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Abstract— We present a Learning from Demonstration
method for teaching robots to perform search strategies imi-
tated from humans in scenarios where alignment tasks fail due
to position uncertainty. The method utilizes human demonstra-
tions to learn both a state invariant dynamics model and an
exploration distribution that captures the search area covered
by the demonstrator. We present two alternative algorithms for
computing a search trajectory from the exploration distribution,
one based on sampling and another based on deterministic
ergodic control. We augment the search trajectory with forces
learnt through the dynamics model to enable searching both
in force and position domains. An impedance controller with
superposed forces is used for reproducing the learnt strategy.
We experimentally evaluate the method on a KUKA LWR4+
performing a 2D peg-in-hole and a 3D electricity socket task.
Results show that the proposed method can, with only few
human demonstrations, learn to complete the search task.

I. INTRODUCTION

To succeed in peg-in-hole type assembly tasks with small
clearance between workpieces, a robot’s internal model of
the world must match with the environment to high precision,
as even small errors in the model can cause the alignment to
fail. It is possible to rely on handcrafted exception strategies
to complete the task, but the process of manually defining
the strategies is tedious and often not generalizeable. Even
though recent research has shown significant improvement
in planning of contact motions [1], they are ineffective when
facing modeling errors. Our key insight is to make the robot
behave similar to a human when faced with such uncertain-
ties about the environment—probing the environment, like
fitting a key into a lock in darkness or inserting a plug into
an electric socket, as illustrated in Fig. 1. Thus we present
a Learning from Demonstration (LfD) method for teaching
robots to perform human-inspired search strategies.

In LfD, a human teacher performs one or more demon-
strations that the robot then learns to mimic [2]. Methods to
encode and parametrize the demonstrated skill are usually
based on attractors along a trajectory, such as Dynamic
Movement Primitives (DMP) [3] and Gaussian Mixture
Model (GMM) with Gaussian Mixture Regression (GMR)
[4]. However, these methods assume that the goal pose is ei-
ther known or can be learned. In contrast, we target scenarios
where the goal pose can vary between reproductions of the
same task and cannot be visually identified with sufficient
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Fig. 1: An example sequence of a robot inserting a plug into a
socket without vision sensing or knowledge about the location of
the socket’s holes.

accuracy to complete the task, thus rendering the problem
closer to area coverage than a trajectory following problem.

We propose a method to learn search strategies by imitat-
ing human behavior in scenarios where the transformation
between the start and end poses is not known but the
human follows a deliberative strategy to cover an area
that contains the end pose. The method consists of four
steps: 1) gathering one or more human demonstrations from
which forces and positions are recorded; 2) modeling the
covered search area—the exploration distribution—and state-
invariant dynamics of the task at hand probabilistically; 3)
planning a search trajectory over the exploration distribution;
and 4) executing the search trajectory with an impedance
controller while superposing forces learned from dynam-
ics. For planning the search trajectory we compare two
algorithms: an ergodic control approach proposed by Miller
et al. [5] and a new sampling-based algorithm Trajectory
Sampling from Human-Inspired Exploration (TSHIX). We
evaluate our method in both 2D (round peg-in-hole) and 3D
(electric plug insertion) search tasks.

The main contributions in this work include 1) a novel 4-
step framework for learning in-contact search strategies from
human demonstrations, 2) a sampling based method, TSHIX,
for creating trajectories from an exploration distribution and
3) showing through experiments that our learned search
strategies are suitable to work as exception strategies in a
3D assembly task.



II. RELATED WORK

Existing work on search motions mainly focus on excep-
tion strategies on a 2D plane. Abu-Dakka et al. [6] presented
an exception strategy based on stochastic search for failure
case in a peg-in-hole task. However, their method did not
use any task-specific information, which could improve the
accuracy. Jasim et al. [7] used an Archimedean spiral to cover
the 2D search area. However, the approach is not applicable
in higher dimensional search tasks such as inserting a plug
into a socket. Baum et al. [8] compared different physical
exploration strategies in a 3D scenario. However, they did
not learn the search strategies from human demonstrations.

