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Abstract—Advances in technology equip traffic domain with
instruments to gather and analyse data for safe and fuel-efficient
traveling. In this article, we elaborate on the effects that taxi
drivers’ route selection has on fuel efficiency. For this purpose, we
fuse real driving behaviour data from taxi cabs, weather, digital
map, and traffic situation information to gain understanding of
how the routes are selected and what are the effects in terms
of fuel-efficiency. Analysis of actually driven trips and their
quickest and shortest counterparts is conducted to find out the
fuel-efficiency consequences on route selection. The judgments
are used for developing a fuel-consumption model, exploring
further the route characteristics and external factors affecting
fuel consumption.

Index Terms—data fusion, fuel-efficiency, route selection, traf-
fic analysis

I. INTRODUCTION

Route choice selection is an actively studied research area.
Advancements in sensing technologies allow collecting data
from real vehicles and their analysis for the possible factors
affecting route selection. Examples of such factors are general
characteristics, such as time, distance, congestion, signposting
and scenery [2], socio-economic characteristics [23], and even
personal and cognitive characteristics of drivers like route
knowledge [3], capabilities to learn, organise and recall spatial
information, sensation seeking capabilities [1], and individual
portfolios of strategies of drivers [25].

Route selection affects driving behaviour and, in turn,
fuel-efficiency [5], [11], [26]. For instance, traffic lights and
pedestrian crossings may require slowing down, idling, and
accelerating. Keeping the speed stable improves fuel economy
while frequent changes and low speeds reduce it [10].

Taxi GPS traces are valuable sources of data, as nowadays
many taxi companies equip their cars with sensing technolo-
gies. Taxi GPS traces have been used, for example, to find
patterns in origin-destination flows [29], and to suggest night
bus routes [7]. Due to great experience of taxi drivers in city
driving, it is beneficial to mine their route selection strategies
to explore if they are fuel-efficient. Surprisingly, all potentially
useful information, like weather, traffic and road condition
is not utilised much in related work. To bridge this gap,
we fuse driving behaviour, route characteristics, weather and

traffic density information to explore whether routes selected
by taxi drivers are more fuel efficient than their corresponding
shortest and quickest counterparts having the same origin and
destination. Methods and lessons learned from this article are
general, suggesting their use in other similar studies.

The remainder of the article is organized as follows: Section
II introduces the related work. We present our data and data
preparation procedure in Section III and present a comprehen-
sive analysis of the driven trips and their shortest and quickest
counterparts in Section IV. Section V concludes the paper with
summarizing our contributions and discussing the limitations
of our study.

II. RELATED WORK

Driving behaviour significantly affects fuel consumption
[10], [26]. Researchers in both academia and industry have
studied instructing drivers in more fuel-efficient driving [14].
Some systems provide online feedback for drivers [15], [27].
Others present deeper post-driving analysis of the trips driven
[13]. Many factors affect driving behaviour and route charac-
teristics is one of them, such as traffic lights and pedestrian
crossings [5], [10], [26]. However, not only the route itself is
important, but the overall situation, including traffic situation
on the road and weather [13]. That is why navigator operators
encode information about traffic situation in their products.
Crowd-sourcing solutions are also suggested. For example,
Saremi et al. [24] propose GreenGPS navigation service al-
lowing drivers to find between arbitrary end-points the most
fuel-efficient routes customised for their vehicles. Their system
aggregates information from vehicles and generalises it to
arbitrary roads and cars to suggest the fuel-efficient routes.

Understanding which factors are important for drivers in
route selection would allow developing better transportation
solutions and infrastructure. Often, alternative routes, min-
imising some characteristics like time, distance, or number of
turns, are constructed and compared with actually driven ones.
For instance, Zhu and Levinson [30] fuse GPS and GIS data
to analyse the routes taken by the residents up to 13 weeks
and reveal that current route choice set generation algorithms
do not reveal the majority of paths the individuals took.



Indeed, different factors can be important for an individual
when making driving route decisions [3], [23], [25]. For
example, Papinski and Scott [22] identified the following
factors important in selecting the route for home-to-work trips
based on analysis of 237 trips: gender, household size, work
schedule, actual distance to work, distance to central business
district, travel time, and exposure to public transit.

