐𝑙

0

]. (31)

H. Environmental Force Estimation for Next Control Cycle

The environmental forces are estimated using a direct
implementation of UKF, as described in [19] (equations

7.80-7.90, using option 2) with the following values.; 𝒘̂0
 =

[0 0]𝑇 , 𝒘̂𝑘−1
 = [𝜏𝐵,𝑒𝑛𝑣 𝑓𝐵𝑥,𝑒𝑛𝑣] 𝑇 ,𝑷𝑤𝑜

 = [
𝑃𝑖𝑛𝑖𝑡 0

0 𝑃𝑖𝑛𝑖𝑡
]

,

 𝑹𝑘−1
𝒓 = [

𝑃𝑁𝐶 0
0 𝑃𝑁𝐶

]

, 𝑹𝑘
𝒆 = [

𝑀𝑁𝐶 0
0 𝑀𝑁𝐶

]

, 𝒙𝑘
 =

[
𝜏𝐵,𝑐𝑙

𝑓𝐵𝑥,𝑐𝑙
] , 𝒃̂ = 𝒗̂𝐵

 ×∗ 𝑰̂𝐵 𝒗̂𝐵
 , and 𝑮(𝒙𝑘

 , 𝒘̂𝑘
−) = [𝜱̂𝑩(𝒇̂𝐵,𝑐𝑙 +

𝒇̂𝐵,𝑒𝑛𝑣 − 𝒃̂)]
2𝑡𝑜𝑝

 , with “2top” subscript indicating that only

the top 2 values of the vector are used. The estimated
environmental SFV

 𝒇̂𝐵,𝑒𝑛𝑣
= [

𝒘̂𝑘

0
] = [

𝜏𝐵,𝑒𝑛𝑣

𝑓
𝐵𝑥,𝑒𝑛𝑣

𝑓
𝐵𝑦,𝑒𝑛𝑣

] (32)

is used during the next control cycle. The UKF also effectively
compensates for model inaccuracies, such as incorrect robot
inertia estimates, by simply estimating their effect as part of

the 𝒇̂𝐵,𝑒𝑛𝑣.

IV. SIMULATIONS

A. Simulation Setup

The simulations shown in this section were done with V-REP
simulator [24] using the Vortex [25] physics-engine plugin.
The control cycle was 10ms and the internal time-step of the
dynamics engine was the default 5ms. The robot was
composed of two 16kg wheel modules attached to 10kg rigid
cuboid frame and it carried a non-centrally positioned 28kg
fixed payload. The robot also had a free-turning caster wheel
whose dynamics were not considered in the controller, and
thus its effects, along with the effects of the wheels’ rotational
inertia and exact wheel-ground contact interaction, on the
robot’s dynamics were intentionally left as modeling errors for
the UKF to estimate as additional environmental forces. The
parameters used in the simulations are summarized in Table 1.

TABLE I. SIMULATION PARAMETERS

𝑥𝑜,𝑟𝑒𝑎𝑙 = −0.17𝑚

𝑦𝑜,𝑟𝑒𝑎𝑙 = 0.10𝑚

𝑣𝐵,𝑐𝑙 = 1 + 0.5 cos(𝑡)

 𝑜𝑟

𝑣𝐵,𝑐𝑙 = 1.5 + 0.5 cos(𝑡)

𝐿 = 0.5

𝑘𝑇,𝑣 = 1

 𝑘𝐵,𝑣 = 2

𝑚𝑟𝑒𝑎𝑙 = 70𝑘𝑔

𝐼𝑜,𝑟𝑒𝑎𝑙 = 21𝑘𝑔 𝑚2

𝑓𝑊1,𝑠𝑡𝑎𝑙𝑙 = 300𝑁 𝑜𝑟 150𝑁

𝑓𝑊2,𝑠𝑡𝑎𝑙𝑙 = 300𝑁 𝑜𝑟 150𝑁

𝑣𝑊1,𝑚𝑎𝑥

= 5𝑚/𝑠

𝑣𝑊2,𝑚𝑎𝑥

= 5𝑚/𝑠

𝑀𝑁𝐶 = 0.50

𝑃𝑁𝐶 = 100

𝑃𝑖𝑛𝑖𝑡 = 50

𝛼𝑈𝐾𝐹 = 0.1

𝛽𝑈𝐾𝐹 = 2

𝜅𝑈𝐾𝐹 = 0

𝐾c
 = 1 .2

𝐾𝑀 = 0.25

 𝐾𝐾 = 1.44

For each time-instant, the maximum available force of
each wheel is related to its stall force 𝑓𝑊𝑖,𝑠𝑡𝑎𝑙𝑙 , no-load speed