A similar idea of using human demonstrations to learn
search strategies was previously explored by De Chambrier
in [9]. To learn to insert a plug into a socket, the method used
150 demonstrations to train a Partially Observable Markov
Decision Process (POMDP) which learned a strategy that
first localized itself in the environment with the help of
physical barriers, and then followed a fixed trajectory to the
socket. In comparison, our method focuses on cases with
known approximate location of the goal, while the position or
orientation of the goal can change from one demo to another
in an unknown manner, requiring physical exploration for
insertion. Moreover, our method does not require such an
extensive amount of demonstrations.

In De Chambrier’s work, the actual insertion was per-
formed according to the work of Kronander [10, Chapter
5]. He also had an underlying hand-crafted strategy based
on contact transients, and in case of jamming the human
teacher intervened. In contrast, our method can learn the
whole search process from humans in cases where the
approximate location and orientation of the hole is known.
In addition, our search strategy considers both position and
force distributions, thus allowing also force-based search.
Furthermore, the presented method does not require hand-
crafting transient behaviors.

III. METHOD

Our proposed method for learning search strategies from
human demonstrations consist of 4 steps: 1) learning the
exploration distribution Section III-A, 2) creating the search
trajectory for the manipulator Section III-B, 3) learning the
task dynamics Section III-C, and 4) performing the search
trajectory with an impedance controller Section III-D.

A. Learning the Exploration Distribution

We model the exploration distribution with a Gaussian'
distribution over the task space,

pe(s) = N(sp, %) , (D

where s € RP, D is the dimensionality of the task (e.g. 3 if
only translations are considered), and @ and X are the mean
and covariance estimated by maximum likelihood.

To learn expressive exploration distributions, the training
data must represent the entire search domain. In this work

'For more complex exploration patterns, the single Gaussian can be
replaced with a GMM.

the humans demonstrated the movement with closed eyes to
mimic the sensing modalities of the robot. To start a demon-
stration the end-effector was first placed in the proximity of
the goal that resembles possible failure scenarios and then the
human performed the demonstrations with his eyes closed.
Demonstrations that ended either immediately at the goal or
in a configuration from which success without vision was
improbable were discarded.

The demonstrations were aligned with respect to their
starting positions, termed the search frame. With this choice
we can learn the search strategy of the teacher in situations
where localizing the tool w.r.t. the world frame is impossible.
Thus any trajectory generated will also start at the origin
of the search frame, making the learned search strategies
independent of their location in the world frame.

B. Creating the Search Trajectory

We propose two methods for generating a search trajectory
that covers the modeled exploration distribution: 1) TSHIX,
a stochastic sampling-based method, and 2) ergodic control
[5], a deterministic method.

1) Trajectory Sampling from Human-Inspired eXplo-
ration: TSHIX samples points from the exploration distribu-
tion created in III-A, finds an approximation of the shortest
itinerary through the sampled points and smooths it.

We draw samples from the exploration distribution using
Marsaglia’s ziggurat method [11]. Visualizations of sampling
in 2D are presented in Fig. 4. Finding the shortest itinerary
through the sampled points is a Travelling Salesman Problem
(TSP), which we solved using an existing genetic algorithm
based optimizer for simplicity of implementation?. The start
of the itinerary is always set at the origin of the search frame
in an effort to imitate the human search. The itinerary is
then smoothed with a Savitzky-Golay Filter [12]. Fig. 5a
illustrates the stages of creating a trajectory for the tool:
A series of sample points are generated, through which an
itinerary is calculated and smoothed to produce the final
trajectory.

2) Ergodic Control: Ergodic control is a method for
creating a trajectory such that at every step the time-averaged
behavior of the system matches a known desired probability
distribution. This is realized by minimizing a cost function
that matches spatial statistics of the trajectory to those of
the desired distribution. We quantify this as matching their
Fourier coefficients [13]

K
C(a(t) = > Ae(ex(w(t) - ¢>k)2, @
k=1

where Ay are frequency dependent weights, and ¢ are
the Fourier coefficients of the exploration distribution learnt
from the human demonstration. To minimize (2), we use the
optimal control formulation of Miller and Murphey [5].

