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Abstract—Human activity recognition plays a central role in
the development of intelligent systems for video surveillance, pub-
lic security, health care and home monitoring, where detection
and recognition of activities can improve the quality of life and
security of humans. Typically, automated, intuitive and real-time
systems are required to recognize human activities and identify
accurately unusual behaviors in order to prevent dangerous
situations. In this work, we explore the combination of three
modalities (RGB, depth and skeleton data) to design a robust
multi-modal framework for vision-based human activity recog-
nition. Especially, spatial information, body shape/posture and
temporal evolution of actions are highlighted using illustrative
representations obtained from a combination of dynamic RGB
images, dynamic depth images and skeleton data representations.
Therefore, each video is represented with three images that
summarize the ongoing action. Our framework takes advantage
of transfer learning from pre-trained models to extract signif-
icant features from these newly created images. Next, we fuse
extracted features using Canonical Correlation Analysis and train
a Long Short-Term Memory network to classify actions from
visual descriptive images. Experimental results demonstrated the
reliability of our feature-fusion framework that allows us to
capture highly significant features and enables us to achieve the
state-of-the-art performance on the public UTD-MHAD and NTU
RGB+D datasets.

I. INTRODUCTION

Human activity recognition (HAR) refers to the process of

identification and categorization of a sequence of recorded data

from ubiquitous or visual sensors into well-defined basic activ-

ities. The identification of a single activity, also called activity

detection, consists in temporally localizing the movements of

the person in the scene. While the categorization of an activity,

known as activity classification, consists of distinguishing the

nature of a person movements using some spatial and temporal

cues or any other meaningful features that best describe the

ongoing actions and assigns it to its corresponding class. It is

to note that we use here the terminology of both action and

activity to refer to the same concept.

Vision-based HAR has become a very active research topic

in computer vision and image processing due to its wide appli-

cation fields. Roughly speaking, it covers areas of automatic

video surveillance, public security, virtual and augmented

reality, health care and home monitoring, human-computer

interaction and robot learning [1]. In addition, the increasing

progress in sensing technologies prompted the emergence of

intelligent real-time systems that can potentially impact the

development of efficient human activity recognition systems

and enhance the quality of life and security of the individuals

[2]. Major vision-based HAR works focus on using one

single sensor modality to classify activities. This yields some

limitations while discriminating complex activities due to en-

vironment conditions such as lighting, perspective changes and

occlusions [3]. To achieve good results and enable robust HAR

systems, it is important to exploit more than one modality and

to this end, different fusion strategies are to be explored [1].

In this respect, the current paper attempts to combine three

modalities from RGB, depth and skeleton data for vision-

based HAR in order to achieve high recognition accuracy. The

proposed framework integrates three sets of images created

using data acquired from the modalities mentioned above.

For RGB and depth data, we use an approximated version

of rank-pooling in the same spirit as [4], [5] to create two

sets of dynamic images. Each dynamic image summarizes

information contained in the video frames into one single

visual image. Furthermore, a skeleton data is used to create

images that encode the locations of the skeleton joints among

the video frames and hence describe the temporal aspect of

the action. These newly created images are then employed

to enable transfer learning from a pre-trained model in order

to extract significant features. A feature-fusion strategy is per-

formed later on using the Canonical Correlation Analysis CCA

[6] to create highly discriminative feature vector that combines

selective features from the three single feature vectors. Once

the underlined unified vector is created, we train a Long Short-

Term Memory LSTM network to classify activities from the

video sequences. Finally, we test our proposal on the public

UTD-MHAD dataset [7] as well as the NTU RGB+D dataset

[8] and analyse the obtained results. The findings demonstrate

that our approach can achieve high recognition accuracy and

compete with the state-of-art HAR approaches. The general

overview of our HAR proposed methodology is shown in

“Fig. 1”. Unlike [9] where 5 CNN streams of front, side and

top depth motion maps along with motion history images and

skeleton joints clustering are fused. Especially, 2D CNN of

stacked dense flow difference images and a bi-gated RNN

of augmented skeleton data and a 1D CNN of augmented

inertial data are combined [10]. Our main contributions can



Fig. 1: The general overview of our proposed vision-based multi-modal approach for HAR

be summarized into the following:

• Summarizing RGB and depth videos into dynamic images

using an approximate rank pooling method introduced in

[4], [5].

• Encoding locations of skeleton joints along the video

frames into new representations.

• Extracting new features from RGB and depth dynamic

images and skeleton representations using transfer learn-

ing from pre-trained models.

• Developing a new feature fusion based strategy using

Canonical Correlation Analysis of RGB, depth and skele-

ton data modalities.

• Developing one bi-directional Long Short Term model

for action classification that has for input the resulting

features fusion vectors.

