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Abstract—Many computer vision and image processing ap-
plications rely on local features. It is well-known that motion
blur decreases the performance of traditional feature detectors
and descriptors. We propose an inertial-based deblurring method
for improving the robustness of existing feature detectors and
descriptors against the motion blur. Unlike most deblurring
algorithms, the method can handle spatially-variant blur and
rolling shutter distortion. Furthermore, it is capable of running in
real-time contrary to state-of-the-art algorithms. The limitations
of inertial-based blur estimation are taken into account by
validating the blur estimates using image data. The evaluation
shows that when the method is used with traditional feature
detector and descriptor, it increases the number of detected
keypoints, provides higher repeatability and improves the lo-
calization accuracy. We also demonstrate that such features will
lead to more accurate and complete reconstructions when used
in the application of 3D visual reconstruction.

I. INTRODUCTION

Feature detection and description form the basis of many
computer vision and image processing applications. During
past decades, various detectors and descriptors have been
proposed, which have proven to be relatively stable against
illumination changes, geometric transformations and image
noise. Considerably less attention has been given to the prob-
lem of finding local correspondences in the presence of motion
blur. Generally, the motion blur reduces the number of detected
features, affects negatively the localization accuracy and makes
the feature matching more difficult. The issue is most apparent
in applications that involve a moving camera such as visual
odometry, simultaneous localization and mapping (SLAM) and
augmented reality (AR).

Image deblurring is one possible approach to address the
problem of motion blur. Blind deconvolution is a process
of recovering the sharp image and the point-spread-function
(PSF) of the blur given an image. This is an ill-posed problem
since the blurred image only provides a partial constraint on
the solution. Blind deconvolution algorithms have significantly
improved over the years, but they still fail frequently especially
for larger blur sizes. What further complicates the problem is
that motion blur often varies spatially across the image. For
computational simplicity, existing algorithms typically assume
spatially-invariant blur.

Mobile devices are commonly equipped with an inertial
measurement unit (IMU). It provides additional information
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about the motion of the camera, which can be used to
estimate the blur. If the PSF is known in advance, the problem
of deblurring is known as non-blind deconvolution. Prior
work, such as [1]-[5] has successfully used accelerometers
and gyroscopes to improve deblurring. These methods can
handle spatially-variant blur unlike most blind deconvolution
methods. One major drawback with state-of-the-art deblurring
algorithms is that they are computationally way too expensive
to be used in real time applications such as SLAM.

In this paper, we propose an inertial-based deblurring
method for improving the robustness against motion blur of
existing feature detectors and descriptors. An implementation
on GPU is capable of running in real time, unlike the state-
of-the-art deblurring algorithms. It can handle spatially-variant
blur and rolling shutter distortion. To account for the limita-
tions of inertial-based blur estimation, the blur estimates are
validated using image data. The evaluation shows that when
the method is used together with traditional feature detector
and descriptor, it increases the number of detected keypoints,
provides higher repeatability and improves the localization
accuracy of the detector. We also demonstrate applying our
method for 3D visual reconstruction. The results show that it
improves the accuracy of reconstructed 3D points and pose
estimates; the number of reconstructed points also increases.
Images that were originally too blurred to be registered are
successfully matched.

II. RELATED WORK

Gauglitz et al. 6] evaluated several interest point detectors
and feature descriptors for visual tracking. The effect of
motion blur was also studied. Fast Hessian [[7] and Difference
of Gaussian (DoG) [8]] detectors were found to be the most
tolerant against motion blur as they provided the highest
repeatability. Nevertheless, the performance of all detectors
clearly degraded as motion blur increased. Neither of the
detectors worked particularly well with strong motion blur.
The evaluation of descriptors showed a similar decrease in
performance, especially when matching blurred and non-
blurred images. In such case, the SIFT [9] outperformed the
other descriptors.

To address the issue with motion blur, Pretto et al. [10],
[11] estimate the blur directly from the image. In [[10]], the



recovered PSF, which is assumed to be spatially-invariant and
linear, is used to deblur the image before feature detection
and description. The method in [[11] relaxes the assumption
of spatially-invariant blur. Instead of deblurring, the estimated
PSFs are used to build an adapted Gaussian scale-space
pyramid. The idea is to blur less on the direction of the motion
rather than applying an isotropic Gaussian blur to all levels in
the pyramid.