’https://se.mathworks.com/matlabcentral/
fileexchange/21198-fixed-start-open-travelling-
salesman-problem-genetic-algorithm



C. Learning the Task Dynamics

When humans perform search tasks they do not simply
follow a trajectory in space, but maintain contact between
the workpieces and deduce vicinity of alignment based on
contact forces. Learning the dynamics is useful to efficiently
overcome friction as well as to reach threshold forces for
phenomena such as “snapping” [14]. Therefore, learning
search strategies similar to humans requires simultaneous
learning of positions and forces.

For this reason, to record contact forces during a demon-
stration a force-torque sensor (F/T sensor) was attached to
the wrist of the manipulator to record the interaction force
(normal plus friction force). Because the pose of the goal
is not known, we learn location-invariant dynamics that we
assume to be applicable for the entire search.

We model the dynamics as a joint Gaussian distribution
of velocities and wrenches

pd(AS,a) = N(AS,G“,@Z:) ) (3)
where As; = sy;41 — S is the instantaneous motion and
a; = [—fF — 7T is the action wrench (inverse of the

opposing measured interaction force). The parameters p and
3 are fitted to demonstrations using maximum likelihood.
We can then predict the required action wrench for a de-
sired state change by conditioning the Gaussian distribution
(3) on the state change. Partitioning gt = [pq? ps?]" and

2 — |:2aa EBS} ,

S Ses @)

the predicted action wrench for a desired state change As*
is

(@™ [ As™) ~ N(p*, Z%) , (5)
where
p,* = Mg+ Easzs_sl(AS* - Ns) ; (6)
and
3= Eaa - Easzs_slgsa . (7)

D. Performing the Search

To reproduce the search motions, we use an impedance
controller with superposed forces and torques, illustrated in
Fig. [reffig:impedanceControl. We use an impedance con-
troller to enable the robot to follow a trajectory in free space
as well as in contact while being compliant to the envi-
ronment. Using the superposed feed-forward forces enables
force based searching, provided the teacher demonstrates
such behavior.

To determine the position set-points, the continuous search
trajectory (Sec. III-C) is first sampled in time. For each sam-
ple, the desired action wrench a* = | f? t?]T is calculated
as the mean p* of the conditional distribution given in (6).
The resulting impedance control law for translations is then

fc:erp+Bpép+ffa )

where f is the Cartesian force commanded to the robot, e,
is the positional error between current and desired position,
K, the stiffness matrix, &, the derivative of the positional
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Fig. 2: An impedance controller with F/T feed-forward is used to
reproduce the search motions.

error, By, is the positional damping coefficient and f, the
superposed feed-forward force.

For the orientation, the impedance control law can be
written

t. = Kpeg + Bgpeg + 15 , ©)]

where t. is the Cartesian torque command, ey is the angular
error between current and desired orientation, Ky is the angu-
lar stiffness matrix, éy is the derivative of the angular error,
By is the angular damping matrix and t; the superposed
feed-forward torques.

IV. EXPERIMENTS AND RESULTS

We used a KUKA LWR4+ lightweight arm to experi-
mentally validate our method. Demonstrations were recorded
in gravity compensation mode, where the robot’s internal
sensors recorded the pose of the robot and an ATI mini45
F/T sensor at the wrist of the robot recorded the wrench. We
implemented the controller through the Fast Research Inter-
face (FRI) [15] similarly as in [16], [17] such that KUKA’s
internal controller handles the feed-forward dynamics on top
of the impedance controller defined in (8-9).

We evaluated the method in two scenarios: a peg-in-
hole task (Fig. 3a) and an electrical plug and socket task
(Fig. 3b). With the peg-in-hole setup, we first compared
the two presented trajectory creation algorithms, TSHIX
and ergodic control (Section IV-A), then examined how the
number of itinerary points for TSHIX affected success rate
(Section IV-B), and finally analyzed the trajectory following
performance of the controller (Section IV-C) and whether in-
volving the dynamics in a 2D task improves the performance
(Section III-C). With the electrical plug task (Section IV-D)
we study the performance of the method in a more complex
3D search task.

