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ABSTRACT

Spatial-temporal graph convolutional networks (ST-GCNs) have
been successfully applied for dynamic graphs representation learn-
ing, such as modeling skeleton-based human actions. However, ST-
GCNs embed these non-Euclidean graph structures into Euclidean
space, which is not the natural space to represent such structures as
embedding them in this space incurs a large distortion. In this work,
we make use of hyperbolic non-Euclidean geometry and construct
compact ST-GCNs in the hyperbolic space. It can be shown that
hyperbolic ST-GCNs (HST-GCNs) outperform the corresponding
Euclidean counterparts. Additionally, these compact hyperbolic
models can be used to increase the performance of large complex
Euclidean models. Moreover, we show that the same or even better
performance of large Euclidean models can be achieved by fusing
the scores of smaller Euclidean models and a compact hyperbolic
model. This in turn leads to reducing the total number of model
parameters and hence model size. To validate the performance of
these hyperbolic networks, we conducted extensive experiments on
NTU RGB+D, NTU RGB+D 120 and Kinectics-Skeleton datasets
for human action recognition.

Index Terms— Hyperbolic geometry, dynamic graphs, graph
convolutional networks, human action recognition

1. INTRODUCTION

Human action recognition is an active area of research with many
applications such as surveillance and human-computer interaction.
Human actions can be predicted from RGB videos, depth maps or
skeleton data. In particular, skeleton-based human action recogni-
tion has increasingly gained attention due to its robustness against
different changes like illumination or viewpoints [1]. Skeleton data
provide abstract information about the locations of human joints.

Earlier deep learning skeleton-based human action recognition
approaches considered the human joints as a set of independent fea-
tures and ignored the relationships between joints. These features
are then fed into Convolutional Neural Networks (CNNs) [2, 3] or
Recurrent Neural Networks (RNNs) [4, 5] to predict the action class.

A human skeleton can be represented as a graph structure. Re-
cently, GCNs were proposed to generalize the convolution operation
to any structured graph data [6, 7]. GCNs were used to model the
skeleton data in the spatial domain to build the ST-GCN [8]. Many
subsequent works achieved state-of-the-art performance on human
action recognition datasets using some variants based on ST-GCN to
model human joints sequences [9, 10, 11, 12].

However, all these models embed the features into the Euclidean
space which has been shown to incur a large distortion [13]. That is
because the ball volume V grows polynomially with respect to the
radius r in Euclidean space (V = π

n/2rn

Γ(n/2+1)
for n-dimensional Eu-

clidean space where Γ(z) is the Euler gamma function) whereas it

grows exponentially in hyperbolic space which leads to lower distor-
tion. This can make the model compact as low-dimensional embed-
dings are needed without losing much information due to distortion.
The hyperbolic space is ideal for embedding trees as the number of
tree nodes is growing exponentially with respect to the tree depth.
The Gromovs or δ-hyperbolicity (δ ≥ 0) [14] is used to measure the
tree-likeness of data (trees have δ = 0) and the smaller the value
is, the more hyperbolic the data. Since the commonly used graph
topologies for human skeleton are with δ-hyperbolicity = 0, we
were motivated to use the hyperbolic space as the embedding space
for the human action features. Extensive experiments are performed
on three large scale human action recognition datasets, namely, NTU
RGB+D, NTU RGB+D 120 and Kinectics-Skeleton and the results
demonstrate that using HST-GCNs has great advantages.

2. RELATED WORK

2.1. Skeleton-based action recognition

Human action recognition has been studied extensively and the first
approaches used hand-crafted features for this task [15]. With the
advances achieved in deep learning, the next approaches used CNNs
or RNNs [4, 3, 2, 5, 16]. For example, the work in [3] uses a multi-
scale CNN and fine-tune pre-trained CNNs, e.g., AlexNet, ResNet
on human action datasets. The work in [4] divides the human skele-
ton into five parts which are fed into five subnets that can be fused to
form a hierarchical RNN.

