
VIDEO ACTION RECOGNITION VIA NEURAL ARCHITECTURE SEARCHING

Wei Peng1 Xiaopeng Hong2,1 Guoying Zhao1,?

1Center for Machine Vision and Signal Analysis, University of Oulu, Finland
2 Xi’an Jiaotong University, Xi’an, P. R. China

ABSTRACT
Deep neural networks have achieved great success for video
analysis and understanding. However, designing a high-
performance neural architecture requires substantial efforts
and expertise. In this paper, we make the first attempt to
let algorithm automatically design neural networks for video
action recognition tasks. Specifically, a spatio-temporal net-
work is developed in a differentiable space modeled by a
directed acyclic graph, thus a gradient-based strategy can be
performed to search an optimal architecture. Nonetheless, it
is computationally expensive, since the computational burden
to evaluate each architecture candidate is still heavy. To alle-
viate this issue, we, for the video input, introduce a temporal
segment approach to reduce the computational cost without
losing global video information. For the architecture, we
explore in an efficient search space by introducing pseudo 3D
operators. Experiments show that, our architecture outper-
forms popular neural architectures, under the training from
scratch protocol, on the challenging UCF101 dataset, surpris-
ingly, with only around one percentage of parameters of its
manual-design counterparts.

Index Terms— Automated machine learning, neural ar-
chitecture search, video action recognition

1. INTRODUCTION

Video action recognition [1], which is a hot topic of video
analysis and understanding, has drawn considerable attention
from both academia and industry, since it has great value
to many potential applications, like behaviour analysis [2],
security, and video affective computing [3]. On one hand,
new and large-scale datasets, such as Kinetics [4], Something-
Something [5], make great contribution to video action recog-
nition. On the other hand, video analysis and understanding
benefits a lot from the recent advance in deep neural networks,
which have already been successfully applied to a large va-
riety of tasks like object detection [6] and machine transla-
tion. However, designing a neural network structure with
high performance is a hard work. It requires large amounts
of time and efforts of human experts. Specifically, in the ac-
tion recognition task, to get satisfying performance, the long-
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range spatial-temporal connections should be taken into con-
sideration. It thus inevitably leads to complicated network
architectures and expensive computational costs. Moreover,
one has to feed such a network with much training data.

Recently, Neural Architecture Search (NAS) [7] has
shown great superiority over manually designed neural ar-
chitectures. In image classification, automatically designed
architectures like NASNet [8], and AmoebaNet [9], outper-
form popular human-designed networks, such as VGG [10],
and ResNet [11]. In semantic image segmentation, Auto-
Deeplab [12] also performs well even without a pre-train
procedure. Such promising progresses are mostly benefited
from the current strong computational capability, the elab-
orate search space [13] as well as the efficiency of search
strategies like reinforcement learning [7], evolutionary al-
gorithms [9] and gradient methods [14]. However, involved
tasks are limited at cases with low-dimensional inputs like
text and images.

In this paper, we aim at realizing automatic neural archi-
tecture design for action recognition. Fueled by the promising
progress of NAS, we propose to introduce NAS into the action
recognition task with an efficient fashion. Firstly, a video pro-
cessing scheme like in temporal segment network (TSN) [15]
is adopted to capture global temporal information and reduces
the computational cost. It also contributes to the data augmen-
tation. Secondly, to characterize the spatial-temporal dynam-
ics in videos, we provide an efficient solution to search 3D
neural operators, by processing the spatial and temporal fea-
tures separately in a search space with pseudo 3D [16] opera-
tors. Thirdly, we introduce a directed acyclic graph to model
the search space and relax the discrete space into a continu-
ous and a differentiate one [14]. It is thus allowed to achieve
highly competitive performance with a small order of mag-
nitude in computational resources against the previous ones
with thousands of GPU days to search.