• Evaluating our proposed method on two datasets: UTD-

MHAD and NTU RGB+D where we performed cross-

view evaluation.

In the next section, we will briefly review related works

in vision-based HAR where we will discuss video repre-

sentations, RGB, depth and skeleton-based HAR techniques,

rank pooling of videos and multi-modal HAR approaches.

Our proposed multi-modal method is described in detail in

section III. In Section IV, we evaluate the proposed framework

on the public UTD-MHAD and NTU RGB+D datasets and

analyse the findings. Finally, we conclude the paper and

outline future research directions in the last section.

II. VISION-BASED HUMAN ACTIVITY RECOGNITION

Human activity recognition (HAR), as an important research

direction, has been extensively studied in the literature. Sum-

marizing all the existing HAR systems is quite hard [1] and

beyond the scope of this paper. We will restrict in this section

to review only vision-based HARs that overlap to some extent

with our approach. The existing vision-based approaches can

be categorized according to the input data type into many

categories among which RGB images, skeleton data and depth

images are the most commonly employed ones. It is worth not-

ing that, actually, some works exploit a single modality while

many others combine one or two modalities to improve the

performance of their HAR systems [1]. On the other hand, the

temporal dimension of the action is often taken into account

explicitly to enhance the recognition performance. However,

many approaches extract spatial features of the image and deal

with the temporal variations in the classification stage. In line

with our multimodal HAR proposed framework highlighted

in the introduction section, we review related work in video

representation and action recognition based on the three data

modalities: RGB, depth and skeleton data.

Video representations: Features extracted from image

sequences expand to variations in action execution, person

appearance, shape and motion. These should be sufficiently

distinctive to allow distinguishing between different actions.

Efficient action representation is the key to yield robust and

expressive features. Therefore, many video-based HAR meth-

ods are based on video representation to efficiently describe

the action. They can be grouped accordingly into two main

categories. The first one considers video as a stream of still

images or as transitions between frames. The second category

represents videos as 3D dimensional volumes. The majority

of hand-crafted-based or deep learning-based human activity

representations belongs to the first category such as [5], [11].

The popularity of the first category raises from its efficiency

and simplicity of use for activity recognition. Moreover, video

is represented as a spatial-temporal volume by stacking frames

over a given sequence and action recognition is performed

based on either spatial or temporal features or both. These

features may be texture, color, posture, histograms of optical

flow or histograms of oriented gradients. Many authors use

spatio-temporal templates and 3D CNNs to learn features from

spatio-temporal volumes and capture dynamics. For instance,

[12] uses spatio-temporal templates, while [13] uses 3D CNNs

for activity recognition based on video volume representations.

Furthermore, a multi-view system to understand, in real time,

the interactions between the ball and the players based on their

respective 3D trajectories was presented by [14].

RGB images for HAR: Many works in the literature

rely on the RGB videos to construct robust HAR systems.

Several holistic action representations based on RGB images



and powerful features are adopted by many authors to describe

actions robustly. For instance, [15] combined shape features

and optical flow calculated among RGB frames to detect

change in motion. These approaches allow us to track the

person in the scene and classify the ongoing activity. In

addition, [16] proposed a long-term motion descriptor called

sequential Deep Trajectory Descriptor (sDTD) which feeds a

CNN-RNN network with dense trajectories to learn an effec-

tive representation for long-term motion. On the other hand,

silhouettes were exploited by [17], [18] after extracting them

using background subtraction. Automatic feature extraction

from RGB images through deep learning was also suggested

in many works. This is justified by the strong ability of

CNN networks in dealing with RGB images. The authors of

[19] extracted features from video sequences using pre-trained

model, then an architecture of Deep Bidirectional LSTM for

learning sequence information in the features of video frames

was proposed. Similarly, [20] presented a Deep Long-term

Recurrent Convolutional Network that deals with spatial and

temporal features at once. Deep learning methods represent

low level to high level features with multiple layers of the

neural networks. Activity classification is therefore performed

either using a popular machine learning classifier or using deep

learning networks. The above can also be combined as in [21]

where a method that integrates graphical models and deep

neural networks into a joint framework was presented.

Depth images for HAR: Due to the emergence of depth

cameras that can overcome some inherent privacy and limita-

tions issues related to traditional cameras, depth image-based

representations for HAR have evolved significantly in recent

years. 3D structure of the body can be generated by integrating

depth sensors and body tracking, enabling straightforward

action recognition. Many limitations related to lighting vari-

ations, perspective change, variation in appearance, complex

backgrounds and scale variation can be resolved using depth-

based HAR methods. Furthermore, the extraction of informa-

tion content generated by depth images is often straightfor-

ward. This includes the body shape information, the silhouette

data and the whole image region within camera view. Several

depth-based HAR approaches have been suggested in the

literature. For instance, a local spatio-temporal descriptor for

action recognition from depth video sequences is developed by

[22]. It takes into account shape discrimination, motion change

and action speed variations to distinguish between different

actions. Similarly, [3] proposes a human pose representation

model based on deep convolutional neural network CNN. The

proposed model maps human poses acquired from several

views of depth videos to a view-invariant high-level space.