Often, research on route selection is based on taxi GPS
traces [6], [9]. Yao et al. [28] find taxi drivers’ preferences
for route choice, like routes with higher driving speed. Route
selection heuristic rules are proposed based on a model of
the urban space with relationships between urban features and
human cognition [19], [20].

Development of tools for route choice analysis is important,
as considerable efforts are required to process raw data.
Papinski and Scott [21] have developed a GIS-based toolkit
for analysing route choices, importing automatically route
information and generating over 40 variables describing the
route. A similar tool for route analysis has been proposed
by Lu et al. [18]. The authors extracted alternative routes for
origin-destination pairs from the actual dataset, hence, only
realistic routes were considered for comparison. Moreover,
understanding actual situation is important to grasp route
choice decision-making. For instance, Jiang et al. [17] suggest
a route choice analytical model that uses cumulative prospect
theory and evolutionary game theory to analyse drivers’ route
choice decisions based on the traffic information.

As can be seen, considerable amount of research has been
conducted towards both understanding what affects route
selection and fuel consumption. Surprisingly, all potentially
useful information, such as weather, traffic and road condition
is not utilised much in related work. Finally, the fuel con-
sumption for alternative routes is evaluated as well. Our study
differs from related work in these aspects.

III. DATA

In this study, we fuse weather1, traffic situation2, route
information3, and real taxi trips’ driving data4 retrieved from
the OBDII diagnostics connectors. Table I summarizes the
information used in this study. Details of the data sources and
corresponding data processing can be found in [13]. Driving
data is collected for the period from 9/2012 till 11/2014 from
six local taxi cabs. Trips falling outside the local region and
trips with insufficient data were removed from the analysis,
resulting in 2548 trips considered for analysis.

Each trip was further map-matched [4] and selected driving
behaviour characteristics [10] of the trip were calculated (Be-
havioural characteristics in Table I), check details from [13].
Then, for each trip we generated quickest (least amount of time
to travel) and shortest (having minimum distance to travel)
routes having the same origin and destination as the original
trip. For each route driven and for its shortest and quickest

1Digitraffic, http://www.infotripla.fi/digitraffic/doku.php?id=start en
2Oulunliikenne, http://www.oulunliikenne.fi/#/autoilu
3Digiroad, a database of Finnish road network
4Driveco, http://eco.driveco.fi/www/

TABLE I
PROCESSED ROUTE PROPERTIES USED FOR ANALYSIS, [13]

Characteristics Properties interpretation

Behavioural
(selected
factors from
[10])

% of time with the speed <2 km/h
% of time with the speed {0-15,15-30,30-50,50-
70,70-90,90-110,>110} km/h
% of time with the engine speed {<1500,1500-
2500,2500-3500,>3500}
Speed oscillations (local max and min) per driven
meter
% of time when multiplication of speed and accel-
eration is 3-10 m2/s3

% when the acceleration > 2.5 m/s2
Relative positive acceleration
Average deceleration

Spatial (data
fetched from
Digiroad3

digital map)

% of the trip distance driven on the road with speed
limit {20,40,50,60,80,100,120} km/h
Number of traffic lights per meter in the route
Number of crossings per meter in the route
Number of pedestrian or bicycle crossings per meter
in the route
Type of the road (physical or traffic-type attributes)
telling % of the trip driven on {motorway, part of a
multiple carriageway which is not a motorway, part
of a single carriageway, roundabout, slip road}
% of trip driven on road type {road, street, private}
Functional class of the road (service level of the road
to the traffic) telling % of trip driven on {regional
main (class I) street, local main street, connecting
road, feeder street/class I private road, class II private
road}
Number of {left, right} turns per meter in the route

Weather

Air, surface and dew point temperature
Relative humidity
Surface condition (grip with the surface of the road)
Precipitation intensity and type
Visibility
Friction coefficient
Amount of snow, water and ice on the road

Traffic
situation

Ratio of the route driven with {bad, constrained,
smooth} traffic

versions, we calculated the spatial map properties (Spatial
characteristics in Table I) and assigned weather measurements
(Weather characteristics in Table I) [13].