A. Comparison Between Ergodic Control and TSHIX

We used the 2D peg-in-hole task (Fig. 3a) to compare the
sampling based TSHIX and ergodic control approaches for



(a) Peg-in-Hole
1) KUKA LWR4+, 2)
F/T sensor, 3) Peg tool, 4)
Cylinder with hole

setup:  (b) The plug and socket setup:

1) KUKA LWR4+, 2) Grab-
handle for users to manipulate
the robot, 3) F/T sensor, 4)
Plug tool, 5) Socket
Fig. 3: The setups used for the experiments.

trajectory creation’. We first learned the exploratory distri-
bution and the dynamics from a single demonstration. Since
the peg-in-hole task is conducted in the 2D plane on top of a
cylinder, the orientation of the peg tool was fixed during both
demonstration and reproduction. With TSHIX we generated
30 different trajectories in the x-y-plane, each consisting of
300 points sampled from the learned exploration distribution.
With the ergodic control we generated a trajectory that was
approximately the same length as the mean of the TSHIX
trajectories. Finally, for the trajectories provided by both
algorithms we used the learned dynamics model to compute
the superposed forces.

We performed the comparison by randomly choosing 30
starting positions from within a circle of ca. 3 cm in diameter,
located roughly halfway between the originally demonstrated
starting position and the hole of the cylinder. The reason
for moving the starting positions closer to the hole is that
the demonstration acts as a worst case scenario, i.e. the one
end of the exploration distribution will be approximately
at the starting position. The same exploratory distribution
and dynamics were used for both algorithms. For TSHIX
we used a different randomly chosen trajectory with each
starting position to average the inherent randomness, whereas
for the ergodic control we used the same trajectory with each
position, due to its deterministic nature. As this task does not
involve rotations, the control was performed by feeding the
trajectory and superposed forces to (8).

The results of the experiment are presented in Table I.
They show that TSHIX performed slightly better than the
ergodic control. In the five trials where TSHIX failed, the
ergodic control failed as well. These failures seemed to occur
because the starting positions were too far away from the
goal, as neither trajectory lead close enough to the hole. In

3To generate ergodic control trajectories we used the follow-
ing open source implementation https://github.com/dressel/
ErgodicControl. jl.

Algorithm Ergodic ~ TSHIX
Success rate 20/30 25/30
Success percentage 67% 83%

TABLE I: Success rates from peg-in-hole experiments from the
two trajectory creation methods.

the five trials where TSHIX succeeded and ergodic control
failed, the ergodic trajectory would usually go within the
vicinity of the hole, but not cover it. This implies that the
difference between the algorithms could stem from density
of coverage.

One advantage of using the sampling-based TSHIX is
the flexibility in generating the trajectory. If a generated
trajectory was unsuccessful or undesirable for other reasons,
a new trajectory can easily be generated by changing the
random seed for the sampling. Moreover, additional points
could even be sampled during reproduction should the task
fail. This is not possible for the ergodic trajectory, as they are
per definition deterministic and thus when the chosen con-
vergence criteria are met, the trajectory is finished. However,
the ergodic trajectory can be considered optimal for covering
a distribution [18] and the deterministic nature increases the
predictability and repeatability of the algorithm.

B. Effect of Sample Size

To investigate the effect the sample size had on the
success rate of TSHIX, one successful starting position from
the previous section was selected for further analysis. We
generated 20 trajectories for sample sizes of 100, 200, 300,
400 and 500 each. More samples will lead to a higher cov-
erage (see Fig. 4) and the connection between coverage and
success rate is investigated in this section. The trajectories
and their corresponding predicted superposed forces were
executed with the impedance controller from (8). The results,
presented in Table II, show that initially the success of the
search increases with higher sample sizes but so does the
computational time. However, somewhat counterintuitively,
after 300 samples the success rate consistently stays at 85%,
a finding further explored in the next section.