Although, depth image-based HAR has drawn growing interest

by providing very promising results, depth-based methods still

face difficult issues such as occlusion.

Skeleton-based action recognition: With the quick advent

of depth sensors and algorithms of real-time skeleton estima-

tion, many authors have demonstrated that skeleton features

are more robust than RGB and depth features. This allows

them to take advantage of this type of features for HAR. 3D

locations and angles of joints are common features that can be

used to build robust skeleton representations for HAR. Various

methods based on skeleton analysis and representations of

the set of joints for action recognition have been proposed

in the literature. For instance, [23] proposes an end-to-end

fully connected deep LSTM network for skeleton-based ac-

tion recognition that relies on co-occurrence features of the

skeleton joints. The co-occurrences of the joints are proven

to be able to characterize accurately human actions. Similarly,

[24] proposes a novel adaptive recurrent neural network (RNN)

with LSTM architecture to automatically regulate observation

viewpoints during the occurrence of an action. The 3D skele-

ton newly represented in a new coordinate system is used for

accurate action recognition. Moreover, an end-to-end spatial

and temporal attention model based on Recurrent Neural Net-

works (RNNs) and LSTM for HAR from discriminative joints

of the skeleton was proposed by [25]. Likewise, authors of

[26] presented an enhanced skeleton visualization method for

view invariant HAR, where a sequence-based view invariant

transform for the skeleton joints is performed and then the

newly generated skeleton is visualized as series of enhanced

RGB-images that encode spatial and temporal information

related to skeleton joints. Finally, features were extracted using

a CNN-based model allowing action classification.

Rank pooling videos: Rank pooling in videos was in-

troduced by [5], [11]. It allows to capture the video-wide

temporal evolution while preserving actions execution tem-

poral ordering. The authors of [5] proposed to train a linear

ranking machine on the video frames and to use its parameters

as a new video representation. When trained on different

samples of the same action, the authors demonstrated that

the ranking machines would have similar ranking functions.

[27] extended the rank pooling to encode video sequences at

multiple levels recursively where the output of each encoding

level is itself the input of the next encoding level in order

to capture higher-order dynamics. Similarly, [4] introduced a

CNN-based approximated rank pooling approach that allows

us to learn dynamic image networks for action recognition.

Multi-modal methods for HAR: Multi-modal data fusion

in HAR consists in combining many sensor modalities data

in order to increase the robustness and the reliability of the

recognition system while reducing single sensor effects such

as noise [1]. To achieve this, it is essential to provide a com-

plementary highly discriminative fusion of these modalities.

In the literature, many fusion strategies have been employed

to efficiently select meaningful information among different

combined modalities [1]. Feature-level fusion, through in-

creasing feature-space, projecting on some external frame, or

using correlation-like analysis, is one of the best strategies

for fusing heterogeneous modalities [1]. For instance, depth

data, skeleton information and RGB images provide important

complementary features. Indeed, depth data is more robust

to illumination changes and scale variation but sensitive to

occlusion; while skeleton information is more robust to oc-



clusion effects and RGB image provides fine-grained image

segmentation. Many vision-based HAR approaches combine

two of these three modalities to improve the recognition

accuracy but very few works focused on the combination

of all of the three modalities. On the other hand, a robust

HAR approach combining skeleton and RGB data streams

was presented by [2], although, the authors used decision-

level fusion instead of feature-level fusion. To effectively fuse

features extracted from several modalities, some works use

Canonical Correlation Analysis which allows us to learn from

heterogeneous data and afford high linear correlation outputs.

For instance, [28] developed a deep canonical correlated

analysis to fuse accelerometer and gyroscope data for human

activity recognition.

Building on [28], our work combines features extracted

from dynamic images and skeleton images using canonical

correlation analysis. Dynamic images were calculated from

RGB and depth sensors separately, while skeleton images refer

to RGB image representation that we derive from skeleton

joints information.

III. PROPOSED METHOD

This paper advocates a feature-level fusion framework

for multi-modal human activity recognition using Canonical

Correlation Analysis of the three modalities: RGB, depth

information and skeleton. For this purpose, we created a set

of dynamic images from RGB and depth videos separately.

