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Abstract—Skeleton-based action/gesture recognition has al-
ready witnessed excellent progress on processing large-scale,
laboratory-based datasets with pre-defined skeleton joint topol-
ogy. However, it’s still an unsolved task when it comes to
real-world scenarios with practical limitations such as small-
scaled dataset sizes, few-labeled samples, and various skeleton
topologies. In this paper, we worked on the recognition of micro-
gesture, which are subtle body gestures collected in real-world
scenarios. Specifically, we utilize contrastive learning to heritage
the knowledge from known large-scale datasets for enhancing the
learning on fewer samples of micro-gestures. To overcome the gap
caused by various domain distribution and structure topology
between the datasets, we compute skeleton representations from
augmented sequences via momentum-based efficient and scalable
encoders as additional inductive priors. Importantly, we proposed
an effective dense-graph based unsupervised architecture that
resorts to a queue-based dictionary to store positive and negative
keys for better contrast with queries to learn substantially
efficient and discriminant patterns in the feature space. Together
with cross-dataset experimental results show that our model sig-
nificantly improves the accuracies on two micro-gesture datasets,
SMG by 7.4% and iMiGUE by 18.41% advocating its superiority.

I. INTRODUCTION

Human action/gesture analysis is an important area of
research in computer vision where the goal is to automatically
detect, recognise and interpret human behaviors from the
data available as either images, videos or skeleton. For this
purpose, a large amount of RGB data has been used. Due
to the recent developments of depth sensors [1], the task of
action/gesture recognition is revolutionized and the community
has witnessed a shift towards depth images as well as skeleton
data. The skeleton data is a compact representation of the
human body where the human body joints are represented in
three-dimensional coordinates as graph data. Leveraging from
such graph data of the joint coordinates, 3D human skeleton
modeling has proved to be more effective by utilizing various
positions and viewpoints [2].

Most of the existing skeleton-based methods use super-
vised learning methods which rely on a handsome amount
of annotated data [3], [4], [5]. However, labeling such large
datasets, especially in the wild scenarios, is a tedious job and
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Fig. 1. An illustration of supervised and unsupervised methods (a) shows
the supervised model for MG dataset, (b) shows the proposed unsupervised
method with inductive prior moment-based augmentation and pre-trained
model knowledge. MG samples are borrowed from iMiGUE dataset.

needs a workforce thereby making the overall process time-
expensive. Importantly, the inevitable data biasedness due to
human involvement and higher inter-class similarities makes
the data labeling task more difficult, ultimately leading to
mislabeling or uncertain labeling [6]. Besides, small-scaled
datasets sizes, few labeled samples, and various skeletons
are all unsolved issues in practice of real-world scenarios,
unsupervised methods provide effective ways to learn the
gesture representations from data without the need of manual
annotations.

In gesture recognition, a challenging task is recognising
Micro-Gestures (MG) which are different than normal ges-
tures. Normal gestures are used to convey certain messages or
feelings directly such as waving hands for hello or goodbye.
However, MG are unintentional behaviors induced by a per-
son’s inner feelings, such as rubbing hands because of stress.
Such gestures are involuntary emotional actions that exhibit a
person’s true emotions. MG are subtle, swift and used to hide
a person’s internal emotions, making it more challenging task
than normal gestures and action recognition [7], [8].

Keeping the aforementioned challenges in mind, in this
work, we propose an unsupervised learning framework to
recognise MG from two distorted versions of the incoming
batches of data which are firstly augmented. The augmented
data is then fed to the model’s core, where a couple of



dense graph-based encoders are used to learn from augmented
instances of the skeleton sequences. To maximize the simi-
larity between the query and positive keys for better gestures
representation, contrastive learning is used. Following on, the
learned queries are finally fed to a linear classifier to perform
MG recognition. An illustration of our proposed unsupervised
learning framework is shown in Figure 1.

In the following, we highlight several salient features of our
work.

• We introduce a novel and efficient extension of the
existing MSG3D model, namely Efficient Dense-Graph
Convolutional Network (EDGCN).

• To our knowledge its the first attempt to utilize the prior
knowledge from large datasets with unsupervised learning
to improve the performance of small real-world datasets
for skeleton based MG recognition.