GCNs model the spatial relationships in graphs and generalize
the convolution operation to any graph. ST-GCN [8] used GCNs
to model the spatial relationship between joints. Adaptive GCN
(AGCN) [9] used a learnable matrix to model the connections for
a general graph for all sequences and also used an input-dependent
matrix to learn the connections for each input sequence. In a subse-
quent work [10], the authors added attention modules in the spatial,
temporal and channel dimensions to improve the performance. MS-
G3D [11] designed a multi-scale sophisticated model which has
parallel branches with multi-scale disentangled feature aggregation.
The authors introduced across space-time connections to extract
more relevant and enhanced features. There are many other works
that built models based on GCNs [17, 18, 19, 20, 12]. For example,
the work in [20] proposes shift-GCN which uses shift graph opera-
tions and point-wise convolutions. Dynamic GCNs were introduced
in [18] to learn the skeleton topology automatically. However, all
GCN-based previous works use the Euclidean space to embed the
tree-like non-Euclidean human action recognition data. In this work,
we exploit the hyperbolic geometry and use it to embed the features
in the natural non-Euclidean hyperbolic space.

2.2. Hyperbolic neural networks

Using the Lorentz model of hyperbolic space gives enhanced em-
beddings specially for spaces with small dimensions [21]. HGCNs
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were proposed by [13] and they were able to achieve better perfor-
mance on node classification and link prediction tasks when com-
pared to the Euclidean analogs. Concurrently to this work, [22]
proposed the Hyperbolic Graph Neural Networks (HGNNs) which
performed well on graph classification tasks. However, both meth-
ods only considered the spatial configurations between graph nodes
on static graph tasks. In this work, we also consider the temporal
domain for dynamic graphs. For dynamic graphs, it is also impor-
tant to build compact models for computation efficiency. Another
work which is most related to our work is Poincaré-GCN [23] which
used Poincaré geometry. However, this work is not mathematically
rigorous since they assumed that the input embedding features lie
on the Poincaré model, which is not naturally satisfied. Besides, the
learned model is much bigger than ours. The work in [24] presented
an interesting survey on hyperbolic neural networks.

3. METHODS

3.1. Notations

A human skeleton can be represented by a graph G = {V, E} where
V = {v1, v2, . . . , vn} is the set of n human joints (graph nodes)
in the human body and E is the set of connections or bones (graph
edges) between human joints. The edge set E can be encoded in an
adjacency matrix A ∈ Rn×n where Ai,j ∈ [0, 1) if there is a link
between vi and vj otherwise, Ai,j = 0. Each node vi has a feature
vector xi ∈ Rd of dimension d. Initially, the feature vector is the 2D
or 3D location of the human joint. Xt = {x1, x2, . . . , xn} is the
set of feature vectors of all nodes at time step t where Xt ∈ Rn×d.
A human action can be observed over T frames.

3.2. Spatial Temporal Graph Convolutional Networks

For the spatial domain, the GCN update step can be formulated as:

Xout
t = σ(Λ−1/2(A+ I)Λ−1/2(Xin

t Win +Bin)) (1)

where σ is an activation function. Λii = 1 +
∑

j A
ij and Λ is a

diagonal matrix. I is the identity matrix to keep identity features.
(A + I) then makes the output feature vector xout

i for every node
i as a function of its input feature vector xin

i and the feature vector
xin
j for any node j ∈ neighboring set for node i which is encoded

in matrix A. Λ− 1
2 (A+ I)Λ− 1

2 is the normalized adjacency matrix
to normalize the weights for the nodes in the neighboring set. Win

is the weight matrix corresponding to Xin
t and Bin is the bias trans-

lation matrix. To achieve better performance and to increase model
capacity, a partitioning strategy can be applied and A+ I can be de-
composed into a number of matrixes Aj such that A+ I =

∑
j Aj .

For the temporal domain, a simple convolution can be applied to
nodes in consecutive frames.

3.3. HST-GCNs

A hyperbolic space is a non-Euclidean space with a constant negative
curvature. Many models were introduced to represent and model
a hyperbolic space such as the Lorentz model, the Poincaré model
and the Klein model. We use the Lorentz model (also called the
hyperboloid model) as it is simple and numerically more stable[21].