Skeleton visual images were inferred from skeleton joint

information. Dynamic images are extracted from the video

sequence in a way to capture spatial and temporal information

among all frames. Especially, a dynamic image allows us to

encode the video sequence robustly and describe the ongoing

action in the video. For this purpose, we use an approximate

rank pooling method as suggested in [4] to construct dynamic

images. Moreover, skeleton images are constructed using 3D

locations of the skeleton joints. Once the three sets of images

were created, we use transfer learning from a pre-traind

model to extract features from these images. Afterwards, we

perform a fusion of these features using a feature-level fusion

strategy based on Canonical Correlation Analysis. Finally,

we train a bi-directional LSTM network to recognize and

classify activities in the input video sequences. In summary,

our methodology is composed of four steps that we explain in

detail in the following subsections.

A. Dynamic image construction for RGB and depth images

Dynamic image (DI) consists of a single image representa-

tion of a video sequence, capturing the temporal evolution of

ongoing action. DIs can provide simple, powerful and efficient

representations that can be used for action recognition. The

concept of ”Dynamic images” has been presented in [5], [4],

[29]. For that, the authors of [4] suggest to use an approxi-

mated rank pooling method to construct DIs. They observed

that: (1) DIs focus on the motion instead of background pixels

which are averaged away, (2) DIs behave differently for actions

of different speeds and (3) DIs are reminiscent of some other

(a) (b) (c)

Fig. 2: Samples of RGB video frames from the UTD-MHAD dataset [7] in
the first row and their corresponding dynamic RGB images in the second row.
Column (a) corresponds to a basketball shoot while the subject is waving and
sitting in columns (b) and (c) respectively.

(a) (b) (c)

Fig. 3: Samples of Depth video frames from the UTD-MHAD dataset [7]
in the first row and their corresponding dynamic Depth images in the second
row. Column (a) corresponds to a basketball shoot. In column (b) the subject
is waving, and he is sitting in column (c).

imaging effects such as blur and panning. Similarly to [4], we

use DIs to encode each video into one single image. The latter

can provide us useful information on the ongoing action in the

scene. We use the proposed approximated rank pooling method

to calculate DIs for both RGB and depth video sequences

separately. From the above and in the same spirit as [5], the

video sequence is presented as a ranking function of its frames

as follows:

We refer to the feature vector extracted from frame It by

ψ(It). So Vt = 1
t

∑t

T=1 ψ(It) is the average of the features

extracted from frames {I1,I2 ...,It} over time t. The ranking

function assigns a score S(t|d) =< d, Vt > to each time

increment t, where d ∈ IR is a vector of parameters.

To reflect the rank of the frames in the video, d is learned

as a convex optimization problem using the RankSVM formu-

lation since later times are associated with larger scores, i.e

∀{q, t} s.t q > t⇒ S(q|d) > S(t|d).

d∗ is the optimizing function to the objective function given

in “(2)” and T is the number of frames. We can see from “(1)”

that ρ(I1, ...IT ;ψ) maps T video frames to a single vector d∗.

This operation of construction of d∗ from T frames is called

Rank Pooling.

d∗ = ρ(I1, ...IT ;ψ) = argmin
d

E(d) (1)



E(d) =
λ

2
||d||2+

2

T (T − 1)

∑

q>t

max{0, 1−S(q|d)+S(t|d)}

(2)

This objective function is composed of two terms: the first

one corresponds to the usual quadratic regularizer of SVM

while the second term serves to count how many pairs q > t

are incorrectly ranked by the scoring function. In other words,

it counts the number of pairs for which their associated scores

are not separated by at least a unit margin.

The vector d∗ contains enough information to rank all

frames of the video. Similarly to [4], we apply rank pooling

directly to RGB frame and depth image pixels. For that,

ψ(It) performs a component-wise non-linearity such as the

square root function. As observed, d∗ has the same number

of elements as video frames and can therefore be used to

represent the video.

Solving “(2)” may be computational expensive. For this

purpose, we use approximated rank pooling which gives good

results in practice to smooth the computation and make it

faster. More specifically, the idea behind the approximated

rank pooling is to consider the first step in a gradient-based

optimization of “(2)”. We then start with d =
−→
0 and get a

first approximated solution by gradient descent:

d∗ =
−→
0 − η ▽ E(d)|

d=
−→
0

∝ − ▽ E(d)|
d=

−→
0

for η > 0
where :

▽ E(
−→
0 ) ∝

∑

q>t

▽max{0, 1− S(q|d) + S(t|d)}|
d=

−→
0

=
∑

q>t

▽ < d, Vt − Vq >=
∑

q>t

< Vt − Vq > (3)

So, we can extend d∗ as follows, where βt are scalar

coefficients.

d∗ ∝
∑

q>t

< Vq − Vt >=

T∑

t=1

βtVt (4)

By expanding the sum
∑

q>t Vq − Vt, each Vt appears (t-

1) times with positive sign and (T-t) times with negative sign.

