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Abstract—Microscopic analysis of breast tissues is necessary
for a definitive diagnosis of breast cancer which is the most
common cancer among women. Pathology examination requires
time consuming scanning through tissue images under different
magnification levels to find clinical assessment clues to produce
correct diagnoses. Advances in digital imaging techniques offers
assessment of pathology images using computer vision and
machine learning methods which could automate some of the
tasks in the diagnostic pathology workflow. Such automation
could be beneficial to obtain fast and precise quantification,
reduce observer variability, and increase objectivity.

In this work, we propose to classify breast cancer histopathol-
ogy images independent of their magnifications using convo-
lutional neural networks (CNNs). We propose two different
architectures; single task CNN is used to predict malignancy and
multi-task CNN is used to predict both malignancy and image
magnification level simultaneously. Evaluations and comparisons
with previous results are carried out on BreaKHis dataset.
Experimental results show that our magnification independent
CNN approach improved the performance of magnification
specific model. Our results in this limited set of training data
are comparable with previous state-of-the-art results obtained
by hand-crafted features. However, unlike previous methods, our
approach has potential to directly benefit from additional training
data, and such additional data could be captured with same or
different magnification levels than previous data.

I. INTRODUCTION

Cancer is still one of the top leading cause of death
worldwide [1]. And breast cancer is the most common cancer
among women [1], [2]. A biopsy followed by microscopic
analysis of breast tissue is necessary for a definitive diagnosis
of breast cancer [2]. Firstly, thin sections are cut from biopsy
material and then stained generally with hematoxylin and
eosin (H&E). Hematoxylin highlights nuclei by binding DNA
and eosin highlights other structures by binding proteins [3].
Visualization is the next step after staining. Finally, patholo-
gists evaluate tissue biopsies under microscope under various
magnifications or on the digital image with no appreciable
difference in diagnoses [4]. Pathologist examines tissue pat-
terns, textures, and morphology to find clinical assessment
clues to produce correct diagnoses. They may need to pan,
focus, zoom, and scan through the entire image at high
magnification which may be very time consuming [5]. In
addition to timely and costly process, such analysis can be
hampered by pathologists different interpretations [3].

Fig. 1. Sample breast cancer histopathology images from BreaKHis database.
They were all acquired at a magnification factor of 100×.

The advances in digital imaging techniques enables digi-
tizing pathology images at microscopic resolution [5]. This
development offers the histological assessment of hematoxylin
and eosin stained sections by computer vision and machine
learning methods. These methods could automate some of the
tasks in the diagnostic pathology workflow which could be
used to reduce observer variability and increase objectivity.
In addition, fast and precise quantification could enhance
the healthcare quality. However, this requires robust image
analysis algorithms which is still far from clinical acceptance
[4]. Nonetheless, there has been a progress in the development
of image analysis algorithms for histopathological image as-
sessment. For more information on automated image analysis
methods in histology, we refer reader to [3], [4], and [6].

Appearance variability of hematoxylin and eosin stained
sections is one of the major challenges in breast cancer
histopathology image analysis [3] (see Figure 1). These vari-
ations are due to variability among people, differences in
protocols between labs, fixation, specimen orientation in the
block, human skills in tissue preparation, microscopy main-

Fig. 2. A malignant breast tumor acquired from a single slide seen in different
magnification factors: 40×, 100×, 200×, and 400×.



tenance, and color variation due to differences in staining
procedures [4]. However, the main challenge for image anal-
ysis researchers is accessing relevant images and databases.
Development of more efficient data analysis methods to be
applied in pathological diagnosis could be facilitated by pub-
licly available large annotated datasets which is currently
lacking. Such datasets and benchmarks enable validating and
comparing algorithms to develop more robust ones.

Recently, a dataset of breast cancer histopathology im-
ages (BreaKHis) is released for this purpose [7]. It was
collected from 82 patients using different magnifying factors
(40×, 100×, 200×, 400×) (Figure 2). The database contains
2,480 benign and 5,429 malignant images. Moreover, the
study in [7] provides the classification performance of several
hand-crafted textural features as baselines to discriminate
between benign and malignant tumors. These include state-
of-the-art descriptors such as Local Binary Patterns (LBP) [8],
Completed LBP (CLBP) [9], Local Phase Quantization (LPQ)
[10], Grey-Level Co-occurrence Matrix (GLCM) [11], Ori-
ented FAST and Rotated BRIEF (ORB) [12], and Threshold
Adjacency Statistics (PFTAS) [13].