• Another upshot of our proposed method is that it is
equipped with the moment-based feature augmentation
strategy that substantially reduces the knowledge-gap
between large and small MG datasets.

• Our efficient model design additionally offers a robust
framework to yield the-state-of-art results on MG datasets
with both intra- and cross-dataset settings.

The rest of the paper is organized as follows: Section II
discusses the related work in the literature, while Section III
explains the methodology of our unsupervised model. Sec-
tion IV presents the experimental setups, results, and discus-
sions, whereas Section V concludes the paper.

II. RELATED WORK

The action/gesture recognition methods are divided into
two main categories, supervised methods and unsupervised
methods, both are reviewed in this section.

A. Skeleton-Based Supervised Methods

A skeleton-based data consists of 2D and 3D points of joints
of human body. It has some benefits over images and videos
because it is more robust against noises brought by such as
lighting conditions and background cluttering, and could focus
more on gestures and actions. Yan et al. [3] proposed a spatial-
temporal graph convolutional network (STGCN) to extract
complex information from human skeleton for action recogni-
tion. Si et al. [4] exploited Long Short-Term Memory (LSTM)
along with convolutional networks to improve the performance
using better discriminatory spatial and temporal features. Shi et
al. [5] used a two-stream adaptive graph convolutional network
(2s-AGCN) which has a data-dependent graph with first and
second-order bone information for action recognition. Liu et
al. [9] introduced the multiscale unified spatial-temporal graph
convolutional operator (MS-G3D). Unlike ST-GCN, a single
node is connected to its neighbors in temporal space which
creates a dense connection to the next temporal nodes.

However, all the aforementioned methods need a large
amount of annotated data to fully preserve the feature repre-
sentation of the target data distribution and failed to efficiently
learn the feature representation with small-scale datasets.

Instead, we propose a novel and efficient dense-graph net-
work, the architecture of which is optimized for unsupervised
learning with fewer labeled samples.

B. Skeleton-Based Unsupervised Methods

Recent supervised approaches have achieved robust perfor-
mance, however, unsupervised setup is more advantageous,
where is no sufficient data with reliable annotation. Zheng et
al. [2] used unsupervised representation learning to capture
global motion dynamics. The generative adversarial network
(GAN) is used as encoder-decoder for modeling motion dy-
namics and learning discriminative features for recognising
actions. Similarly, the method proposed by Su et al. [10]
is benefited from encoder-decoder recurrent neural network
(RNN) to learn features for action recognition. Lin et al. [11]
integrated jigsaw puzzle, motion prediction and contrastive
learning to learn more generalized representation and used
unsupervised Bidirectional-Gated Recurrent Unit (Bi-GRU)
encoder for action recognition. Li et al. [12] combined RGB
and depth images and used unlabeled data to learn view-
invariant action and predict action 3D motion. One of the
approaches to achieve unsupervised learning is contrastive
learning [13].

Contrastive learning is an effective unsupervised learning
paradigm which has been used for various pretext tasks
[14]. One of the main contributors to contrastive learning is
contrastive loss which represents the similarity among pairs
in a space. The noise-contrastive estimation (NCE) [15] pulls
the similar instances of augmented samples and pushes away
the distinct ones. The contrastive multi-view coding (CMC)
[16] maximizes mutual information among different views,
and momentum contrastive paradigm (MoCo) [17] contributes
to the learning by using momentum-based updates and queue-
based dictionary.

C. Skeleton-based micro-gestures datasets

Most of the literature focused on laboratory collected dataset
[18], [19] for the skeleton-based action recognition task.
Those datasets are large-scale, category balanced, multi-view
collected, which are idealized settings for machine learning
methods. However, for in-the-wild datasets [7], [8], [20] based
on real-world scenarios, classes are commonly unbalanced
and the samples size is smaller as compared to laboratory
collected datasets, which makes the task more challenging.
Some datasets used actors to perform certain tasks, however,
in a real-world scenario, even for same action, there would
be many different styles when performed by different people.
Skeleton contains topological and geometrical properties of
shapes, such as length, width, direction and connectivity.
Different datasets use various skeleton topologies, such as
NTU RBG+D 60 [18] and SMG [8] dataset use Kinect (Kinect
v2) while the iMiGUE [7] datasets uses OpenPose [21] skele-
ton topology. This makes the action/gesture recognition task
more challenging for models to learn features from different
topologies [22].
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Fig. 2. An overview of our proposed dense-graph based unsupervised learning framework for efficient MG recognition.