𝑣𝑊𝑖,𝑚𝑎𝑥 and current speed 𝑣𝑤𝑖 in the following way

 𝑓𝑊i,𝑚𝑎𝑥 = 𝑓𝑊i,𝑠𝑡𝑎𝑙𝑙 (1 −
𝑣𝑊i

𝑣𝑊i,𝑚𝑎𝑥
). (33)

In practice, 𝑓𝑊i,𝑚𝑎𝑥 could also have additional limitations

such as the estimated ground-wheel contact quality.

To demonstrate how the controller compensates for

changing payloads and inaccurate robot inertia estimates, 𝑰̂𝐵
was manually corrupted such that initially = 0.25𝑚𝑟𝑒𝑎𝑙 , 𝐼𝑜 =
0.25𝐼𝑜,𝑟𝑒𝑎𝑙 , 𝑥𝑜 = 3𝑥𝑜,𝑟𝑒𝑎𝑙 , and 𝑦𝑜 = 3𝑦𝑜,𝑟𝑒𝑎𝑙 . After each lap

on the test path, these values were updated such that 𝑚𝑘+1 =
2𝑚𝑘 , 𝐼𝑜,𝑘+1 = 2𝐼𝑜,𝑘 , 𝑥𝑜,𝑘+1 = (3 − 𝑘)𝑥𝑜,𝑟𝑒𝑎𝑙 , and 𝑦𝑜,𝑘+1 =
(3 − 𝑘)𝑦𝑜,𝑟𝑒𝑎𝑙 .

B. Simulation Results

Figure 3 shows the robot’s start position and five rounds of
traversing (black line), a path similar to 5m wide and 10m long
figure eight (orange line). Two setups with different force and
velocity parameters were tested. In setup A 𝑓𝑊𝑖,𝑠𝑡𝑎𝑙𝑙 =

300𝑁, 𝑣𝐵,𝑐𝑙 = 1 + 0.5 cos(𝑡). In setup B 𝑓𝑊𝑖,𝑠𝑡𝑎𝑙𝑙 = 150𝑁, 𝑣𝐵,𝑐𝑙 = 1.5 +

0.5 cos(𝑡). With setup A the lap time was approximately 29s
and with setup B 22s. In setup A the robot had enough
available force to maneuver with the given velocity without
saturating the force output of either wheel. This resulted in low
pose error (Figure 4) that increased significantly only in laps
four (time 88-117s) and five (time 118-146s) where the
controller was given very corrupted inertia estimates.

Figure 3. Robot’s path of five rounds around figure eight test path. Left,

setup A. Right setup B.

Figure 4. Pose error. Up, setup A. Down setup B.

In contrast, with setup B the robot had, intentionally for
demonstration purposes, too little available force for the given
velocity demands, resulting in the frequent wheel force output
saturations as seen in Figure 5. Despite this, the pose error did
not grow excessively. The reason for this is partly visible in
Figure 6’s differences between 𝑣𝐵,𝑐𝑙 and 𝑣𝐵 . They were

caused by the acceleration feasibility estimation of section
III.G which scaled 𝒂̂𝐵,𝑙𝑝 with respect to the available force in

order to keep the robot on the path.

Figure 5. Maximum and control forces of wheels with setup B. Up, left

wheel. Down, right wheel.

Figure 6. Velocities with setup B.

Figure 7 shows the estimated 𝒇̂𝐵,𝑒𝑛𝑣 with setup B case. It

can be divided into three segments. During 0-46s, the inertia
estimates were too small, resulting in visible oscillation,
especially in 𝑓𝐵𝑥,𝑒𝑛𝑣 . During 44-66s, the inertia estimates were

correct, which can be seen as fairly constant 𝑓𝐵𝑥,𝑒𝑛𝑣. Up until

this point, the magnitude of 𝒇̂𝐵,𝑒𝑛𝑣 remained almost constant

as the other dynamics that were not modeled, especially those

of the castor wheel, dominated over the faulty estimate of 𝑰̂𝐵.