In this paper, we propose to classify breast cancer
histopathology images independent of their magnifications.
We present the classification performance of a deep learning
method on the BreaKHis dataset in order to provide additional
baseline. Moreover, we propose to detect the image magnifi-
cation level and classify benign and malignant tumors simul-
taneously by utilizing a similar network architecture which
is adapted for multi-task classification. Most importantly, we
introduce a learning based approach which could benefit from
additional labeled training data in straightforward manner,
unlike the approaches based on hand-crafted features.

II. METHOD

Recently, neural networks achieved a great success in object
classification [14]. Specifically, Convolutional Neural Network
(CNN) based approaches showed significant improvements
over state-of-the-art recognition and classification approaches.
CNNs are also applied to solve various problems in biomedical
image analysis research. For example, Ciresan et. al [15] detect
mitosis in breast cancer histology images and won the related
contest. It has been also used in cell classification [16], [24],
tumor cell detection in blood samples [17] and in segmenting
magnetic resonance images of the human brain into anatomical
regions [18].

In breast cancer histopatholoy image analysis, convolutional
neural networks are used for region of interest detection [19],
segmentation [20], and also for mitosis detection [15]. On the
other hand, for classification purposes, hand-crafted features
are often employed [5], [21], [2], [7]. They include complex
preprocessing pipeline including stain normalization, nucleus
detection, and region of interest segmentation. This is mainly
due to the heterogeneous structure of histopatholoy images.
First, there is a wide variety of tissues and the complexity
in appearance increases at lower microscopy magnifications.
Various multi-cellular structures and diverse backgrounds are

Fig. 3. Schematic presentation of our proposal for classifying breast histology
images which is independent from the image magnification factor.

captured in different magnifications. Therefore, in order to ob-
tain distinguishable characteristics, structure specific features
are needed. Second, images could contain both benign and
malignant regions and therefore, it is challenging to learn
discriminative features globally from histology images and
therefore, segmentation is needed. When the training data is
small, the later issue becomes a challenge also for CNNs.

One way to reduce variability in microscopy images is
to utilize images acquired at the same magnification level.
Vast majority of previous studies adopt this method and
employ single magnification level. Some studies ([7], [22])
utilize multiple magnifications but they use a different clas-
sifier for each magnification level. However, such approaches
have practical limitations. First, multiple training stages are
needed for different magnifications. Second, during test time,
the magnification factor of the test image must be known
and corresponding model should be used. Such information
might not be available all the time. Third, the classification
method might perform poorly when test images are acquired
at new magnification levels. Because, during training stage,
classifiers learn magnification specific features and they could
not adapt themselves to unseen image features. Therefore,
a classification systems which is intended to be used in a
diagnostic practice should handle the diversity in microscopy
images and should not depend on the device settings such as
microscopy magnification. Our approach has ability to utilize
additional training data from various imaging devices with
different magnification factors.
Magnification independent classification(single-task CNN):
We propose to employ deep learning method to handle the



Fig. 4. Schematic presentation of our network architecture for classifying bening and malignant images (single task CNN).

diversity of breast cancer histopathology image appearance.
CNN models have high capacities to represent diverse fea-
tures. We used BreaKHis database [7] in our experiments.
BreaKHis provides images at four different magnifications
(40×, 100×, 200×, 400×). They also provide magnification
specific baseline results. To train our CNN model, we utilized
all available data in the training set of BreaKHis independent
of their magnifications. We needed only one training stage for
parameter learning and we tested each image using the learned
model (Figure 3).

The network architecture used in our experiments is pre-
sented in Figure 4. Previously, it was used for age and
gender estimation from real-world images [23]. The network
contains three convolutional layers, each one followed by a
rectified linear operation and a pooling layer. Local response
normalization [14] is employed after the first two layers. In
the first convolutional layer, 96 filters of size 3 × 7 × 7
pixels are applied to the input. This layer is followed by a
rectified linear operator (ReLU), a max-pooling layer taking
the maximal value of 3x3 regions with two-pixel strides,
and a local response normalization layer [14]. The second
convolutional layer contains 256 filters of size 5 × 5. ReLU,
max-pooling and normalization layer is applied again after the
second convolutional layer. Finally, in the third convolutional
layer, a set of 384 filters of size 3× 3 are used. This layer is
followed by ReLU and a max-pooling layer. Finally, two fully-
connected layers are added after the convolutional layers. Each
fully-connected layer contains 512 neurons and each followed
by a ReLU and a dropout layer with a dropout ratio of 0.5.
Preprocessing and data augmentation:
Increasing the number of training samples is useful for small
training sets in CNN frameworks. We augment the training
set by affine transformations. We rotate the images around
their centers with angles 90°, 180°, and 270°. Rotated and
original images are then flipped and added to the training set.
Each image is cropped around its center to obtain a square
patch. For non-square images, rotation operations introduce
discontinuities at the image borders therefore, images are
cropped to include only tissue pixels. Images are then all
scaled to a fixed size for speed up.
Multi-task classification:
CNN models build highly non-linear mappings between the
input and the output using cascaded convolutional layers. Such
complex hierarchical representations are capable of capturing

