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ABSTRACT

This paper mainly focuses on the role of regularization in
Multi-Modal Learning (MML). Existing MML studies devote
most of the efforts in maximizing the consensus of model-
s from cues of different modalities. However, regularization
methods are still far from fully explored. To fill in this gap, we
propose a compact and efficient coding solution, termed by S-
parse Tikhonov-Regularized Hashing (STRH). The STRH en-
forces both the `0-norm induced sparsity constraints and the
Tikhonov regularization on the binary solution vectors which
maximize cross-modal correlation. In addition, we raise the
concerns on the challenging testing scenario of ‘Multi-modal
Learning and Single-modal Prediction’ (MLSP). Finally, we
demonstrate that the STRH is an efficient hashing solutions
by showing its superiority under the MLSP scenario.

Index Terms— Multi-Modal Learning, Binary Hashing,
Tikhonov Regularization, `0-norm Sparsity Constraint

1. INTRODUCTION

Multi-Modal Learning (MML) has received rapidly growing
attention in image and video acquisitions and processing tech-
niques. Existing MML studies devote most of the efforts in
maximizing the consensus from cues of different modalities.
However, regularization methods are still far from fully ex-
plored, in spite that they have been shown as effective ways
of introducing additional information to solve particular prob-
lems such as ill-posed or overfitting. Therefore, we mainly
focus on the role of regularization in multi-modal learning
and present a compact and efficient coding solution, termed
by Sparse Tikhonov-Regularized Hashing (STRH).

It is worth mentioning that traditional MML studies usu-
ally investigate in an ideal ‘Multi-modal Learning and Multi-
modal Prediction’ scenario (MLMP) [1, 2, 3, 4, 5]. Howev-
er, in practice, very often the modalities used in the learning
phase are partly absent in prediction phase. To allow a more
practical study of MML, we raise the concerns on the testing
scenario of ‘Multi-modal Learning and Single-modal Predic-
tion’ (MLSP).

The proposed method is clearly connected to the study
of MML. According to different formats of output, existing

MML methods can be categorized into two types: real-
valued and hashing MML.
Real-valued MML: Two representative unsupervised real-
valued MML methods are Canonical Correlation Analysis (C-
CA) [6] and Partial Least Squares (PLS) [7]. Supervised real-
valued MML methods incorporate the label information to
obtain a set of discriminative projection matrices, such as the
Generalized Multi-view Analysis (GMA) [1], and Multi-view
Discriminant analysis (MvDA) [2].
Hashing MML: The hashing MML methods output binary
codes for further recognition and analysis tasks [5, 8, 9, 3].
Just as two typical examples, the work [5] combines the intra-
modality loss terms and `2 regularization. Wu et al [3] consid-
er both hashing function learning and hashing quantization.

Most multi-modal learning researches mainly focus
on the cross-modality connection [8, 4, 10, 11]. In con-
trast, we formulate the objective function by treating 1)
cross-modality connection, 2) `0-norm induced sparsity, 3)
Tikhonov-regularization, and 4) binary constraints, to facili-
tate the exploration of regularization in MML.

The contributions of this paper include: 1) We propose
STRH multi-modal learning method. Its objective function
unifies cross-modality connection term and within-modality
regularization terms, which consists of the `0-norm induced
sparsity, Tikhonov-regularization, and binary constraints. 2)
As solving the strict `0 regularization is NP-hard, we derive a
computationally feasible solution for this complex optimiza-
tion problem. 3) We demonstrate that the STRH is an effi-
cient hashing solutions with good computationally stability
and group sparsity under the MLSP scenario.

2. SPARSE TIKHONOV-REGULARIZED HASHING

Let Z denote a set of N training samples, each of which is
associated with T modalities and one label. Its i-th sample
is represented by Zi = {xi,1, · · · ,xi,t, · · · ,xi,T , li}, where
i = 1, · · · , N , li ∈ L ⊂ R is a label, and xi,t ∈ χt ⊂ Rdt
is a dt-dimensional modality-specific feature vector extracted
from the t-th modality for t = 1, · · · , T .