Sample size 100 200 300 400 500
Success rate 6/20 12/20 17/20 17/20 17/20
Success percentage 30% 60% 85% 85% 85%
Mean CPU time (s)*  13.8 34.1 61.9 94.3 135.6
(£1 sd) (s) (£0.3) (£1.1) (44 (£54) (£104)

TABLE II: Success rates and computational times from varying
the number of sampled points in TSHIX on the 2D peg-in-hole task

C. Controller Analysis

For in-contact tasks it is a challenge to choose the right
stiffness value such that the trajectory is followed while
allowing compliance to avoid excessive contact forces and
facilitate easier completion of the task. For peg-in-hole tasks,
lower stiffness perpendicular to the motion allows the peg to

4In this work all computations were performed using an Intel(R)
Core(TM)2 Quad CPU Q9400 @ 2.66GHz.
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be inserted without moving over the exact center of the hole
as it exploits the mechanical gradients of the task.

We chose to keep the stiffness low and instead provide
the robot with the dynamics of the task. By knowing the
dynamics instead of increasing the stiffness, we can predict
the forces necessary to counter the environmental forces,
such as friction, along the trajectory. The stiffness is therefore
increased only in the direction of motion while leaving the
tool compliant perpendicular to the direction of motion.
We empirically observed that the perpendicular compliance
indeed seemed to play a key role in the final stage of the
task where the peg has to slide into the hole; without the
compliance the peg was more likely to slide by close to the
hole but not sink in.

To experimentally examine how much influence the usage
of the superposed forces has on the outcome of the task,
an additional experiment series was set up. 20 trajectories
from 100, 200 and 400 sampled points were created. Each
trajectory was then executed with the impedance controller
in Section IV-B without the addition of the superposed
predicted forces. For the 100 sample point trajectories, only
2/20 trials succeeded, 4 less then with force-feed-forward.
Similar observations were made for 200 and 400 sample
point trajectories (7/20 and 13/20 respectively). This consis-
tently inferior performance is indicative of the importance
of the superposed forces even on a task performed on a
2D plane. As the forces are expected to be countering the
environmental forces, which in this task consist of mainly
friction, the forces point in the direction of the state change.
This is observable in Fig. 6a where the superposed forces are
plotted over a trajectory sliding along a 2D plane. We note
that in this example the forces pointing “north-west” have
smaller magnitude and are more difficult to observe.

However, as seen in Fig. 5 even with the superposed forces
the tool is not following the desired trajectory accurately.
These trajectories were completed with stiffness values that
were experimentally found to provide a good balance be-
tween trajectory following and compliance that facilitates the
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Fig. 5: Trajectory following performance of the controller on
trajectories created by TSHIX (a) and ergodic control (b).
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final insertion of the peg-in-hole task. The reason for this
divergence lies presumably in the unknown friction forces
of the robot’s joints. When performing the demonstrations,
the teachers also noticed that the joint configuration had
a significant effect on the ease of moving the robot. In
addition, feeding a Cartesian wrench profile recorded from
a demonstration to the robot in pure force control did not
produce any meaningful results. We assume this is due to
static friction in the joints that prevents initiation of small
motions. The same reason is why, in Table II, the success
percentage of TSHIX did not reach 100% despite increased
sample size: in all sample sizes between 300 and 500,
there was one error where the peg slid past the hole even
if the planned trajectory covered it, and two errors where
the peg entered the hole but did not slide all the way in,
most likely due to insufficient compliance. We hypothesize
that better compensation of internal friction would allow
trajectory following even with low stiffness and thus better
facilitate the final insertion part.

D. Learning a 3D Search Task

To investigate the scalability of the proposed method
to higher dimensions, we conducted a three-dimensional
search experiment. The task was to insert an electrical plug
(Europlug) into a socket. For the socket, a 12V socket
usually found in caravans and sheds was used because of its
design: one hole is slightly larger, and there are valley shaped
indentations around the holes, allowing an easier insertion
when motion is compliant. To make the demonstrations and
the learning process easier, the rotation around the x- and
y-axes of the tool are restricted, so that the search was only
performed in the positional space of the x-y-plane, as well
as in rotation around the tool’s z-axis. The demonstrations
were conducted with closed eyes, and the starting pose of
the plug was inside the socket close to a side wall. The
orientation around the z-axis was chosen randomly, but still
reasonable enough to allow the teacher to complete the task
like an everyday situation. Because of the higher complexity
of this 3D task, we compared learning the exploration
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distribution from either one or two demonstrations. The
two demonstrations were performed starting from opposite
ends of the upper half of the socket. From both a single
demonstration and a combination of two demonstrations, the
3D exploration distribution (position in x and y, rotation
around z) and the 6D task dynamics (position in x and vy,
rotation around z, forces in x and y, torques around z) were
learned similarly to the peg-in-hole task, by fitting a single
Gaussian distribution over the data. A trajectory was created
by sampling 600 points, which was found to be a reasonable
number for covering the 3D exploration distribution (see
Fig. 6b). Subsequently the predicted interaction values from
the environment (both forces and torques) for the given
trajectory were calculated.