A feature descriptor robust to different types of image blur
was proposed in [12]]. The descriptor is build by considering
integral projections along different angular directions. Ac-
cording to the paper, the method outperforms the traditional
descriptors. However, it still uses a feature detector that is not
robust to motion blur. We argue in favor of deblurring, which
allows us to use the existing feature detectors and descriptors
that are known to perform well under various conditions.

In the context of visual SLAM, motion blur is handled in
[13]-[[15]. Lee et al. [13]] use the information from the SLAM
system to estimate the motion blur. The estimates are then
used for deblurring, although not all frames are deblurred.
The methods [14]], [[15] are based on a different idea. Instead
of deblurring, the image patches are blurred to make the
patches look similar. This may help in feature matching, but
the number of detected features is usually greatly reduced in
the presence of motion blur which is a problem especially
when the number of distinctive features is limited. It is also
worth mentioning that unlike previous methods [13[]-[15]], our
approach, which operates on single images, is not limited to
SLAM.

Visual-inertial SLAM systems such as [16] can provide
more accurate and reliable odometry information than purely
vision-based approaches. The IMU can partially solve the issue
of motion blur since it gives relatively accurate short-time
estimates of the camera motion. However, the mapping does
not take into account the motion blur, which can reduce the
number of reconstructed 3D points and lower their accuracy.
Relying on the IMU for longer periods of time will also cause
drift.

III. BLUR ESTIMATION

In this section, we describe how to estimate the motion blur
from inertial measurements. Similar to many existing works,
we only use gyroscope readings to recover the rotation of the
camera during the exposure. It has been shown that rotation is
typically the main cause of motion blur [2], [3]. Recovering the
translation from the accelerometer readings is more difficult
since it requires knowledge about the initial velocity of the
camera.

A. Inertial Measurements

Gyroscope measures the angular rate w(¢) of the device
in the sensor coordinate frame. The orientation of the device
can be determined by integrating the angular velocities. It is
well known that integration of noisy measurements can cause
orientation to drift. In our case, we used a relatively short
integration period to mitigate this problem (less than 33 ms).

In the following sections, the camera orientations during the
exposure are represented by rotation matrices R(t).

B. Linear Motion Blur

Due to short integration period, we can assume the motion
blur is linear and homogeneous. This type of blur can be
defined by angle 6 and extent 7. It is not necessary to
consider the absolute motion of the camera when estimating
the blur. Instead, we model the relative motion using a planar
homography. If the camera is moving during the exposure, the
3D point is projected to multiple points, causing motion blur.
Let x = (x,,1) be the projection of the 3D point at the
beginning of the exposure in homogeneous coordinates. The
homography

t(t)n'
d
maps the point to later time ¢, corresponding to the end of

the exposure. The translation t is assumed to be zero so we

can ignore the depth d and the unit vector n that is orthogonal
to the image plane. The mapping of points simplifies to

H(t) = K[R(t) + JK~* (1)

x' = KR(H)K 'x. )

The line segment connecting the points x and x’ represents
the linear motion blur. The angle 6 and the extent r of the
blur can be obtained by

r=y(@ -2+ —y)? 3)
GatanZ(y:_y>. (4)
xr —X

It can be noted that we only have a discrete set of rotation
matrices R(¢). The intermediate rotations can be computed
using the spherical linear interpolation (SLERP) [17].

C. The Rolling Shutter Effect

When using a rolling-shutter camera, the rows in the image
are captured at different time instances. This has to be taken
into account when computing the motion blur since the map-
ping of the point x in equation (Z) depends on its y-coordinate.
Let R(t1) and R(t2) represent the camera orientations at the
beginning and at the end of the exposure, respectively. We
modify the equation (2)

x' = KR(t2)R T (t;) K™ 'x, (5)

where ¢; and t, are computed as follows. Time difference
between the exposure of the first and last row of the image
is defined by the camera readout time ¢,.. Let {5 be the frame
timestamp, that is the start of the first row exposure. Then, the

exposure of the y:th row starts at
h(y) =t + b, (©)

N

where N is the number of rows in the image. Given the
exposure time t., the end of the exposure is defined as ¢, =



t1 +t.. The timestamp ¢y, readout time ¢, and exposure time
te can be typically obtained via the API of the mobile device.