The contributions of this paper are three-fold: Firstly, to
our best knowledge, this is the first attempt to automatically
design a spatial-temporal neural network for video action
recognition issues. Secondly, we design a continuous pseudo
3D neural network search space, where high-efficient oper-
ators can be explored with proxyless strategy. Finally, we
evaluate the proposed method on UCF101 [17] dataset. Com-
pared with popular action recognition neural architectures



Fig. 1: Overview of the neural module to be searched. The archi-
tecture of the module is determined by different nodes (Hidden i)
connections and operators. There are three nodes in this module.
Concatenating the outputs of them forms the module output. For
each connection between nodes, there are eight operator candidates
which are detailed at the bottom of Table 1. In a continuous search
space, the contribution of each operator is parameterized by a weight
α(k,j). Note that, for interpretability, connections from previous two
modules outputs are omitted in this figure.

without pre-training, our searched architecture gets the best
performance with only around one percentage of parameters.

2. PROPOSED METHODS

In this section we detail the modularized architecture C to be
searched and the search strategy. Here, we search for a single
(2+1)D convolutional module unit and repeat it for multiple
times to build a neural network. During the search procedure,
we build a shallow networks, N (C), to explore in the search
space.

For video action recognition task, a TSN-like scheme is
introduced to deal with input clips with various lengths. It
not only reduces computational costs but also helps in captur-
ing global information and data augmentation. We uniformly
segment the clip intoNs segments. In every segment, we ran-
domly sample Nr frames, and regroup them with the original
order to form a new clip. These clips of a fixed length of
(Ns ×Nr) are then used as the input to our model.

2.1. Neural module architecture

As shown in Fig. 1, we build a directed acylic graph to model
the neural module unit C. Assume C of n nodes is the fun-
damental unit in our neural network for video action recog-
nition. Then the search procedure is to find out the connec-
tions between these n nodes and their corresponding trans-
form functions from a set of candidate operators O to opti-
mize the performance.
Connections. Here, connections work as the data flow. For
each node, which is the ”Hidden i” in Fig. 1, we take all
the outputs of nodes before it as its inputs. Besides, from
the network-level perspective, the outputs from two previous

Table 1: Symbols and their meaning in the text and figures.

Symbol Meaning
C A neural module.
C {t} The output of the t-th module in a network.
Hidden i The hidden output of the i-th node in a module.
N (C) A neural network build on C.
Θ The weights within N (C).
M The number of connections in a module.
n The number of nodes in a module.
O A set of operators.
α ∈ RM×|O| The network architecture parameters.
α(k,j) The j-th operator of the k-th connection.
Conv 1 RELU-CONV-BN block with kernel size 1.
Conv 3 RELU-CONV-BN block with kernel size 3.
SpeConv 3 Separable convolution filters with kernel size 3.
DilConv 3 Dilated convolution filters with kernel size 3.
MPool 3 Max pooling with kernel size 3.
APool 3 Average pooling with kernel size 3.
Skip Con Skip connection between Nodes.
Zero No connection between Nodes(Not show in figure).

modules are also taken as its inputs (not shown in Fig. 1).
As a result, there will be totally M = (n+1)(n+2)

2 − 1 con-
nections inside a module of n nodes. For the output of each
node, element-wise addition is conducted during its different
inputs. Finally, all the outputs of these nodes are concatenated
as the module output C {t}.
Operators. All the connections are filled with one or more
operators from O. Here, we decouple every operator into a
2D spatial one and a 1D temporal one since the (2+1)D con-
volution filters are with less parameters compared to the 3D
ones but could get superior performance. In this paper, the
initial set of operators in O consist of eight operator candi-
dates, which are listed in the eight bottom rows of Table 1.
Here, max or average pooling layers and RELU-CONV-BN
blocks are prevalent in modern manually designed networks.
’SpeConv 3’ is implemented by three 1D filters. ’DilConv 3’
has a spatial perspective filed of 5 × 5. For computational
consideration, we set all the operators with a relative small
kernel size.

To find the best operators from O, like [14], we intro-
duce all of them into each connection and model them with
the architecture parameters α. Then for each connection,
element-wise addition is conducted between the outputs of
each weighted operator. Therefore, search processing is
reduced to find the best architecture parameters α which
maximizes the performance on the validation data. At the end
of this search, a discrete architecture can be got by functions
like softmax. As a result, the search strategy is to adjust the
contribution of each operator at each iteration step and find
out the network architecture parameter α = {α(k,j)}, for
k = 0, ...,M − 1, j = 0, .., |O| − 1 , which minimizes the
task loss, as formulated as follows:

α∗ = arg min
α
Lvalid(Θ(α), α). (1)



Here, we introduce the parameter sharing scheme in N (C),
thus Θ is the weights within the network, which is shared by
each architecture candidate. Lvalid is a loss function on the
validation set. To better evaluate the architectures, Θ will also
be updated on the training data at each iteration. Let Ltrain
denote the loss function for training. Obviously the losses
are determined by both the module architecture α and net-
work weights Θ. Solving Eq. (1) means to find the optimal α,
where the weights Θ minimize Ltrain. This bilevel problem
is hard since they are interdependent, more precisely, nested.
We will discuss it in the next section.