III. METHODOLOGY

In this work, we propose an unsupervised-based model to
capturing MG features (representations) without providing the
labeled data. The model takes a skeleton sequence as input,
converts it into two random augmentations and feeds them
to the encoders. We use EDGCN (query) and momentum-
based EDGCN (key) encoders (discussed in Section III-B).
The encoders take the augmented data into hidden layers
followed by the pooling layers where the temporal average
pooling is applied. The query encoder updates their weights
via backpropagation while the key encoder optimizes its
weights through the momentum-based update. Till then we
have the augmented instances in the keys and query where the
contrastive learning takes place for better gestures representa-
tion. The output of the query encoder is then fed to a linear
classifier with their original labels to perform the final step
which is MG recognition as shown in Figure 2. The proposed
model is evaluated through two MG datasets which are SMG
and iMiGUE and action recognition dataset NTU RGB+D 60
for cross-evaluation.

A. Unsupervised Framework

An input sequence X , consists of T consecutive skeleton
frames X = {x1, .., xT } where XϵRM×J×3, M is the number
of persons, J is number of joints and 3 corresponds to the
dimensions. The training set is ζ = {Xi}Ni=1 where N
is the number of skeleton sequence acquired from multiple
persons. Each sequence xi corresponds to label Yi, where
Yiϵ{c1, ..., cz} and z corresponds to gesture classes. We need
to learn gesture representation ϕ effectively from the sequence
X without providing the label Yi. The learned representation ϕ
is then evaluated by linear protocol and fed to a linear classifier
with labels to classify MG.

Several augmentation strategies were used to learn more
robust and discriminatory features from unlabeled sequences.
These augmentation strategies include rotation, shear, reverse,

Gaussian noise, Gaussian blur, joint mask and channel mask
borrowed from [23].

Two encoders are used to learn discriminatory features from
the augmented instances of the sequence without providing
the sequence labels. While the query encoder fϕ learns
and updates their weights through backpropagation, the key
encoder fψ updates their weights with the collaboration of
query encoder fϕ using weighted average, such as momentum
average. The fψ encoder followed by two keys, ψ+ represents
the positive keys that contains the current batch keys, whereas
the queue contains negative keys ψ− from immediate batches,
therefore it is hard for a model to update parameters with a
large number of keys in a dictionary which is intractable [17].
During the training phase, the fψ model updates its weights
using following equation:

ωψ ← mωψ + (1−m)ωϕ (1)

where ωψ and ωϕ are parameters of fψ and fϕ encoder and
m is the update rate which lies between 0 and 1.

The augmented sequence Xa and Xb encoded by the hidden
layer of the encoder as follows:

hϕ = fϕ(X) =

K∑
k=0

D
−1/2
(τ,k)A(τ,k)D

−1/2
(τ,k) [X

a(l)
(τ) ]tΘ

l
k (2)

hψ = fψ(X) =

K∑
k=0

D
−1/2
(τ,k)A(τ,k)D

−1/2
(τ,k) [X

b(l)
(τ) ]tΘ

l
k (3)

where A represents the adjacency matrix, D is a diagonal
degree matrix, Θl shows the learnable weights of matrix at
layer l, X represents the features and t shows the time,
while τ and k are the window size and scales of aggregation,
respectively [9].

After hidden layers, the average pooling is performed on all
the hidden layer across the temporal domain of each encoder,
fϕ and fψ .



ϕ =
1

T

T∑
i=1

hϕi
(4)

ψ+ =
1

T

T∑
i=1

hψi (5)

where ψ+ represents the positive keys in an augmented
sequence. In every batch, the positive keys correspond to ϕ
to learn the discriminatory features via contrastive learning.

A queue-based dictionary is used for storing the positive
keys ψ+ in each mini-batch from the augmented sequence.
The previous batch keys are considered as negative keys ψ−
in a queue and the oldest ψ− is dequeued to keep the dictionary
up-to-date and consistent with query ψ for better contrastive
learning.