In addition, based on traffic situation information of each
route segment, we calculated the ratio of smooth, constrained,
and bad traffic situations based on type of the day (working
day or weekend) and the time of the trip (morning, day,
evening, late evening, and night) for driven routes and cor-
responding quickest and shortest versions (Traffic situation
characteristics in Table I).

To evaluate the similarity of the driven route to generated
versions we use overlapping coefficient (OC), which is the
ratio of the identical part’s length between the route and its
generated counterpart to the length of the driven route.

The threshold for labelling two routes to be similar varies.
The amounts of routes in this study considered similar to
corresponding shortest, quickest, or both counterparts based
on different thresholds are presented with Fig.1c. In our case,
quite many trips follow the route close to the corresponding
quickest or shortest counterpart. For example, more than third
part of trips differs less than 0.1% from their corresponding



Fig. 1. Comparison of the trajectories and statistics for the metrics used.

shortest or quickest counterparts. By relaxing the threshold to
5% we end up having about 40% of routes similar to their
shortest counterparts and about 43% similar to their quickest
counterparts. Threshold of 10% allows considering almost half
of the routes in the dataset similar to the quickest (50%) or
shortest (47%) counterparts. This can be explained by the
topology of the road network (plenty of square-like regions)
and the nature of the routes taken. Based on this informa-
tion (Fig.1b and Fig.1c), and based on visual inspection of
the routes and their quickest and shortest counterparts, we
consider the routes similar to its corresponding quickest or
shortest counterpart if they differ less than or equal to 2%
(OC≥0.98), similarly to [30]. Also, we conclude that having
20% difference in overlap is sufficient to consider the routes as
quite different. Larger threshold could hide the real variability
between routes close to city centre and smaller threshold
would mark insignificant trajectory changes as different and
blur the results.

Hence, all the trips for analysis were divided into four
groups, as presented in Table II. The first group contains
the trips which have the same trajectory as the shortest ones
(Shortest). That is, we labelled routes with OCsd≥0.98 but
OCqd<0.80 as Shortest. The second condition eliminates
the trips spatially close also to their quickest counterparts.
Similarly, Quickest, Same, and Different groups are defined.

IV. ANALYSIS

The trip group comparisons presented in this section are
supported by Wilcoxon rank-sum and Wilcoxon signed-rank

TABLE II
DETAILS FOR DATA SELECTION PROCEDURE

Name Data selection Trips #
Number of filtered simple trips 9/2012-11/2014 3308
Number of trips considered for further analysis: 2548
Shortest same as shortest counterparts but different from

quickest, i.e. OCsd≥0.98 and OCqd<0.80
115

Quickest the same as quickest counterpart but different
from shortest, i.e. OCqd≥0.98 and OCsd<0.80

149

Same same as shortest and quickest counterparts, i.e.
OCqd≥0.98 and OCsd≥0.98

752

Different differ from both shortest and quickest counter-
parts, i.e. OCsd<0.80 and OCqd<0.80

681

tests with 0.05 significance level.

A. Analysis of driven trips

In the dataset, trips are distributed similarly between the
days of the week and months of the year. Distribution of driven
trips by hour has peaks for Shortest trips close to rush hours.
Different trips have bell-shape distribution with the maximum
at day time. There are more Quickest trips in the late evening.
Different trips spent more fuel per km than other groups of
trips. Also, Different and Quickest trips of the analysed set are
longer than Shortest (see Table III)5. This may indicate that
it is easier to follow the shortest route when the number of
alternatives is limited.

5Other test results, supporting claims in this article, can be found from:
http://www.ee.oulu.fi/∼gilkate/Support%20material.pdf

http://www.ee.oulu.fi/~gilkate/Support%20material.pdf


Fig. 2. Routes comparison between trips (More intensive the colour, more frequently the certain road element was driven).