Hence, we can deduce that βt = (t−1)−(T−t) = 2t−T−1.

Since we already have Vt = 1
t

∑t

T=1 ψ(It), d
∗ can be

written as a linear combination of the feature vector ψ(It):
d∗ ∝

∑T

t=1 βtVt =
∑T

t=1 αtψ(It).

The approximated rank pooling is given such that the

operator d∗ is reduced to respect “(5)”. So, the calculation

of DIs consists in accumulating the video frames after being

multiplied by αt while αt = 2(T−t+1)−(T+1)(HT−Ht−1)
and Ht =

∑t

i=1
1
t is the t-th Harmonic number and H0 = 0.

ρ̂(I1, ...IT ;ψ) =

T∑

t=1

αtψ(It) (5)

The vectors d∗RGB and d∗Depth obtained from rank pooling

the RGB and depth videos respectively, comprise our DIs

(a) (b) (c)

Fig. 4: Examples of skeleton representation from the UTD-MHAD dataset
[7] in the first row and their corresponding skeleton visual images in the
second row. Columns (a), (b) and (c) correspond to a basketball shoot, wave,
stand to sit activities respectively.

which we call DIrgb and DIdepth. “Fig. 2” and “Fig. 3”

illustrate some examples of RGB, depth images (from UTD-

MHAD dataset) and their correponding dynamic RGB and

dynamic Depth images, respectively. Columns of both images

(in their order of appearance) correspond to basketball shoot,

wave and stand to sit activities. We can see from these figures,

that dynamic images were able to accurately summarize the

execution of each of the activities as still images.

B. Skeleton images from skeleton joints

Human activity recognition from skeleton information have

been facing many challenges among which is: how to ef-

fectively represent spatio-temporal skeleton sequences? More-

over, retrieving features from RGB images using pre-trained

models is giving very promising results in many tasks as

well as for human activities recognition. Therefore, to take

advantage of these models and HAR from skeleton data,

we create images from skeleton sequences, then we extract

discriminative features from these images using a pre-trained

model. For that, and for each video sequence, we normalize the

coordinates of the skeleton joints (x,y,z) and use them to create

an RGB image which we call Iskel. Skeleton image allows us

to track changes of each skeleton joint over time and, hence,

describe the corresponding activity. “Fig. 4” illustrates some

examples of skeleton representations from the UTD-MHAD

dataset and their corresponding skeleton images. Columns

correspond to basketball shoot, wave and stand to sit activities

respectively.

C. Features Extraction using pre-trained models

Due to the large amounts of data needed for training an

LSTM network, we extract features from our image sets

{DIsrgb and DIsdepth} using the Resnet50 model pretrained

on the large Imagenet dataset. Used widely as a backbone for

many computer vision tasks, it has been integrated in many

HAR approaches as well. It allows us to explore multiple levels

of deep features by dint of its stack of layers that is composed

of more than 150 layers. In addition, we use Alexnet to extract

features from Isskel images set. This feature extraction step is



important because it provides us a strong initialisation to our

feature fusion strategy compared to a straightforward use of

these images. Feature vectors calculated in this step are then

fused using Canonical Correlation Analysis which allows us

to select meaningful features.

D. Feature Fusion and activity classification

To obtain more discriminative feature vectors from our

created representations, we apply a feature fusion on the

extracted features from our three sets of images: the dynamic

RGB images (DIsrgb), the dynamic depth images (DIsdepth)

and the skeleton images (Isskel). Our feature fusion method

consists of combining feature vectors of the three modalities

into one single feature vector. The resulting feature vector is

supposed to be more meaningful than each single aforemen-

tioned modality related feature vector. For that, and similarly

to [6], we use Canonical Correlation Analysis (CCA) which

has been widely used for feature fusion.

Let our three feature vectors be Vx ∈ IRpxn, Vy ∈ IRqxn

and Vz ∈ IRrxn extracted from dynamic RGB images, dynamic

depth images and skeleton images respectively. Each of these

vectors contain n samples. To get a representative feature

vector that fuses the three vectors, we apply CCA twice. We

apply CCA firstly on two vectors, for example Vx and Vy , we

obtain F1. Then, we apply CCA again on F1 and Vz .

For each two vectors X and Y, we calculate the within-

sets covariance matrices and the between-set covariance matrix

that we call: Sxx ∈ IRpxp, Syy ∈ IRqxq and Sxy ∈ IRpxq

respectively and Syx is the transpose of Sxy: ST
xy . Next, we

create the covariance matrix S ∈ IR(p+q)x(p+q) as illustrated

below.