Our goal is to learn a set of mapping functions Φ =
{φ1, · · · , φt, · · · , φT }, where φt : χt → RK , to minimize
the cross-modality inconsistency L (Φ,Z) under a group of



regularization constraints R (φt (·)). R (φt (·)) are defined
on the modality-specific mappings. We introduce two aux-
iliary matrices Xt = [(x1,t) , · · · , (xN,t)] ∈ Rdt×N and
Ψt = [φt (x1) , · · · , φt (xN )] ∈ RK×N , the columns of
which are the output vectors of φ when applied toN samples.
K is the size of binary codes.
Cross-modal Connection: The loss function L is designed to
model the semantic cross-modality connection. We simplify
L as the modality-pair-wise loss function:

L (Φ,Z) = −ai,jφT
s (xi)φr (xj) , (1)

where ai,j is a label agreement indicator, i.e., ai,j = 1 when
li = lj , otherwise ai,j = −1. In the matrix form, the mini-
mizing of L (Φ,Z) becomes a maximizing problem:

max
Φ

∑
s,r

tr
(
ΨsAΨT

r

)
, (2)

where tr (·) is the matrix trace. A ∈ RN×N is a label matrix
and it emphasizes the consistency of multiple modalities. E-
q. 2 is maximized when the output of different modalities are
highly correlated for those samples with same labels.
Regularization: Then we construct the robust regularization
terms to introduce extra enhancement in computational sta-
bility, sparsity, and compactness.

Encoding high-dimensional features using binary hashes
of low dimension is useful for fast similarity computations,
with few performance sacrifice [12, 13, 14]. We define the
modality mapping functions as:

φt (xi) = sgn
(
VT
t xi

)
, (3)

where Vt ∈ Rdt×K is the linear projection matrix for the t-th
modality data, and sgn(·) is the signum function.

The Tikhonov-regularization (i.e., `2-regularization) has
shown its ability in computational stability for ill-posed prob-
lems [15, 16]. Moreover, enforcing a sparsity constraint leads
to simpler and more interpretable solutions [17, 13]. Com-
pared with the `1-norm induced sparsity, the `0-norm con-
straint not only provides a more sensible sparsity constrain-
t but also enables to control the sparsity straightforwardly.
Thus, the `0-induced sparsity and the `2-regularizations are
leveraged as our sparsity and stability constraints.

2.1. Objective Function

There are two terms in our model, i.e, the cross-modality con-
nection term (Eq. 2) and within-modality regularizations in-
cluding `0-sparsity, the Tikhonov-regularization, and binary
constraints (Eq. 3). We formulate objective function as:

max
Φ

∑
s,r

tr
(
sgn
(
VT
s Xs

)
·A · sgn

(
XT
r Vr

))
, (4)

s.t. |Vt|0 ≤ mt, ‖Vt‖2 ≤ εt, t = 1, · · · , T,

where Φ = {V1,V2 · · · ,VT }, |·|0 is the number of non-
zero elements of a matrix, and ‖·‖2 is the Frobenius-norm,
which induces the Tikhonov-regularization. We simply set
m1 = · · · = mT = (1− p)× (dtK), where p is the sparsity.

For clarity, hereinafter we take the two-modality case as
an example to optimize Eq. 41.

2.2. Optimization

The sgn function and the `0-norm make Eq. 4 NP-hard to
solve. We rely on the iterative variable splitting and penalty
optimization techniques [17, 13] to find a feasible solution.
Given X and Y as data matrices of two modalities, their pro-
jection matrices are denoted by V and W, respectively. Eq. 4
can be specified as follow:

max
V,W

tr
(
sgn

(
VTX

)
·A · sgn

(
YTW

))
(5)

s.t. |V|0 ≤ m1, ‖V‖2 ≤ ε1, |W|0 ≤ m2, ‖W‖2 ≤ ε2.

Considering the symmetric roles of V and W in Eq. 5, we
split the optimization into two subproblems namely Problem-
V and Problem-W by solving one single-modal projection
matrix and keeping the other one fixed iteratively:

max
V,W

tr
(
sgn

(
VTX

)
·A ·CV

)
,

s.t. |V|0 ≤ m1, ‖V‖2 ≤ ε1,
(6)

and
max
V,W

tr
(
CW ·A · sgn

(
WTY

)T)
,

s.t. |W|0 ≤ m2, ‖W‖2 ≤ ε2,
(7)

where CV = sgn
(
YTW

)
and CW = sgn

(
VTX

)
are fixed

for each of the subproblems. Obviously it is similar to opti-
mize these two objective functions. For clarity, we only de-
scribe the solution to Problem-V.