Our goal is to learn more discriminatory features and
accurately classify gestures in a sequence therefore we need a
better loss function that can maximize the similarity between
query ϕ and all the keys ψ while reducing the loss. The loss
function we used is as follows:

loss = −log exp(ϕ.ψ+/λ)

exp(ϕ.ψ+/λ) +
∑K
i=1 exp(ϕ.ψ

i
−/λ)

(6)

where λ controls the learning speed and K is the number of
negative keys ψ−in a queue.

After all the aforementioned process, the query ϕ has been
learned effectively through contrasting with keys, now the
query ϕ will be fed to the linear classifier with their original
labels for training and will be kept frozen during linear
evaluation.

B. Efficient dense-graph convolutional network

Inspired by the huge success of the MSG3D [9] model in the
task of supervised action recognition, we propose to heritage
the MSG3D architecture as an encoder because it captures
complex joint correlation across the spatial and temporal
domain. However, we find that the original MSG3D model for
unsupervised learning tasks is too complex to learn discrimi-
nate features. Since it learns from the dense constructed graphs
of skeleton topologies, too detailed graph structures will let it
suffer from the overfitting issue in the contrastive learning (see
later experimental parts). To this end, we propose an efficient
dense-graph convolutional network (EDGCN). The EDGCN
model learns features across spacetime with less number of
aggregations and small range modeling instead of a large
number of aggregation and long-range modeling. Specifically,
instead of spanning the feature channel into multi-scales to
construct hyper-dense graphs, we restricted the input feature
channels to a minimum scale without hurting the effectiveness
of computing complex correlations by utilizing the strength of
moment augmentation (see Section III-C) fix the convolutional
window in temporal modeling and restricted it to a minimum
scale without hurting the effectiveness of computing complex
correlations. Besides, instead of constructing multiple scales
of temporal channels and aggregating multiples of branches,

we implement simple temporal convolutional layers to the end
of each aggregation of the spatial features from the graph
convolutional layers (gcn3d1, gcn3d2 and gcn3d1 layers). In
this way, the redundant channels of the dense graph are sig-
nificantly pruned for unsupervised learning while rich spatial
and temporal information is still preserved.

C. Moment-Based Augmentation
Data augmentation is useful to improve the model perfor-

mance and enhance model generalization. In this paper, we
used the moment-based augmentation strategy proposed in
[24], The intuition of moment-based augmentation is that,
to fully learn the detailed information of graph topology,
we need to construct dense convolutional network for better
non-linear representing abilities. However, we argue that,
by augmenting the input skeleton joints from linear space
into non-linear space with moment representations, it can be
beneficial to the procedure of gradient descent and network
optimization. Specifically, given a 3D point (x, y, z), we made
use of its coordinates x, y, z and the products of them, namely
x2, y2, z2, xy, xz, yz as its feature vector. In fact, from the
point of view of moments and moment invariants, the features
x, y, z can be regarded as the first-order geometric moments
of the point, and x2, y2, z2, xy, xz, yz are its six second-order
moments, and so on.

IV. EXPERIMENTS AND RESULTS

We conducted various experiments with the following real-
world MG datasets.

A. Datasets
1) Real-world micro-gesture datasets: We use two real-

world datasets that are collected from in-the-wild scenarios.
Spontaneous Micro-Gesture (SMG) dataset [8] consists

of 3,692 samples 17 MG. The datasets were collected from
40 subjects during narrating a fake and real story with 25 3D
joints collected by Kinect.

Micro-Gesture Understanding and Emotion analysis
(iMiGUE) dataset [7] consists of 32 MG collected from post-
match press conferences videos. The training set consists of
13,936 and a testing set of 4,563 samples of MG to detect
negative and positive emotions with 25 3D joints collected
from OpenPose. Note that, following the protocol of [3], [9],
we regard the 3rd dimensional of the OpenPose joints (the
estimated probability of the joints) as a pseudo dimension.

2) Action Recognition dataset: NTU RGB+D 60 (NTU-
60) [18] consist of 56,578 skeleton sequences with 60 labels.
The data was collected from 40 individuals and captured by
three different camera angle views. Each frame consists of
1 to 2 subjects with N skeleton points, where N=25 body
joint nodes with their 3D locations. This dataset follows two
protocols, however, we use the first protocol for experiments:
1) Cross-subject (X-Sub) where 40 subjects are splits into
40,091 training and 16,487 testing samples. 2) Cross-view (X-
View) where 18,932 samples from camera 1 used for testing
while the rest of 37,646 samples from another cameras for
training.