The rolling shutter not only affects the blur estimation
but it also creates a geometrical distortion to the image.
Unlike existing rectification methods such as [18], [19], we
do not rectify the whole image, which can be computationally
expensive. Instead, we only need to refine the feature locations
using the formula (2).

D. Blur Validation

Previously, we used gyroscope readings to estimate the blur
angle 6 and extent . Even though the motion blur is mainly
caused by rotation, translation can still cause problems in
certain situations. For example, when the camera orbits around
the object, the image may appear sharp while the gyroscope
still measures rotation. Consequently, the blur extent gets
over-estimated. We want to recognize this situation and avoid
deblurring an already sharp image. To achieve this, we utilize
the image data, which also contains information about the blur.

To check whether we should trust the blur estimates from
the gyroscope, we compute the gradient magnitudes along the
motion direction. If the blur estimate is correct, the image
(or image patch) should not have strong gradients along this
direction. On the other hand, strong gradients indicate that blur
estimate should not be trusted. To compute the gradients, we
convolve the image with a Sobel filter that has been rotated
by blur angle 6. If the maximum gradient exceeds a threshold
T, the safest approach is not to deblur the image. In such case,
we also do not rectify the feature locations.

IV. DEBLURRING

In this section, we perform spatially-variant deblurring using
Wiener deconvolution filter. Deconvolution is performed in the
spatial domain, which has advantages over the conventional
frequency domain approach. Most importantly, it allows real
time performance. To handle spatially-variant blur, the image
is first divided into smaller blocks as shown in FigureE} Then,
the blur parameters 6 and r are estimated for the center pixel of
each block. The spatial deconvolution is performed separately
for each block.

A. Spatial Deconvolution

Wiener deconvolution is commonly performed in the fre-
quency domain. An example of a deblurred image is shown
in Figure [Tb). Notice the ringing artifacts near the edges of
the image. These artifacts could be suppressed by applying a
prepocessing step known as edge tapering. However, in the
spatial domain approach this operation is not needed.

Let h(x) represent a 1D motion blur kernel and H(f) =
F{h(x)} its Fourier transform. The Wiener deconvolution
filter is defined as

*
W)= D
[H ()2 +
where H*(f) is the complex conjugate of H(f). Regular-
ization term <y represents the noise-to-signal ratio, which helps
to suppress the high frequency components of the inverse filter.

)

The spatial counterpart of the filter can be computed by
taking the inverse Fourier transform w(z) = F~H{W(f)}.
An example of a spatial deconvolution kernel is shown at
the top of the Figure [T(e). We can see that inverse kernel
has a compact support due to regularization, the length of the
inverse kernel depends on the blur extent. In our experience,
we get satisfactory deblurring results when the length of
the inverse kernel is four times the blur extent r (assuming
~v = 0.01). This is achieved by padding both sides of h(x)
with zeros before taking the Fourier transform. The final 2D
deconvolution kernel is obtained by rotating the 1D kernel by
angle 6. An example of a blurred image is shown in Figure
[[fc). Compared to frequency domain approach, there are no
significant ringing artifacts near the edges of the image.

B. Fast Implementation

The spatial deconvolution kernels can be quite large, which
is the main reason why spatial domain is usually not preferred.
However, most of the kernel elements will be zeros when the
blur is linear. See the gray pixels at the bottom of the Figure
[Ife). This leads to significant performance improvement since
we only need to process nonzero elements. Furthermore, these
kernels can be computed offline given a set of blur angles and
extents (e.g. 6 = 0,1,...,179 and r = 2,3, ..., "maz). The
frequency domain approach requires computing the Fourier
transforms at runtime, which quickly becomes time consum-
ing, especially when the blur is spatially-variant.