Problem-V is still highly challenging because of the dis-
crete binary constraint. Inspired by [18], an binary auxiliary
matrix B ∈ {−1, 1}K×N is introduced to separate the op-
timization of the projection matrix and discrete binary con-
straint. Eq. 6 then becomes

max
BX ,V

tr (BX ·A ·CV )− λ1

∥∥BX −VTX
∥∥2

s.t. |V|0 ≤ m1, ‖V‖2 ≤ ε1, BX ∈ {−1, 1}K×N
(8)

where λ1 is a penalty parameter. Thus, two alternative steps
are obtained for optimizing Eq. 8: updating the discrete bina-
ry codes BX and updating the sparse projection matrix V.

2.2.1. Updating BX

By fixing V, Eq. 8 can be expanded and easily obtain an
optimal analytical solution of BX as:

BX = sgn
(
CT
V ·AT + 2λ1V

TX
)
. (9)

1It can be easily extended to the more general multiple-modality case by
updating one variable and fixing the others on a rota basis.



2.2.2. Updating V

With BX updated, it is still difficult to solve V by the `0-
induced sparsity and the `2 constraints jointly in Eq. 8. We
apply the variable splitting and penalty techniques again, and
split the projection matrix V into two same-size matrices V1

and V2, constrained by the `0-norm and `2-norm constraints.
Given BX fixed, Eq.8 is expressed as follows:

min
V1,V2

λ1

∥∥BX−VT
2 X
∥∥2

+α1

∥∥VT
1 X−VT

2 X
∥∥2

+β1‖V2‖2

s.t. |V1|0 ≤ m1

(10)
where α1 is sparsity term related penalty. Note that we con-
vert the `2-norm constraint into the objective function and β1

is a corresponding parameter. In the following paragraphs, we
solve Eq. 10 in an alternate manner.
Updating sparsity regularization V1: Let V2 be fixed.
Similar to [13], we firstly ignore the sparsity constraint and
expand the objective function as

J = tr
(
VT

1 XXTV1 − 2VT
2 XXTV1 + VT

2 XXTV2

)
.

(11)
We iteratively optimize it by gradient descent. The sparsity
constraint can be satisfied by thresholding the gradient de-
scent based solution and keeping the m1 largest elements.
The rest elements are set to be 0. Therefore,

V
(τ+1)
1 = thm1

(
V

(τ)
1 −γXXT

(
V2−V

(τ)
1

))
, (12)

where thm1
(Z) keeps the largest m1 elements of matrix Z

and γ denotes the learning rate.
Updating Tikhonov-regularization V2: Let V1 be fixed.
Benefit from the `2-norm term, Eq. 10 has a closed-form so-
lution by setting the derivative of its expansion to 0.

V2 =
[
(λ1+α1)XXT +β1I

]−1(
λ1XBT

X+α1XXTV1

)
,

(13)
where I denotes identity matrix of size d1 × d1.

We can also solve Problem-W by analogy2.

3. EXPERIMENTS

We evaluate the proposed STRH in this section, and we
choose six representative methods, i.e., CCA [6] and PLS [7]
for unsupervised real-valued MML, GMA (GMA-MFA) [1]
and MvDA [2] for supervised real-valued MML, SCM [4]
and QCH [3] for hashing-based MML.

We test STRH using different combinations of modal-
ities on two datasets. The Pascal VOC 2007 image re-
trieval dataset [19] consists of 2,954 training and 3,192
testing image-tag pairs with single label. The SMIC micro-
expression (ME) dataset [20] contains 71 clips with three
heterogeneous images, i.e., high-speed (HS), normal (VIS)

2The detailed derivation is similar to the Problem-V on a rota basis

Table 1. Comparison results (%) for HMER task under MLSP
scenario. Scenario 1 and 2 denote (VIS+HS) learning & VIS
prediction and (VIS+NIR) learning & VIS prediction .