S =

(
Sxx Sxy

Syx Syy

)
=

(
cov(X) cov(X,Y )
cov(Y,X) cov(Y )

)
(6)

It is observed that understanding the correlations between

X and Y using the covariance matrix S is difficult. Therefore,

CCA is used to maximize the pairwise correlations given in

“(7)” across the two data sets using Lagrange multipliers.

Solution to the objective function is given by the optimizer

linear combinations X∗ and Y ∗.

Canonical variates X∗ and Y ∗ are defined as X∗ =
WT

x X , Y ∗ = WT
y Y and var(X∗) = var(Y ∗) = 1 where

cov(X∗, Y ∗), var(X∗) and var(Y ∗) are calculated using the

set of “(8)”.

corr(X∗, Y ∗) =
cov(X∗, Y ∗)

var(X∗)var(Y ∗)
(7)




cov(X∗, Y ∗) =WT

x SxyWy

var(X∗) =WT
x SxxWx

var(Y ∗) =WT
y SyyWy



 (8)

To obtain the transformation matrices Wx and Wy , one

should solve the eigenvalue “(9)”. Ŵx and Ŵy are the eigen-

vectors and Λ2 is the diagonal matrix of eigenvalues or squares

of the canonical correlations. For each equation, the number of

non-zero eigenvalues (i.e. λ1 >= λ2... >= λd) that are sorted

in decreasing order is d = rank(Sxy <= min(n, p, q)). Wx

and Wy consist of sorted eigenvectors corresponding to the

non-zero eigenvalues.
{
S−1
xx SxyS

−1
yy SyxŴx = Λ2Ŵx,

S−1
yy SyxS

−1
xx SxyŴy = Λ2Ŵy

}
(9)

Hence, the covariance matrix S defined above will be

of the following form. Let Id be the identity matrix and

diag(λ1, ..., λd) be the diagonal matrix of the associated

eigenvalues.

S =

(
Id diag(λ1, ..., λd)

diag(λ1, ..., λd) Id

)
(10)

We can observe that X∗ and Y ∗ have non-zero correlation

only on their corresponding indices and are therefore uncor-

related within each data set. Finally, we perform feature-level

fusion by concatenating the transformed feature vectors. The

resulting feature vector F1 is used to perform another time the

feature-level fusion by concatenating the transformed feature

vectors F ∗

1 and Z∗ (Z corresponds to the third modality feature

vector).

F1 =

(
X∗

Y ∗

)
=

(
WT

x X

WT
y Y

)
=

(
Wx 0
0 Wy

)T (
X

Y

)
(11)

Once our fused feature vectors are calculated, we perform

activity recognition using a bi-directional LSTM network. This

allows us to comprehend temporal dynamics encoded by the

feature extractor (Resnet50 model for RGB and depth images

and Alexnet for skeleton images) into feature maps. These

feature maps are fused using CCA and fed to the classifier.

IV. EXPERIMENTAL RESULTS

We evaluate our approach on the publicly available datasets

UTD-MHAD [7] and NTU RGB+D [8]. In the subsequent

sections, we present a brief description of these datasets

followed by our experimental results. We compare the recog-

nition performance of each individual sensor modality to the

performance of combining each pair of modalities and finally

to the performance of fusing the three modalities. We display

our performance results in Table I and Table II for UTD-

MHAD and NTU RGB+D datasets.

In our LSTM model, we incorporate a bi-directional long

short term memory layer. We use 600 hidden units and a

feature sequence of 1000 to 1092 length. A mini-batch size

of 32 samples is employed to train images of the subset and

we calculate the accuracy. For the UTD-MHAD dataset, we

create the training and the testing subsets using the same

protocol as [7]. Data from the subject numbers 1, 3, 5, 7

were used for training, while data for the subject numbers

2, 4, 6, 8 were used for testing. We report the classification

accuracy on the NTU RGB+D dataset by following the action

classification evaluation protocol presented in [8]: cross-view

evaluation where videos from cameras 2 and 3 are used for

training while videos from camera 1 are used for testing.



A. Datasets

a) UTD-MHAD: is a multi-modal dataset [7], composed

of four data modalities: RGB videos, depth videos, skeleton

joint positions and inertial sensor signals. The dataset includes

861 video sequences and was recorded using a Microsoft

Kinect sensor and a wearable inertial sensor in an indoor

environment. It consists of 27 different actions performed by

8 subjects. Each of them repeats the same action 4 times.

b) NTU RGB+D: is a large-scale dataset for multi-

modal human action recognition. It includes 56880 videos of

60 action classes of 40 subjects recorded in highly variant

camera settings, where each action is performed twice. Three

Microsoft Kinect v2 sensors were used to collect four data

modalities.