After 66s, the increasingly more manually corrupted 𝑰̂𝐵began

to have a more visible effect on 𝒇̂𝐵,𝑒𝑛𝑣, especially during the

fifth lap starting at 88s, at which point the mass and rotational
inertia estimates were four times their actual size and the
COM location estimate outside the robot.

Figure 7. 𝒇̂𝐵,𝑒𝑛𝑣 estimated by the UKF with setup B.

As can be seen by comparing Figures 4 and 7, the
performance of the controller does decrease with inaccurate

estimate of 𝑰̂𝐵, but not excessively so because its effect simply
becomes part of the total environmental force that is estimated
and compensated by the controller. An additional 5 lap test
with fixed 10cm high cuboid obstacles is shown on the left
side of Figure 8. Apart from the obstacles the setup was
identical to setup A except that 𝑣𝐵,𝑐𝑙 = 1.5 . The obstacle height
and shape were selected so that the robot would not be able to
go over them without some momentum, and the higher 𝑣𝐵,𝑐𝑙
was used give the robot that necessary momentum.

 In summary, Figures 3-8 demonstrate how the controller
can produce force commands that do realize desired
accelerations when feasible, and mitigate the occurring pose
error when the situation exceeds the force output of the
motors. To underline the importance of sections III.G and
III.H, the middle of Figure 8 shows one round of the test with
setup B, except that the environmental force was not estimated

(i.e., 𝒇̂𝐵,𝑒𝑛𝑣 = [0,0,0]𝑇), and with 𝑰̂𝐵 estimation as in the

second lap, while the right side of Figure 8 shows the original
test with setup B, except that the feasibility estimation of
section III.G. was not performed (i.e., always 𝑓𝑊1,𝑐𝑙 =
 𝑓𝑊1,ℎ𝑝 + 𝑓𝑊1,𝑙𝑝 , 𝑓𝑊2,𝑐𝑙 = 𝑓𝑊2,ℎ𝑝 + 𝑓𝑊2,𝑙𝑝 and commands

exceeding wheel force limits were simply set to the properly
signed 𝑓𝑊1,𝑚𝑎𝑥 or 𝑓𝑊2,𝑚𝑎𝑥).

Figure 8. Left, low obstacles (wheel paths also visible). Middle, no

environmental force estimation. Right, no feasibility estimation.

V. CONCLUSION

This paper introduced a conceptually simple controller for
differentially steered mobile robots of significant
asymmetrical mass and limited motor forces. The proposed
controller performed well in the simulations, even when the
inertia estimates were corrupted from 25% to 400% of their
actual values. While the proposed controller does not remove
the need for proper trajectory planning, it is an additional
safeguard against modeling errors and unpredictable
environmental forces when the robot is used, intentionally or
not, at the limits of its performance. Future work for the
proposed controller includes field testing and various
refinements, such as incorporating the effect of the wheel’s
rotational inertia, extension of the controller to function with
steerable wheels, and refining the used UKF.

ACKNOWLEDGMENTS

The authors would like to thank the Finnish Cultural

Foundation, University of Oulu Graduate School (UniOGs)

and Infotech Oulu for making this research possible.

REFERENCES

[1] Y. Mori, E. Nakano and T. Takahahsi, “Mechanics, control and design

methodology of the non-holonomic quasi-omnidirectional vehicle
ODV9,” The International Journal of Robotic Research, vol. 21, May.

2002, pp. 511-522.

[2] G. Ishigami, K. Iagnemma, J. Overholt and G. Hudas, Design,
Development, and Mobility Evaluation of an Omnidirectional Mobile

Robot for Rough Terrain,” Journal of Field Robotics, Nov. 2014.

[3] M. Lauria, I. Nadeau, P. Lepage, Y. Morin, P. Giguere, F. Gagnon, D.
Letourneau, and F. Michaud, “Kinematical analysis of a four steered

wheeled mobile robot,” Proceedings IEEE International Conference

on Industrial Electronics, vol. 4, 2006, pp. 3090–3095.
[4] R. Oftadeh, R. Ghabcheloo, and J. Mattila, "A novel time optimal path

following controller with bounded velocities for mobile robots with

independently steerable wheels," IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Japan, 2013.