features from basic to more complicated structures which are
then used to predict attributes. Attributes could simply be
class labels defined for a task. Different tasks could share
common features. Therefore, convolutional neural networks
are well-suited for multi-task learning. Based on this, we
propose a multi-task framework to jointly learn classifiers
for image malignancy and magnification factor. We modified
the network architecture to generate two output layers by
splitting the last fully connected layer into two branches.
During backpropagation, the two gradients are added together
in the split layer. The network is shown in Figure 5. After the
network splits into two branches:

• The first branch learns the benign/malignant decision. The
output is fed into a 2-way softmax, and we minimize the
softmax loss which is equivalent to the cross-entropy loss
in the 2-class case.

• The second branch learns the magnification factor. Again
the output is fed into a 4-way softmax and the softmax
loss is minimized.

Multi-task loss:
Each output layer computes a discrete probability distribution
by a softmax over the outputs of a fully connected layer.
During training phase, the minimization is done over the
softmax loss function given by Equation 1.

L(x, y) = −
∑
i

yi log pi(x) (1)

where pi(x) is the probability of input x being labeled with
li and y is the true distribution (i.e. ground truth) where∑

i yi = 1, with the true class equal to one and the rest are
zero.

We define the total cost (C) in the multi-task setting as the
weighted sum of the benign/malignancy cost and magnifica-
tion cost:

C = ωbmLbm + ωmagLmag (2)

where ωbm and ωmag are the cost weights for malignancy
and magnification tasks respectively. We used ωbm = ωmag =
0.5, but different weights might improve the results which is
difficult to determine theoretically but it needs to be estimated
empirically.

III. EXPERIMENTS AND RESULTS

BreaKHis database provides 7,909 histopathology images
divided into benign and malignant tumors that are obtained



Fig. 5. Schematic presentation of our network architecture for classifying both malignancy and image magnification level (multi-task CNN).

from 82 patients. Images are of 3-channel RGB, 8-bit depth
in each channel, and of size 700 × 460. On the average,
24 images per patient is captured from each slide using the
lowest magnification factor (40×). The magnification is then
manually increased by the pathologist to 100×, 200×, and
400× and a similar number of images is captured inside the
initial region at each magnification level. Out-of-focus images
are then discarded by a final visual inspection. In addition to
the images, BreaKHis also provides a testing protocol. The
dataset has been divided into a training (~70%) and a testing
(~30%) set where the patients used to build the training set
are not used for the testing set. The split protocol has been
used to obtain 5-folds and results were reported based on the
average of five folds.

BreaKHis also presents performances of six state-of-the-
art hand-crafted features (Table IV) and four classifiers (1-
Nearest Neighbor, Quadratic Linear Analysis, Support Vector
Machines, Random Forests) on the database. Method perfor-
mances were reported at the patient level, and not at the image
level. Recognition rate is defined as follows:

Recognition Rate =

∑
P Patient ScoreP

Total number of patients
(3)

where the patient score is defines as:

Patient ScoreP =
Nrec

NP
(4)

where NP is the number of images of patient P and Nrec is
the number of correctly classified images.

In our study, we follow the same test protocol and also the
same performance measure to make a fair comparison with
previous results. In our preprocessing step, images are cropped
from their centers to 460 × 460 sized images. Square sized
patches are adopted in order to avoid image discontinues at
the image borders in rotated images and also fixed size images
are required in CNN frameworks. Training sets are populated
by rotations and flipping operations that enlarged the sets by 8
times. In our tests, all the images are resized to 100×100 both
in training phase and testing phase for speeding-up purposes.
The network is trained using the minibatch stochastic gradient
descent with a momentum factor of 0.9. Each iteration operates

on a minibatch of 100 images that are sampled randomly
from the training set. BreaKHis is a small database compared
to the appearance variation in breast cancer histopathology
images therefore, image features were not reflected evenly
in the training sets. This leads the optimal iterations and the
learning rates vary from fold to fold. We utilized images from
one magnification level (40×) in the test set to tune the number
of iterations and base learning rates. We applied early stopping
when we noticed over-fitting. We observed that when we
continue learning, the training set accuracies for folds usually
reaches up to 100%. This is an indication that the network has
a sufficient capacity to classify breast cancer histopathology
images and, at the same time, this is an indication that we have
a very limited amount of labeled training data, as often is the
case. However, our approach which combines data from all
magnification levels to train a single network is able to reach
good performance despite the lack of magnification specific
training data.