Let ⟨., .⟩L : Rd+1×Rd+1 → R represents the Minkowski inner
product where ⟨x, y⟩L :=

∑d
i=1 xiyi − x0y0. Let Hd,K be a d

dimensional hyperboloid model with a constant negative curvature
−1/K where K > 0. Then we have:

Fig. 1. Mapping between a 2D hyperboloid and the tangent 2D hy-
perplane (translated down for illustration purposes) at the origin.

Hd,K := {x ∈ Rd+1 : ⟨x, x⟩L = −K,x0 > 0} (2)

Note that x0 > 0 to indicate the upper half of the hyperboloid man-
ifold. Let TxHd,K be the Euclidean tangent space centered at point
x ∈ Hd,K . Then we have:

TxHd,K := {v ∈ Rd+1 : ⟨v, x⟩L = 0} (3)

To map a point y ∈ Hd,K to the tangent space TxHd,K centered
at point x ∈ Hd,K such that x ̸= y, the logarithmic map can be used
which is defined as:

logKx (y) = dKL (x, y)
y + 1/K⟨x, y⟩Lx

∥y + 1/K⟨x, y⟩Lx∥L
(4)

where ∥x∥L =
√

⟨x, x⟩L is the norm of x, dKL (x, y) is the
Minkowskian distance between two points x and y in Hd,K and
is given by:

dKL (x, y) =
√
K arcosh(−⟨x,y⟩L/K) (5)

To map a point v ∈ TxHd,K where x ∈ Hd,K to the hyperboloid
manifold such that v ̸= 0, we use the exponential map defined as:

expKx (v) = cosh(
∥v∥L√

K
)x+

√
K sinh(

∥v∥L√
K

)
v

∥v∥L
(6)

The logarithmic and exponential maps represent a bijection be-
tween the tangent space at a point and the hyperboloid. Figure 1
illustrates the mapping between the hyperbolic space Hd,K and the
tangent space at the origin o which is ToHd,K for d = 2.

Parallel transport is used to perform translation in the hyperbolic
space. Px→y(.) maps a point u ∈ TxHd,K to a point u′ ∈ TyHd,K

for x, y ∈ Hd,K and x ̸= y. The parallel transport of a point u ∈
TxHd,K to the tangent space TyHd,K is:

Px→y(u) = u− ⟨logKx (y), u⟩L
dKL (x, y)2

(logKx (y) + logKy (x)) (7)

The hyperbolic bias addition can then be defined as:

xH ⊕K b := expKxH (Po→xH (b)) (8)

where o is the origin and the bias b is a learnable Euclidean vector
defined at the tangent space of the origin.
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Fig. 2. The full HST-GCN model architecture. The HST-GCN block
consists of HS-GCN module (Eq. 9) and HTCN module. FC is the
fully connected layer.

For the hyperbolic space, Eq. 1 can be rewritten as:

Xout H
t = expKo (σ(logKJ

o (

⊕Kj∑
j

exp
Kj
o (Λ

−1/2
j AjΛ

−1/2
j

(log
Kl−1
o (Xin H

t )Win
j ))⊕Kj Bin

j )))

(9)

where the input and output features are in the hyperbolic space (de-

noted by H),
∑⊕Kj

j is the summation in the hyperboloid model
(Möbius addition of points on the hyperboloid) over the partition-
ing sets where j ∈ {1, 2, . . . , J}. We call this module the Hy-
perbolic Spatial GCN (HS-GCN). Note that for the 2D or 3D input
skeleton joints positions or any initial input feature Xin

t , we have
(0, Xin

t ) ∈ ToHd,K as from Eq. 3, we get ⟨(0, Xin
t ), o⟩L = 0. Us-

ing the exponential map (Eq. 6 at the origin o), we can obtain the
initial hyperbolic input feature Xin H

t . For j = 1, logKl−1
o (Xin H

t )
maps Xin H

t to the tangent space of the manifold used in the previ-
ous layer which can be the initial input feature vector.

To enlarge the receptive field and obtain features from farther
away joints, we use a disentangling approach [11] to get features
from up to M -hop neighbors which effectively enlarge the receptive
field of nodes. The m-hop adjacency matrix Am is then given by:

[Am]i,j =

{
1 if d(vi, vj) = m,
0 otherwise ,

(10)

where d(vi, vj) is the shortest distance between node vi and node vj .
To obtain features from up to M -hop neighbors, we use Am for m =
0, . . . ,M . Using the spatial configuration partitioning strategy, we
get 2M+1 subsets for M -hop neighbors. These adjacency matrixes
can be used in the HS-GCN module (Eq. 9) to enlarge the receptive
field and to obtain enhanced features.