B. Results and analysis

First, We calculate the performance accuracy of each single

modality. In other words, we compare activity classification

from straightforward images towards newly created images

(dynamic RGB, depth images and skeleton images). For both

situations, we calculate the accuracy of applying LSTM on

the extracted features using a pretrained model. Resnet50 and

Alexnet are used as feature extractors.

As can be seen from Table I which illustrates the results

of uni-modal activity recognition for UTD-MHAD and NTU

RGB+D datasets, the accuracy was improved when using our

created images. For the UTD-MHAD dataset, skeleton features

perform the best accuracy value for both configurations with

74.52% for skeleton joints sequences and 87.43% for skeleton

images using Alexnet as feature extractor. Similarly, for the

NTU RGB+D dataset, the best accuracy of 49.91% was

obtained for skeleton joints sequences while dynamic depth

images outperform the dynamic RGB and skeleton images

with a value of 51.66%.

TABLE I: Accuracy (%) of activity classification with LSTM of uni-modal
features and features extracted (using pre-trained models) from our newly
created image representations on the UTD-MHAD and NTU RGB+D datasets.

Uni-modal feature UTD-MHAD NTU RGB+D

RGB 51.35 39.85

Depth 37.45 45.90

Skeletal data 74.52 49.91

Dynamic RGB 72.28 41.53

Dynamic Depth 71.91 51.66

Skeleton images 87.43 50.81

Furthermore, we calculate the recognition accuracy for each

pairwise fusion and for the three features fusion. We compare

in Table II, the results obtained using a feature-level fusion:

the Canonical Correlation Analysis on each set of features.

We can see from these tables that, by combining the features

from each two sets of images, the recognition accuracy was

improved over that using a single modality alone for both

datasets. The best results were obtained by fusing dynamic

depth and skeleton images as they present complementary

temporal features. We achieve for that an accuracy of 97.95%

for the UTD-MHAD dataset and 70.85% for the NTU RGB+D

dataset.

Fusing the three modalities has as well improved the recog-

nition accuracy over that using single modalities or pairwise

modalities. The order of fusing features was also investigated

and the results demonstrate that when changing this order, the

accuracy is also improved. We obtain an accuracy of 98.88%

for fusing RGB and depth dynamic images and then fusing

the resulting vector with skeleton images feature vector for

the UTD-MHAD dataset and an accuracy of 75.50% for the

NTU RGB+D dataset for the same configuration.

Table III presents a comparison of the results of our method

to the state-of-the-art on the publicly available UTD-MHAD

dataset. We can see that our method outperforms all the pre-

vious methods of feature fusion on the UDT-MHAD dataset.

Again, Table IV illustrates a comparison of our results with

the state-of-the-art results on the NTU RGB+D dataset. Our

results are comparable to some of the existing methods such

as [30] and [8]. However, we still can improve the results by

enhancing the Canonical Correlation Analysis fusion strategy.

TABLE II: Accuracy (%) of activity classification using fusion of multi-
modal features extracted (using pre-trained models) from our newly created
image representations on the UTD-MHAD dataset and NTU RGB+D dataset
respectively (DI refers to dynamic images).

Pairwise Fusion UTD-MHAD NTU RGB+D

DI RGB + DI Depth 85.39 60.42

DI RGB + Skeleton images 93.26 68.62

DI Depth + Skeleton images 97.95 70.85

By three Fusion

(DI RGB + DI Depth) + Skeleton images 98.88 75.50

(DI RGB + Skeleton images) + DI Depth 92.13 73.72

(DI Depth + Skeleton images) + DI RGB 93.26 72.64

TABLE III: Comparison of the proposed method with previous methods
on UTD-MHAD Dataset.

Method Accuracy %

Decision Fusion Using LOGP [31] 88.40

Depth + inertial data fusion + CRC classifier [7] 79.10

5-CNN fusion of skeleton images [9] 95.38

fusion with CCA and KELM [10] 97.91

DI RGB + DI Depth + Skeleton images + LSTM (Ours) 98.88

TABLE IV: Comparison of the proposed method with previous methods
on NTU RGB+D Dataset.

Method Accuracy %

Deep RNN [8] 64.09%

Deep LSTM [8] 67.29%

Joint trajectory maps + CNN [30] 75.20%

Part-aware LSTM [8] 70.20%

DI RGB + DI Depth + Skeleton images + LSTM (Ours) 75.50%

V. CONCLUSION

We present in this paper a vision-based multi-modality

fusion approach for human activity recognition. RGB images,

depth images and skeleton joint data are used to construct

RGB dynamic images, depth dynamic images and skeleton

images, respectively. These constructed visual images are then

employed to generate features using pre-trained models that

allow us to retrieve meaningful features from the image sets.