TABLE I
COMPARISON OF BENIGN/MALIGNANT CLASSIFICATION PERFORMANCE

FOR MAGNIFICATION SPECIFIC AND MAGNIFICATION INDEPENDENT
TRAINING (SINGLE TASK CNN)

Patient Score (%)
Fold 1 Mag. Specific Mag. Independent
40× 79.40 80.97
100× 78.69 80.92
200× 83.72 83.42
400× 80.83 83.02

In our first experiment in Table I, we compare perfor-
mances of our CNN framework for both magnification specific
and magnification independent training for benign/malignancy
classification (single task CNN). In magnification specific
experiments, for each magnification level we trained a separate
network starting from a random state and tested images
according to their magnification factor. For the magnification
independent training, we augment the training set with all the
training images independent of their magnifications (Figure
3) and trained a single network (Figure 4). Images are then
tested using the learned model. Comparison is done for the



first fold. Mixing images from different magnifications in the
training stage does not degrade the classification performance.
On the contrary, the performance is slightly increased. The
increase is due to the expansion of training set with additional
data imported from other magnification levels and also due to
affine transformations.

Recognition rates using magnification independent training
(single task CNN) for the five folds are presented in Table
II. For benign/malignant classification, with our single task
CNN model, an average recognition rate of 83.25% is achieved
with a single training per fold. The differences in recognition
rates for different folds are due to uneven distribution of the
data in test and training sets. This indicates that there is a
need to increase the amount of training data with additional
patients in order to better cover variation in image features
during training. On the other hand, the average recognition rate
which is shown in last column of Table II is similar among
all magnification levels. This shows that, proposed network
learns balanced set of features from different levels and dur-
ing test time, the model generates magnification independent
predictions which we aimed in the first place.

Next, we tested our multi-task network framework (Fig-
ure 5) for predicting both magnification factor of an input
image and its malignancy. Table III shows recognition rates
for both tasks. An average recognition rate of 82.13% is
achieved for benign/malignant classification task and an aver-
age recognition rate of 80.10% is achieved for magnification
estimation task. Compared to single task CNN, performance
of malignancy estimation is not degraded much in multi-task
setting. Therefore, multi-task model could be more useful in
applications where magnification factor of an input image
needs to be estimated and/or where there is insufficient amount
of training data from a single magnification level.

In Table IV, we compare our results (single task CNN
(CNN) and multi-task CNN (mt CNN)) with previous meth-
ods. We have selected the best performed classifier results for
hand-crafted features. For example, for PFTAS features, best
results in 40× and 100× magnifications are achieved with
QDA classifier while SVM performed better at factors 200×
and 400×. PFTAS features are based on a three dimensional
convolution operation on thresholded color channels which is
similar to CNN in that sense. Therefore, PFTAS and CNN
performances are similar (83.33% vs. 83.25%). On the other
hand, there is a large gap between results of CNN and other
hand-crafted features at all magnification levels. We believe
that additional training data would enhance CNN results and
therefore, deep learning is more promising as their capacities
for classify training sets are shown to be perfect.

IV. DISCUSSIONS AND CONCLUSION

In this work, we have proposed a general framework based
on CNNs for learning breast cancer histopathology image
features. The proposed framework is independent from mi-
croscopy magnification and faster than previous methods as
it requires single training. Speed and magnification indepen-
dence properties are achieved without sacrificing the state-

of-the-art performance. Magnification independent models are
scalable, new training images from any magnification level
could be utilized and trained models could easily be tuned
(fine-tuning) by introducing new samples.

In this work, we have also proposed a multi-task CNN
architecture to predict both the image magnification level
and its benign/malignancy property simultaneously. The pro-
posed model allows combining image data from many more
resolution levels than four discrete magnification levels. In
fact, magnification level prediction could be formulated as a
regression problem which is not limited to a discrete set of
levels. Multi-task prediction requires essentially no additional
computation over single-task prediction. Besides, experimental
result shows that classification performance does not degrade
in multi-task network.

For the future work, stain normalization, deeper architec-
tures, and splitting the network before the last fully-connected
layer could be investigated. It would be interesting to observe
task-wise early stopping in multi-task architecture. More im-
portantly, additional data with increased number of patients
should be introduced. We believe CNNs are more promising
in breast cancer histopathology image classification than hand-
crafted features and the data is the key issue to obtain more
robust models.
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