2.2. Search Strategy

In this subsection, we elaborate our searching strategy to op-
timize the neural network architecture.

Though the search space is relaxed into a continuous and
differentiate one, the optimization of Eq. (1) is still challeng-
ing or even infeasible. The main cause is that for any change
of the architecture α, one has to recompute Θ(α) by mini-
mizing Ltrain. To alleviate such difficulty, an alternating it-
eration approximation is performed. More concretely, given
a search space, there are two alternative steps to conduct this
searching process: Firstly, updating the network weights Θ by
minimizing Ltrain, where the architecture is fixed. Secondly,
updating the network architecture α by minimizing Lvalid,
by fixing the weights of the network. On this basis, Θ and α
are optimized by alternating between gradient descent steps
in the network weights and the architecture parameters in an
iterative manner. In fact, this task is very similar with the
few-shot meta-learning task [18], which is to adapt a model
to a new task using a few data and training process. From
this perspective, neural architecture search can be treated as
a kind of meta-learning, in which NAS is to transfer the net-
work trained on the training data to adapt the validation data
by fine-tuning the architecture. As a result, a surrogate func-
tion is employed for Θ(α) in Eq. (1). That is

α∗ = arg min
α
Lvalid(Θ

′
, α), (2)

Θ
′

= Θ− ε5Θ Ltrain(Θ, α). (3)

Here,the ε is a very small value in the search step. By using
the gradient descent method with respect to the architecture
parameters α, we can find a solution of the architecture. That
is

α = α− γ 5α . (4)

Here γ is the learning rate, and5α is calculated by Eq. (5) :

5α =5α Lvalid(Θ
′
, α)−

ε52
α,Θ Ltrain(Θ, α)5Θ′ Lvalid(Θ

′
, α).

(5)

Eqs. (4) and (5) give us a solution to optimize the architec-
ture by SGD. However, it is not computational efficient since
there is a second-order derivative, in which the matrix-vector
products are computational expensive. Fortunately, Hessian-
vector products can be used here to approximate the second-
order derivative [14], so that the computational complexity
can be significantly reduced. Besides, it is worth to mention
that when ε → 0, Eq. (3) indicates that Θ

′ → Θ, which
means a second-order derivative degenerates to a first-order
one. Therefore, as a special case of Eq. (5), one can drop out
the one-step unrolled weights operation in Eq. (3) for compu-
tational consideration, which will reduce about one-third of
the computational cost, in case that a certain loss in accuracy
is tolerant.

3. EXPERIMENTS

In this section, we study the proposed automatic method of
designing action recognition network to demonstrate its ad-
vantages over other famous action recognition architectures,
e.g., 3D-ResNet [19], C3D network [20], and STC-ResNet
[21]. We evaluate our algorithm on the challenging action
recognition dataset UCF101, which is a trimmed dataset con-
taining 13320 video clips of 101 classes, with the training
from scratch protocol. The training from scratch protocol is
commonly used and of great value for issues of limited data
or of limited computational resources. Other architectures,
such as I3D [22] and TSN, which are either two-stream meth-
ods with extra input modality or pre-trained on another larger
datasets, are not taken into consideration, owing to the limita-
tion of computational resources.