CCA PLS GMA MvDA SCM QCH Ours
Scenario 1 69.01 61.97 54.93 61.97 63.38 53.52 73.66
Scenario 2 69.01 59.15 54.93 61.97 56.34 52.11 73.24

and near-infrared (NIR) images. It is obviously a dataset of
small size samples (SSS), and thus provides a good opportu-
nity to demonstrate that the introduction of the group sparsity
term can solve the over-fitting problem.

3.1. Implementation Details

Pascal dataset: We evaluate MML methods under (image +
tag) learning & image prediction MLSP scenario. The visu-
al feature extraction for image retrieval usually contains two
steps [21]: 1) feature extraction from original images and 2)
feature encoding. For the feature extraction, we extract a set
of 766d hand-crafted features [21] and a 4096d deep learn-
ing feature from the fc7 layer of AlexNet [22] model for each
image. For feature encoding, we choose three methods, i.e.,
LSH [23], ITQ [24] and DPSH [25]. In order to show our
STRH does not depend on the text-like descriptors either, we
test three tag features: Absolute Tag Rank (ATR), Relative
Tag Rank (RTR), and Word Frequency (WF).

For the proposed STRH method, we set the param-
eters as p = 0.5, λ1 = λ2 = 100, β1 = β2 = 1,
α1 = α2 = 10 according to the cross-validation. We e-
valuate the performance for dimensionality of output K =
{16, 32, 64, 128, 256, 512}, and report the results in terms of
mean of Average Precision (mAP).
SMIC dataset: We use the HIGO-TOP feature [26, 27]
for Heterogeneous Micro-Expression Recognition (HMER)
task [27]. We test two modality combinations namely 1) (VIS
+ HS) learning & VIS prediction, 2) (VIS + NIR) learning
& VIS prediction, to investigate how STRH improves the
performance of VIS modality by utilizing extra NIR and HS
modalities. For the SSS issue, we increase the sparsity p to
0.7 and use the same parameters with the above experiments.

3.2. Experimental Results

Pascal dataset: Fig. 1 shows the mAP scores of the six MM-
L methods, using 15 different features as input. The STRH
clearly dominates the comparison under various experimental
settings over almost all values of K. The performance edge
becomes more evident on larger K.
SMIC dataset: The results of HMER are listed in Table 1.
It can be easily observed that the STRH substantially outper-
forms other methods under both Scenario 1 and 2.

From the reported results, it is safe to reach the following
conclusions: 1) the increase in accuracy brought by STRH is
independent of the input feature types, no matter on which
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Fig. 1. Comparison results in term of mAP on Pascal dataset. These experiments are performed under (image + tag) learning
& image prediction MLSP scenario.

datasets it is tested; 2) The introduction of regularization
makes STRH capture the cross-modality connection in a
more effective and stable manner. 3) By using the sparsity
constraint, STRH effectively reduces the risk of over-fitting
and thus provides an efficient solution to the SSS problem.
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Fig. 2. Left: Convergence of the objective function on Pascal
dataset. Right: The impact of sparsity on SMIC dataset.

3.3. Discussion

We investigate two key issues, i.e., convergence and sparsity.
Convergence: We use the hand-crafted feature on Pascal
dataset and keep track of the changes of the objective func-
tion values along iterations. As shown by the left part of
Fig. 2, it shows that STRH basically converges within five
iterations, regardless of input features.
Sparsity Percentage: To further demonstrate the necessity of
sparsity term for the SSS dataset, we evaluate the sparsity per-

centage under the scenario 1 on the SMIC dataset. The right
part of Fig.2 shows that the accuracy moderately increases
together with the sparsity percentage. It demonstrates that
the introduction of sparsity constraint indeed improves the ro-
bustness.More importantly, our model provides a mechanism
to balance the over-fitting and under-fitting risk by controlling
the sparsity percentage p.

4. CONCLUSIONS

In this paper, we propose a sparse Tikhonov-regularized hash-
ing method for multi-modal learning. It enforces both the `0-
norm induced sparsity constraints and the Tikhonov regular-
ization on the binary solution vectors which maximize cross-
modal correlation. We provide a computationally feasible so-
lution to STRH and investigate it under the challenging MLSP
test scenario that we suggest. The STRH outperforms popular
MML methods, regardless of the types of input features.
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