For the experiments, 15 starting positions were randomly
chosen in the northern hemisphere of the socket, and for
each starting position a different trajectory was generated
from both one and two demonstrations. It was impossible to
create an ergodic trajectory with Projection-based Trajectory
Optimization in 3D, since the algorithm gets easily trapped
in a local minimum which restricts the length of the created
trajectory. In order to provide a baseline for comparison,
random walk trajectories were created using the method
proposed by Abu-Dakka et al. [6]. The results are presented
in Table III. We can observe that for the 3D task having two
demonstrations significantly increases the success rate and
even for the much harder socket task the method achieves
good results.

Algorithm Random Walk  1-demo-TSHIX  2-demo-TSHIX
Success rate 0/15 3/15 10/15
Success percentage 0% 20% 67%

TABLE III: Success rates from plug-in-socket experiments from
random walk and TSHIX with either one or two demonstrations.

E. Discussion

The results show that the proposed method performs well
if the demonstrations’ starting positions cover the variability

of the scenarios. However, some real world scenarios such
as plug-and-socket for a European 230V AC socket are
surprisingly difficult, even human teachers found it very
hard to solve the task blindly. This indicates that some
search problems may be infeasible in higher dimensions. On
the other hand, if the demonstrated search is performed in
a lower-dimensional subspace of a high-dimensional state
space, the proposed method will automatically perform the
search in the lower-dimensional space by virtue of employing
the Gaussian linear model.

We showed that while it is possible to use only one
demonstration to learn a search if the task is sufficiently
easy, for more complex tasks with higher dimensionality it
is necessary to have more demonstrations in order to achieve
a reasonable convergence region. Moreover, for multimodal
or more complex tasks, the exploration distribution can be
modeled as a GMM. We originally used GMMs, but initial
experiments showed that only one Gaussian component was
sufficient to model our experimental problems and more
components lead to overfitting. Furthermore, a requirement
for the demonstrations is that they need to be performed in
worst case scenarios, so that they cover the variability of both
exploration region and dynamics encountered in the task.

V. CONCLUSIONS AND FUTURE WORK

We presented a simple yet data efficient LfD method teach-
ing robots to imitate human search strategies for assembly
tasks. The key idea is to first learn from human demonstra-
tions both an exploration distribution and a dynamics model
and then use these to generate candidate search trajecto-
ries covering said exploration distribution with superposed
forces extracted from the dynamics model. We evaluated
two different trajectory generating methods: TSHIX, our own
sampling based method, and ergodic control, a deterministic
optimal path planner. The experimental results demonstrate
that our method is data efficient as it learns to complete 2D
and 3D search tasks from only one, respectively, two human
demonstrations, a major improvement over current exception
strategies that have been shown to only work in 2D.

The method suffers from the same issue most LfD methods
do, mainly that it can only learn what it has seen. One remedy
to this can be found in the research regarding Human-Robot
Interaction, where a recent study investigated how to instruct
human teachers to give informative demonstrations [19].

There are several interesting directions for future work.
First of all, as we observed from demonstrations that humans
tend to naturally perform their search in distinct phases and
in no more than three dimensions, it stems to reason that it
is more efficient to model high dimensional searches as a
sequence of lower-dimensional ones with, e.g., the method
presented in [20]. Another interesting direction is to analyze
whether the temporal correlations of the human search can
be included in the exploration distribution. Furthermore, as
experienced during the initial trials the quality of the human
demonstrations varied substantially, raising an interesting
question on how to develop teaching environment for both
human and robot in order to get high quality demonstrations.
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