THe spatial domain approach is also easy to parallelize,
which allows a fast GPU implementation. In our experiments,
we used the NVIDIA GeForce GTX 1080 GPU. It takes
approximately 17 milliseconds to deblur a single grayscale
image with resolution of 1920 x 1080 pixels when the average
blur extent is 90 pixels. The running time could be further op-
timized, for example by utilizing the local memory resources
of the GPU.

V. EXPERIMENTS

Algorithms were evaluated on both synthetically and natu-
rally blurred images. All experiments were performed using
the publicly available DoG + SIFT implementation [20],
although the proposed method can be used with any feature
detector and descriptor. The proposed method is compared
against the original implementation [20] and Pretto et al. [[11]],
which we have reimplemented. Instead of estimating the blur
parameter from the image as in [11]], we use our inertial-based
blur estimates. In the last section, we also demonstrate using
our approach in the application of 3D visual reconstruction.

A. Synthetic Blur

In this experiment, we add synthetic motion blur and 30 dB
Gaussian noise to the standard test images [21]]. These images
contain viewpoint changes, scale changes, out-of-focus blur,
JPEG compression and illumination changes. Since we are
mainly interested in the effects of motion blur, we use the first
image pair from each of the 8 image sets for which the above
mentioned transformations are modest. The blur parameters
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Fig. 1. Deconvolution in the frequency domain vs. spatial domain. (a) Image with synthetic motion blur (6 = 20 degrees, » = 31 pixels), (b) Wiener deblurred
image (frequency domain), (c) Wiener deblurred image (spatial domain), (d) Details showing the edge artifacts common to frequency domain approach, (e)

Spatial deconvolution kernels in 1D and 2D.

are set to § = 30 degrees and r = 27 pixels for the first image
and 6 = 110 degrees and r = 47 pixels for the second image.

Repeatability and localization errors for different methods
are shown in Figure [2] Results are averaged for all image
pairs. We have fixed the number of detections by adjusting
the respective threshold parameter. This eliminates the issue
that repeatability criteria might favor those methods that
return many keypoints such as ours. Although the method
proposed by Pretto et al. is also capable of detecting
more keypoints than the standard DoG, not all of them are
distinctive. This problem was also recognized in the original
paper. To remedy this issue, they used an addition step to
discard less distinctive keypoints based on the entropy of the
descriptors. We did not implement this step since the focus
of this experiment was purely on keypoint detection. Overall,
the proposed method outperforms the other methods in both
repeatability and localization accuracy. The reason for better
localization accuracy could be explained by the scale of the
detections. Given a blurred image, the standard DoG is likely
to detect more large scale keypoints. Such detections will pass
the 40 % overlap criteria more easily even if their distance in
the reference image is large.

B. Real-world blur

Naturally blurred images were captured with the NVIDIA
Shield tablet while simultaneously recording gyroscope read-
ings at 100 Hz. The dataset consists of two planar scenes, each
containing 5 pairs of motion blurred images with resolution of
1080 x 1920 pixels. In many cases, the motion blur is spatially-
variant as shown in Figure [3]

To evaluate detector’s performance, we need to know the
homographies between the images, i.e. the ground truth map-
ping of image points in the first and second image. Usually,
the estimation is done by carefully selecting corresponding
image points from the images. However, selecting the points
accurately is not an easy task when images contain motion
blur. Instead of capturing a single motion blurred image, we
capture a burst of three images at the rate of 30 fps while
alternating short and long exposure time. For the first and last

TABLE I
RESULTS ON THE REAL-WORLD DATA. REPEATABILITY (REP.) AND
AVERAGE LOCALIZATION ERROR IN PIXELS (ERR.) WERE COMPUTED
USING A FIXED NUMBER OF DETECTIONS (500).