For the temporal domain, the hyperbolic features are mapped
to the tangent space (expKo (Xout H

t )) where the convolution across
time domain is performed then the resulting features are mapped
back to the hyperboloid using exp

Kl
o (. . .) to generate the output for

the next layer. This module is the Hyperbolic Temporal Convolu-
tional Network (HTCN). Figure 2 shows the full model architecture.

4. EXPERIMENTS

Here, we provide extensive experiments on three skeleton datasets.

4.1. Datasets

NTU RGB+D 60 is a large scale dataset for 3D human activity anal-
ysis which has 60 human action classes. The authors recommend

M = 1 2 3 4 5 6

Acc(%) 58.2 75.3 75.1 76.1 74.3 74.3
Params(M) 0.01 0.02 0.02 0.02 0.02 0.02

Table 1. Ablation study on the number of neighbors (M ) used for
feature aggregation using NTU RGB+D 60 Cross-Subject bench-
mark. Params(M) is the parameters in millions.

C,L EST-GCN HST-GCN Params(M)

16,1 53.7 59.4 0.01
32,1 63.5 66.3 0.01
48,1 64.8 71.3 0.03
64,1 65.0 64.1 0.04
16,2 67.6 73.5 0.01
24,2 70.9 76.1 0.02
32,2 71.9 73.8 0.03

Table 2. Performance comparison between hyperbolic models and
the corresponding Euclidean ones on the NTU RGB+D 60 Cross-
Subject benchmark. C is the number of channels and L is the number
of layers in the network.

two benchmarks for this dataset: (1) Cross-Subject (X-Sub) and (2)
Cross-View (X-View). NTU RGB+D 120 extends NTU RGB+D
60 to have 120 action classes and he authors recommend replacing
the Cross-View setting with a Cross-Setup (X-Set) setting. Kinetics-
Skeleton is a large-scale human action dataset that has 400 classes.
The top-1 and top-5 accuracy on the testing set are reported.

4.2. Ablation study

4.2.1. Number of neighbors for feature aggregation

Table 1 shows the accuracy and number of parameters for a 2-layer
HST-GCN to determine M . Using a 4-hop neighbors for disentan-
gled feature aggregation gives the best performance. More informa-
tion can be captured from further joints away which is particularly
important for shallow models.

4.2.2. Network configuration on different datasets

Table 2 shows the performance of HST-GCNs using different config-
urations. For the NTU RGB+D 120 and the Kinetics-Skeleton 400
datasets, we conducted similar experiments and found that the best
performance can be obtained using the configuration (C,L) = (40,2).

4.3. Performance of hyperbolic vs Euclidean models

We use the NTU RGB+D 60 Cross-Subject benchmark in this ex-
periment. Table 2 shows this comparison for different network con-
figurations. HST-GCNs clearly outperform the corresponding Eu-
clidean ST-GCNs (EST-GCNs) by about 5% for most of the network
configurations specially the low-dimensional ones. This shows that
enhanced discriminative features can be obtained and embedded in
the hyperbolic manifold which increases model performance.

Table 3 shows the performance of HST-GCNs on the NTU
datasets and Kinetics dataset. These are light-weight compact mod-
els when compared to large existing Euclidean models. For example,
the number of parameters in HST-GCN is only about 0.5% and 0.6%
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Model Dataset NTU RGB+D 60 NTU RGB+D 120 Kinetics-Skeleton 400

X-Sub X-View X-Sub X-Set Top-1 Top-5

EST-GCN Acc(%) 70.9 80.2 63.2 64.8 12.1 29.2
HST-GCN Acc(%) 76.1 81.1 67.8 69.4 17.9 38.1

Params(M) 0.02 0.02 0.05 0.05 0.06 0.06

Table 3. HST-GCNs and the Euclidean counterparts (EST-GCNs) performance on different datasets.