Afterward, for each video sequence, a feature fusion strategy



based on the Canonical Correlation Analysis is carried out

to select highly discriminative features from our three feature

vectors. The resulting feature fusion vectors are then fed to

a bi-directional LSTM network in order to recognize and

classify activities. We evaluate our approach on the publicly

available UTD-MHAD and NTU RGB+D datasets and record

recognition accuracy for each single modality, fusion of each

pair of modalities and fusion of three modalities. Our exper-

iments show that the results of our proposed approach can

achieve high recognition accuracy and outperform the state-of-

the-art results for both datasets. In the future, we can explore

other fusion schemes and integrate some data augmentation

methods to improve the performance of our proposal. Besides,

we believe there is also a room for further improvement on

the recognition accuracy achieved by NTU RGB+D dataset

throughout a more fine-gained optimization of the parameters

of the underlined LSTM model.

ACKNOWLEDGMENT

This work is partly supported by the Algerian Residen-

tial Training Program Abroad Outstanding National Program

(PNE) that supported the first author stay at University of

Oulu and European YougRes project (Ref. 823701), which are

gratefully acknowledged.

REFERENCES

[1] H. F. Nweke, Y. W. Teh, G. Mujtaba, and M. A. Al-Garadi, “Data fusion
and multiple classifier systems for human activity detection and health
monitoring: Review and open research directions,” Information Fusion,
vol. 46, pp. 147–170, 2019.

[2] A. Franco, A. Magnani, and D. Maio, “A multimodal approach for
human activity recognition based on skeleton and rgb data,” Pattern

Recognition Letters, 2020.

[3] H. Rahmani and A. Mian, “3d action recognition from novel view-
points,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 1506–1515.

[4] H. Bilen, B. Fernando, E. Gavves, and A. Vedaldi, “Action recognition
with dynamic image networks,” IEEE transactions on pattern analysis

and machine intelligence, vol. 40, no. 12, pp. 2799–2813, 2017.

[5] B. Fernando, E. Gavves, J. M. Oramas, A. Ghodrati, and T. Tuytelaars,
“Modeling video evolution for action recognition,” in Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, 2015,
pp. 5378–5387.

[6] M. Haghighat, M. Abdel-Mottaleb, and W. Alhalabi, “Fully automatic
face normalization and single sample face recognition in unconstrained
environments,” Expert Systems with Applications, vol. 47, pp. 23–34,
2016.

[7] C. Chen, R. Jafari, and N. Kehtarnavaz, “Utd-mhad: A multimodal
dataset for human action recognition utilizing a depth camera and a
wearable inertial sensor,” in 2015 IEEE International conference on

image processing (ICIP). IEEE, 2015, pp. 168–172.

[8] A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, “Ntu rgb+ d: A large
scale dataset for 3d human activity analysis,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2016, pp.
1010–1019.

[9] P. Khaire, J. Imran, and P. Kumar, “Human activity recognition by fusion
of rgb, depth, and skeletal data,” in Proceedings of 2nd International

Conference on Computer Vision & Image Processing. Springer, 2018,
pp. 409–421.

[10] J. Imran and B. Raman, “Evaluating fusion of rgb-d and inertial
sensors for multimodal human action recognition,” Journal of Ambient

Intelligence and Humanized Computing, vol. 11, no. 1, pp. 189–208,
2020.

[11] B. Fernando, E. Gavves, J. Oramas, A. Ghodrati, and T. Tuytelaars,
“Rank pooling for action recognition,” IEEE transactions on pattern

analysis and machine intelligence, vol. 39, no. 4, pp. 773–787, 2016.
[12] H. Sial, M. Yousaf, and F. Hussain, “Spatio-temporal rgbd cuboids

feature for human activity recognition,” The Nucleus, vol. 55, no. 3,
pp. 139–149, 2018.

[13] R. Chopra et al., “Activity recognition based on 3d cnn-lstm-assisted
approach,” Journal of the Gujarat Research Society, vol. 21, no. 6, pp.
454–466, 2019.

[14] M. Leo, N. Mosca, P. Spagnolo, P. L. Mazzeo, T. D’Orazio, and A. Dis-
tante, “Real-time multiview analysis of soccer matches for understanding
interactions between ball and players,” in Proceedings of the 2008

international conference on Content-based image and video retrieval,
2008, pp. 525–534.

[15] M. H. Kolekar and D. P. Dash, “Hidden markov model based human
activity recognition using shape and optical flow based features,” in 2016

IEEE Region 10 Conference (TENCON). IEEE, 2016, pp. 393–397.
[16] Y. Shi, Y. Tian, Y. Wang, and T. Huang, “Sequential deep trajectory

descriptor for action recognition with three-stream cnn,” IEEE Transac-

tions on Multimedia, vol. 19, no. 7, pp. 1510–1520, 2017.
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