DoG Pretto et al. Proposed

Graffiti 1 Rep. Err. Rep. Err. Rep. Err.
#1 18.4 7.1 429 3.6 55.7 34
#2 18.2 6.7 29.5 4.5 47.5 4.2
#3 18.3 6.7 32.0 6.3 46.1 4.0
#4 5.4 6.0 15.5 5.6 39.0 4.3
#5 21.1 6.5 375 3.8 55.9 3.6
Graffiti 2

#1 18.0 7.6 36.8 44 454 4.8
#2 65.9 39 62.7 3.7 62.9 3.5
#3 55.8 6.2 28.3 4.8 70.7 3.8
#4 36.1 7.4 41.5 3.7 54.4 3.8
#5 10.7 6.8 28.5 39 50.2 3.7
avg. 26.8 6.5 355 44 52.8 3.9

image of the sequence, we set the exposure time to 1 ms,
which produces sharp but noisy images. The exposure time of
the middle image was set to 30 ms causing motion blur.

Given the three consecutive images, we first detect a set
of SURF keypoints from the sharp images and filter out
the outliers with RANSAC. Due to short time difference
between the captures, we assume that motion of the points
is linear between the images. The corresponding keypoints in
the middle image are obtained via linear interpolation. The
process is repeated for the second viewpoint, after which the
ground truth homography is estimated from the interpolated
keypoints while utilizing RANSAC.

Results for the real-world experiments are shown in Table[l]
Here, the number of detections was fixed to 500. In almost all
of the cases, the proposed approach achieves higher repeatabil-
ity and lower localization error than other methods. Compared
to the DoG, the performance is also more consistent. It is worth
to mention that deblurring usually causes ringing artifacts,
which can increase the number bad detections. However, this
did not seem to be much of a problem on our datasets.
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Fig. 2. Results on synthetically blurred images. Average repeatability and localization errors are computed for a fixed number of detections (x-axis). The
localization error is the average distance between corresponding keypoints (passing the 40 % overlap criteria) after reprojecting them to the reference image.
The error of the blur estimate is denoted by e. For example, ¢ = [—5, —5] means that instead of using the ideal blur estimate for deblurring, the blur angle
and extent have errors of -5 degrees and -5 pixels, respectively. In case of Pretto et al. [11], we use the ideal blur estimate.

Fig. 3. A real-world image with spatially-variant motion blur (left). Deblurred image (center). Blur kernels calculated from IMU motion estimates (right).

C. Visual Reconstruction

In this experiments, we use the proposed method for 3D
visual reconstruction. We utilize the VisualSFM software
[22] with our inertial-aided features. For the evaluation, we
captured a short video sequence consisting of 150 frames.

The captured scene is planar, which means all reconstructed
3D points should lie close to a plane. To check whether this
is true, we first fit a plane to the points with RANSAC. Then,
for the 3D points observed in each frame, we compute the
root-mean-square error (RMSE) between the plane and the
points. We also compute the average reprojection errors for
each frame. It is assumed that all 3D points are visible at least
in three images. Results are shown in Figure [5] We can clearly
see that our method outperforms the standard SIFT features.
Frames at the beginning and end of the sequence are heavily
blurred, which appear as spikes in the graphs. The standard
SIFT is also not able to register all the images. There are
three frames which were not registered due to strong motion
blur. Furthermore, our method increases the total number
of reconstructed points from 5888 points to 10620 points
compared to the standard SIFT.

The estimated camera trajectory is shown in Figure @ Even
though the ground truth trajectory is unknown, it is obvious
that motion blur causes problems for the standard SIFT. There

are unrealistic spikes in the trajectory, which appear in the
presence of motion blur. It is also clear that these errors
are highly correlated with angular velocities measured by the
gyroscope.

VI. CONCLUSION

We proposed an inertial-based deblurring method for feature
detection and matching in the presence of motion blur. It
is the first method capable of processing every frame of a
high-definition video in real-time, which makes it suitable
for applications such as SLAM. The method can also handle
spatially-variant blur and rolling shutter distortion. The limita-
tions of inertial-based blur estimation are taken into account by
validating the blur estimates using image data. The evaluation
shows that when the method is used with a traditional feature
detector and descriptor, it increases the number of detected
keypoints, provides higher repeatability and improves the
localization accuracy of the detector. When applied to 3D
visual reconstruction, the method improved the reconstruction
quality. The paper focused on feature detection and matching,
however, real-time deblurring has other applications as well.
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