TABLE I
ABLATION STUDY RESULTS ON SMG DATASET

Network Configuration Results (%) Model parameters

MSG3D [9] Full model
(13, 6) 37.2 4.36m

MSG3D [9] Simplified
model (6, 3) 44.6 2.46m

EDGCN (1, 1) 46.9 1.9m
*m = million

TABLE II
INTRA-DATASET RESULTS AND COMPARISONS WITH TOP-1 ACCURACY(%)

Dataset Methods Top-1
MSG3D [9] 44.6

SMG EDGCN (ours) 46.9
A-EDGCN (ours) 47.9

P&C (Encoder-Decoder) [10] 31.67
U-S-VAE Z (Encoder-Decoder) [7] 32.43

iMiGUE MSG3D [9] 36.9
EDGCN (ours) 36.8

A-EDGCN (ours) 37.5

B. Implementation Details

The proposed method uses EDGCN as query encoder ϕ and
momentum-based EDGCN as key encoder ψ with unlabeled
data to recognise gestures. We use an SGD optimizer with a
learning rate of 1e−5, the momentum of 0.9 and the weight
decay of 1e−4. We set the contrastive learning rate λ to 0.06
and queue size to 500. We use 60 epochs for unsupervised
gestures representation learning and 90 epochs for linear
evaluation. In the linear evaluation step, we use a single-layer
linear classifier with frozen parameters and use SGD optimizer
with a momentum of 0.9 and weight decay of 0.5 multiplied
at 15, 35, 60 and 75 epochs.

We evaluate and compare the results in two different set-
tings, Intra-dataset and Cross-dataset. In Intra-dataset setting,
we use three different models, to evaluate the datasets. 1)
MSG3D [9] method in unsupervised manners; 2) EDGCN:
Our proposed method and 3) Augmented EDGCN (A-
EDGCN) used to enhance the performance of our proposed
method via moment augmentation. We also compare our
proposed methods to previously published methods, such as
P&C [10] and U-S-VAE Z [7].

In Cross-dataset setting, we evaluate SMG and iMiGUE as
a target datasets with pre-trained models on SMG, iMiGUE
and NTU-60 datasets.

C. Ablation study

We conduct the ablation study of EDGCN on SMG dataset
to prove the efficiency of its architecture. Table I shows the
results of ablation study. The second column shows the number
of scales of GCN and G3D, respectively, which is one of the
hyper-parameters used in the MSG3D model [9]. Tabel I shows
the unsupervised MSG3D models that consist of a complex
graphical structure to extract features from real-world datasets
leads to model overfitting. The real-world datasets consist

TABLE III
CROSS-DATASET RESULTS AND COMPARISONS WITH TOP-1

ACCURACY(%)

Target
dataset

Skeleton
topology

Target dataset
samples

Pre-trained
dataset

Pre-trained
dataset samples

Skeleton
topology Top-1

Kinect 46.9
Pre-trained SMG 3,692

Kinect (MA) 47.9
Kinect 48.4

SMG Kinect 3,692 Pre-trained NTU 56,578
Kinect (MA) 40.2

Openpose 39.2
Pre-trained iMiGUE 18,499

Openpose (MA) 39.8
Openpose 36.8

Pre-trained iMiGUE 18,499
Openpose (MA) 37.5

Kinect 34
iMiGUE Openpose 18,499 Pre-trained NTU 56,578

Kinect (MA) 34.9
Kinect 35.3

Pre-trained SMG 3,692
Kinect (MA) 34.9

*MA = Moment Augmented

of fewer samples and unbalanced classes, which makes the
feature learning process more challenging. The first row of
Tabel I shows the MSG3D model that achieves the accuracy of
37.2% with the 4.36 million model parameters. To improve the
learning, we reduce the model scales significantly in simplified
MSG3D (second row) and empower the model to learn more
discriminatory features rather than learn redundant features.
The simplified MSG3D improves the accuracy by 7.2 which
reaches 44.6% and reduces the model parameters by 43%.
Lastly, our proposed method EDGCN performs better than
the other methods with an improvement of 2.3 in accuracy
that reached 46.9% and further reduces the model parameters
by more than 20% as shown in the last row of Tabel I.