[5] http://wiki.ros.org/diff_drive_controller

[6] N. H. Amer, H. Zamzuri, K. Hudha, and Z. A. Kadir, “Modelling and
control strategies in path tracking control for autonomous ground

vehicles: a review of state of the art and challenges,” Journal of

Intelligent & Robotic Systems, vol. 86(2), pp. 225-254, 2017.
[7] A. Arab and M. M. Mohammad, "An uncertainty compensator for

robust control of wheeled mobile robots," Advanced Robotics, vol.

29.20, pp. 1303-1313, 2015.
[8] H. Chen, “Robust stabilization for a class of dynamic feedback

uncertain nonholonomic mobile robots with input saturation,”

International Journal of Control, Automation and Systems, vol. 12(6),
pp. 1216-1224, 2014.

[9] W. Sun, S. Tang, H. Gao, and J. Zhao, “Two time-scale tracking control

of nonholonomic wheeled mobile robots. IEEE Transactions on
Control Systems Technology, vol. 24(6), pp. 2059-2069, 2016.

[10] W. Wang, J. Huang, and C. Wen, “Prescribed performance bound‐

based adaptive path‐following control of uncertain nonholonomic
mobile robots,” International Journal of Adaptive Control and Signal

Processing, vol. 31(5), pp. 805-822, 2017.

[11] W. Dong and Y. Guo, “Dynamic tracking control of uncertain
nonholonomic mobile robots,” in Intelligent Robots and Systems

(IROS), 2005 IEEE/RSJ International Conference on, pp. 2774-2779.

[12] I. Škrjanc and G. Klančar, “A comparison of continuous and discrete

tracking-error model-based predictive control for mobile robots,”

Robotics and autonomous systems, vol. 87, pp. 177-187, 2017.
[13] D. Huang, J. Zhai, W. Ai, and S. Fei, “Disturbance observer-based

robust control for trajectory tracking of wheeled mobile robots,”

Neurocomputing, vol. 198, pp. 74-79, 2016.
[14] L. Xin, Q. Wang, J. She, and Y. Li, (2016). “Robust adaptive tracking

control of wheeled mobile robot,” Robotics and Autonomous Systems,

vol. 78, pp. 36-48, 2016.
[15] M. Boukens and A. Boukabou, "Design of an intelligent optimal neural

network-based tracking controller for nonholonomic mobile robot

systems," Neurocomputing, vol. 226, pp. 46-57, 2017.
[16] F. N. Martins, M. Sarcinelli-Filho, R. Carelli, “A Velocity-Based

Dynamic Model and Its Properties for Differential Drive Mobile

Robots, Jouran of Intelligent & Robotics Systems, Vol. 85, Issue 2, pp.
277-292, 2017.

[17] K. Do. “Bounded controllers for global path tracking control of

unicycle-type mobile robots.” Robotics and Autonomous Systems,

Vol. 61, pp. 775-784, 2013.

[18] A. Onat and M. Ozkan, “Dynamic adaptive trajectory tracking

control of nonholonomic mobile robots using multiple models

approach.” Advanced Robotics, Volume 29, 2015.
[19] E. A. Wan, and R. van der Merwe, (2001) The Unscented Kalman

Filter, in Kalman Filtering and Neural Networks (ed S. Haykin), John

Wiley & Sons, Inc., New York, USA. doi: 10.1002/0471221546.ch7

[20] R. Featherstone, Rigid Body Dynamics Algorithms, Springer, New
York, 2008, pp. 7-35.

[21] R. Featherstone, "A beginner's guide to 6-d vectors (part 1)," IEEE

Robotics Automation Magazine, vol. 17, 2010, pp. 83-94.
[22] B. Lau, C. Sprunk, and W. Burgard, "Kinodynamic motion planning for

mobile robots using splines," in IEEE Intl. Conf. on Intelligent Robots

and Systems (IROS), St. Louis, MO, USA, 2009.

[23] V. Pitkänen, A. Kemppainen, A. Tikanmäki and J. Röning “Path

following controller for planar robots with articulated, actuated and

independently steerable velocity-limited wheels.” Robotics and

Automation (ICRA), 2017 IEEE International Conference on,

Singapore, 2017.

[24] http://www.coppeliarobotics.com/
[25] https://www.cm-labs.com/