Implementation. There are two stages to design an au-
tomatic action recognition network: training network and up-
dating architecture, which are alternatively performed. We
search the network on the split 1 of UCF101. During the
searching processing, we build the network N (C) with three
layers and each layer is constructed by an identical module C,
which is the one to be searched. We initialize the first mod-
ule with four channels and set the number of hidden nodes n
to four as a trade-off between accuracy and efficiency. For
feature inputs with different resolutions, we add an extra fea-
ture map adaption layer before the module. Once there need a
feature map resolution reduction, the output channels are dou-
bled correspondingly. The network takes eight RGB frames
with size 112 × 112 as inputs. So for the video input pre-
processing, we set the segment number Ns = 4 and number
of random sampleNr = 2. Other data augmentation methods
like normalization, random horizontal flip, and random crop
are employed. For the objective function, a cross-entropy loss
is adopted for the classification task on UCF101. For search-
ing the architecture, the whole search procedure is 50 epochs,
thus we choose a relative big learning rate. We also decrease
the learning rate at each iteration. What makes this search
procedure more efficient is that the search model is not thrown



Fig. 2: Neural architecture searched by our method. Here, we keep two connections for each node according to α. The outputs of two
previous modules C {t− 1} and C {t− 2} are taken as inputs for current module. All the outputs of these four nodes are concatenated to
form the final output C {t}.

away after each validation.

Once we finish the search procedure, we will build and
train a final network from scratch. As aforementioned, we
construct the network with the returned search result α, as il-
lustrated in Fig. 1. Here, for each node, we keep the top-2
connections according to α, and then choose the most impor-
tant operator for each connection based on their contributions.
Here, a softmax function is adopted on α to evaluate the con-
tribution of each operator. Then a network can be built by the
discrete architecture, which is shown in Fig. 2. For the depth
of the network, we investigate different repeated times, and
find that the network performs best when the depth is set to
six. Every two layers, we reduce the feature map resolution
by a factor of two along width and height side. Accordingly,
we double the channels of feature maps. The whole training
process is set as follows: We initialize the first module with
eight channels and the training iteration is 600 epochs, the
learning rate is 0.025, and deceased by a cosine function w.r.t
iteration steps. The network is trained with a momentum of
0.9, a weight decay 0.0003, and a mini-batch of 72. For the
testing processing, our model predicts a score for each video
clip without additional aggregation. For each input clip, we
sample eight frames, apply only center crop on the inputs.

Result. When the 50 search iteration finished, we choose
the best architecture according to their performance. We per-
form the search procedure on a single Nvidia V100 GPU. It
takes about 25 hours on the UCF101 to finish this searching
process. Searched architecture is shown in Fig. 2. It indicates
that the the architecture prefers to the operator with bigger
perspective field.

After getting the searched result, we build a network with
six layers by repeating this neural module unit. Then, we
train on the training data for 600 epochs and test. Table 2
shows the result of action recognition on UCF101 compared
with 3D-convNet, 3D-ResNet 18, 3D-ResNet 101, and dif-
ferent kinds of STC-ResNet networks. The result shows that
our approach achieves a better accuracy with much fewer pa-
rameters than any other models in this table. For instance,
3D-ConvNet, which is a very commonly used architecture, is
one hundred times bigger than our network in terms of param-
eter size. Nevertheless, our model been searched outperforms
it by 7% in terms of recognition accuracy.

Table 2: Comparison with manually designed 3D networks
training from scratch on UCF101 split 1. As the benchmark
codes are not available, we can not get the precise model size
of STC-ResNet, though it is clearly larger than ResNet with
the same blocks.

Architectures #params model size Accuracy
3D-ResNet 18 [19] 33.2M 252M 42.4%
3D-ResNet 101 [19] 100M + 652M 46.7%
3D-ConvNet [20] 79M 305M 51.6%
STC-ResNet 18 [21] 33.2M + - 42.8%
STC-ResNet 50 [21] 92M + - 46.2%
STC-ResNet 101 [21] 100M + - 47.9%
Ours 0.67M 7.32M 58.6%

4. CONCLUSION

In this paper, we perform neural architecture search for the ac-
tion recognition task for the first time. Specifically, we model
the neural network by a directed acyclic graph and efficiently
search a spatial-temporal neural architecture in a continuous
search space. We demonstrate that our method outperforms
other popular models under the training from scratch proto-
col, with a surprisingly smaller model size. More concretely,
our method improves the accuracy with an over 10% increase
on the UCF101 dataset with approximately one percentage of
the size of famous models like 3D-convNet and 3D-ResNet.
In future work, we plan to apply the proposed method to other
computer vision tasks.
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