D. Intra-dataset comparisons

We compare the results on the SMG dataset with the unsu-
pervised MSG3D baseline [9] which achieve the accuracy of
44.6% as shown in first row of Table II. Our proposed EDGCN
model performs better with 46.9% accuracy. With moment-
based augmentation, the A-EDGCN model outperforms the
aforementioned models with an accuracy of 47.9%.

Similarly, for iMiGUE dataset, by using the code of P&C
[10] method, we achieved an accuracy of 31.67% and our
baseline MSG3D achieve 36.9% accuracy which outperforms
the previous method U-S-VAE Z [7] with accuracy 32.43% as
shown in row three and four of Table II.

The unsupervised MSG3D on iMiGUE dataset performs
comparatively to our EDGCN model (36.9% vs 36.8%).
However, the moment-based augmented A-EDGCN model
outperforms the other methods and achieves the accuracy of
37.5% as shown in last row of Table II. This means that our
model improves the accuracy on SMG by 7.4% (44.6% vs
47.9%) and the accuracy on iMiGUE by 18.41% (31.67%
vs 37.5%) from their initial baselines which is a substantial
improvement for an unsupervised model.

E. Cross-dataset comparisons

Further experiments are also conducted via cross-dataset
to benchmark our model performance. In this set of exper-
iments, we use pre-trained models of three datasets, SMG,
iMiGUE and NTU-60. The SMG and NTU-60 datasets have



the same Kinect skeleton topology while the iMiGUE skeleton
topology is OpenPose. We cross evaluate the SMG dataset
using pre-trained models from NTU-60 and iMiGUE and
achieved the accuracy of 48.4% and 39.2%, respectively.
However, using moment-based augmentation, the accuracy of
pre-trained iMiGUE model is improved to 39.8% from 39.2%
meanwhile the moment-based augmented pre-trained NTU-60
model didn’t outperform the unaugmented pre-trained NTU-
60. One of the reason that pre-trained model on NTU-60
performs slightly better than the pre-trained on SMG and
iMiGUE models is that the NTU-60 has a large number of
training samples which performance also reflects in the current
experiments as shown in Table III.

On the other hand, we use similar pre-trained models to
evaluate the iMiGUE dataset. Table III shows that pre-trained
NTU-60 and pre-trained SMG did not perform well and got
lower accuracy than the pre-trained iMiGUE dataset. One
of the reasons is both NTU-60 and SMG have the same
skeleton topology and are different than iMiGUE topology
which affects the performance. However, still the moment
augmented pre-trained NTU-60 model improves the accuracy
by 2.35% than its unaugmented NTU-60 model. By using
pre-trained SMG, the unaugmented pre-trained model perform
better as we have fewer samples in the pre-trained SMG
than target dataset iMiGUE. The moment-based augmented
pre-trained SMG model also slightly underperforms with a
difference of 1.15% than its unaugmented SMG model because
of the low number of samples and different topologies could
leads to model overfitting.

Even though the pre-trained model datasets sample sizes
and skeleton topologies are different than the target model
datasets, the overall cross-dataset evaluation performes better.

V. CONCLUSIONS

In this paper, we proposed an unsupervised approach to
learn gestures representation more effectively using unlabeled
skeleton data. The augmented sequence enables the model to
learn more pattern invariant and discriminate features from
unlabeled data. An efficient dense-graph convolutional net-
work encoder along with a momentum-based efficient encoder
and queue-based dictionary helps learn better gestures rep-
resentation using a query, positive and negative keys. The
learned gestures representations were fed to the linear classifier
with their original labels for final micro-gestures recognition.
The moment-based augmentation was used to improve the
performance. We evaluated our proposed model using two
micro-gestures datasets, SMG and iMiGUE and achieved the
Top-1 accuracy of 47.9% and 37.5%, respectively. The cross-
dataset experiments also exhibited the model’s robustness.
The improvement in accuracy of SMG dataset by 7.4% and
iMiGUE dataset by 18.4% compared to their baselines is a
substantial performance by unsupervised framework.
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