Model C,L Params(M) NTU RGB+D 60 NTU RGB+D 120 Kinetics-Skeleton 400

X-Sub X-View X-Sub X-Set Top-1 Top-5

32,6 0.26 81.8/83.7 90.8/91.6 74.0/76.5 77.8/79.7 24.2/24.8 46.1/46.6
48,6 0.56 83.7/85.8 91.1/91.8 75.2/78.0 78.9/80.4 26.9/27.2 49.3/49.6

AAGCN 32,9 0.98 84.7/85.8 91.6/92.7 75.7/77.0 79.6/81.0 29.4/29.5 52.1/52.1
48,9 2.15 85.8/86.8 92.5/93.0 76.7/78.4 79.5/81.3 31.1/31.5 53.5/53.7

64,9 3.87 86.6/87.7 94.8/94.8 78.3/80.1 81.3/82.7 31.7/32.0 54.5/54.5

56,3 1.36 88.8/88.9 94.5/94.5 82.3/82.8 84.2/84.6 31.3/31.3 53.9/53.9
MS-G3D 72,3 1.98 89.2/89.5 94.8/95.0 82.5/83.0 84.3/84.6 31.9/31.9 54.8/54.8

96,3 3.20 89.3/89.4 95.0/95.0 83.3/83.5 84.4/84.7 35.8/35.8 58.8/58.8

Shift-GCN 64,9 0.69 87.8/88.2 95.1/95.1 80.8/81.5 83.2/83.7 33.8/33.8 56.4/56.4

Table 4. Boosting the performance of existing methods using HST-GCNs. The numbers separated by / represent the Euclidean model
accuracy and the boosted accuracy using HST-GCN model, respectively.

of the total number of parameters in AAGCN model [10]) and MS-
G3D model [11]), respectively. HST-GCNs outperform EST-GCNs
by more than 5% for most of the datasets benchmarks, which shows
the superiority of HST-GCNs.

4.4. Boosting the performance of existing methods

We show that HST-GCNs can be used to boost the performance of
other methods. In addition, we show that by using smaller versions
of these Euclidean models combined with HST-GCNs is compara-
ble to or outperforms the larger versions of these models. Table 4
shows the performance of different sizes of AAGCN models [10]
and MS-G3D models [11] on different datasets. The table also shows
the boosted performance of these models and shift-GCN model [20]
using the corresponding HST-GCN model from Table 3. For each
method, the last row is the original model introduced by the authors.
For the AAGCN model, a comparable or better performance with
45% parameters reduction. For the MS-G3D model, we achieved
comparable or better performance with 40% parameters reduction.
For the NTU RGB+D 120 cross-set benchmark, a better performance
was achieved with 60% parameters reduction. Similarly, HST-GCNs
can be used to boost the performance of any other models.

4.5. Comparison with SOTA

Table 5 shows the comparison between different methods on the
NTU RGB+D 60 dataset. Our method achieved comparable or better
performance using smaller or comparable number of parameters.

5. CONCLUSION

In this work, we showed that using the hyperbolic space to embed
human action features is more superior than using the Euclidean
space as in classical ST-GCNs. At the same time, HST-GCNs can

Method X-Sub X-View Params(M)

ST-GCN [8] 81.5 88.3 3.10
SR-TSL [16] 84.8 92.4 19.07
RAGCN [25] 85.9 93.5 6.21
AAGCN [10] 86.6 94.8 3.87
AS-GCN [26] 86.8 94.2 9.50
NAS-GCN [17] 87.4 94.6 6.57
Poincaré-GCN [23] 87.8 95.0 2.62
Shift-GCN [20] 87.8 95.1 0.69
DC-GCN+ADG [19] 88.2 95.2 1.24

Ours (small) 88.2 95.1 0.71

AGC-LSTM [27] 89.2 95.0 22.89
PL-GCN [28] 89.2 95.0 20.70
MS-G3D [11] 89.3 95.0 3.20

Ours 89.5 95.0 2.00

Table 5. Comparison between different methods on the NTU
RGB+D 60 dataset.

be used with existing methods to build compact models to achieve
comparable performance. We believe that this work has a great po-
tential and hope it motivates researchers to take advantage of the
hyperbolic embedding space in different research fields.
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