TABLE III
WILCOXON RANK SUM TEST FOR FUEL, DISTANCE, AND TIME FOR FOUR GROUPS OF TRIPS

Factor Different/Shortest Different/Quickest Different/Same Shortest/Quickest Shortest/Same Quickest/Same

fuel(l/km) +35186
(4.082770e-02)

+33182
(1.779026e-11)

+227761
(1.490806e-04)

+10604
(4.667923e-04)

+43857
(4.026500e-01)

-42631
(1.967967e-06)

map distance +36804
(1.510998e-01)

-66403
(1.703253e-09)

+233123
(1.686799e-03)

-5926
(8.779117e-06)

+43826
(4.074534e-01)

+79084
(9.648422e-16)

time min +33007.5
(3.505033e-03)

-54715.0
(6.662156e-02)

+193622.0
(7.264169e-16)

-6657.0
(9.514550e-04)

+45228.0
(2.134063e-01)

+74201.0
(1.885907e-10)

total fuel +34134.5
(1.382515e-02)

-61780.0
(1.545388e-05)

+215575.5
(1.142185e-07)

-5953.5
(1.075402e-05)

+43767.5
(4.165570e-01)

+76428.5
(1.027226e-12)

Cells contain W value (P-value). ”+” means that alternative = ”greater”, ”-” means alternative = ”less”. Differences at the 0.05 significance level are marked
in bold.

Behavioural analysis. Different trips demonstrate signifi-
cantly higher proportion of very low speeds and stops than
other groups of trips, which negatively affects fuel consump-
tion [10]. Shortest trips have higher proportion of speeds
within 30-50 km/h, while Quickest trips follow more roads
with speeds within 50-70 km/h, which positively affects fuel
economy [10]. Different trips have also much less constant
speed profile in comparison to other groups of trips. The most
stable speed profile is registered for Quickest trips.

Route characteristics analysis. If we place the trips to
the map, we will see that Shortest trips often follow the
street roads, when Quickest trips prefer main roads (Fig.2).
This potentially explains the variance in the speed factors
observed between the trips in behavioural analysis. However,
Different trips contain a quite diverse set road types. Same
trips also show different patterns, however local roads are
preferred as well. Spatial characteristics of the routes reveal
that the majority of Shortest trips fall into roads with speed
limit 40 and 50 km/h. That is, Shortest trips consist of less
road but more street segments. Correspondingly, majority
of Quickest trips are taken on motorway roads with higher
speeds. Furthermore, it can be observed that different trips
have the highest ratio of turns, crossings, and traffic lights.
Accordingly, this shows in driving behaviour with difference
in speed factors and consequently in the difference in the fuel
consumption.

Weather analysis. A majority of the trips fall into good

Fig. 3. Precipitation types and road surface conditions for Shortest, Quickest,
Same and Different routes.

weather conditions, like dry road with no rain. For such con-
ditions, Quickest trips present better fuel efficiency compared
to other groups. Similar behaviour could be observed for wet
road surface conditions, see Fig. 3.

Traffic density analysis. From trips analysed, we removed
trips with no traffic situation value, this resulted in 360 trips.



Fig. 4. Proportion of trips and fuel distribution for different traffic situations
(360 trips).

With few occurrences, Shortest trips contained more cases with
bad traffic than other groups of trips, see Fig. 4. This has
logical connection to the types of the roads selected and speed
profile observed.

B. Analysis of driven trips and their shortest and quickest
counterparts

To find out potential fuel savings or losses associated with
the selected route, we compare the actually driven Different
trips in Table II, with artificially created shortest and quickest
versions. For clarity, we refer to these Different trips as Driven
and to their shortest and quickest counterparts as Shortest gen
and Quickest gen.

Driven trips analysis. Driven trips demonstrate more over-
lapping with longer Quickest gen trips than with longer Short-
est gen trips, Fig. 5. This means that long Driven trips rather
follow the quickest route than the shortest ones. In opposite,
short-distance trips tend to overlap more with Shortest gen.
This is logical, as long trips often follow motorways, which
are also preferred by Quickest gen.

Fig. 5. Distribution of OC based on the distance of the travel.

Route characteristics analysis. Here, results resemble the
ones observed for actually driven trips, like speed pattern.
Shortest gen trips follow more roads with low speed limits and
less roads with higher speed limits in comparison to Driven
and Quickest gen. This can be explained with the types of the
roads driven. Interestingly, the number of crossings in Driven
trips is less than for the Shortset gen ones, which is opposite

in analysis of actually driven trips. Driven trips also have larger
turn ratios in comparison to Shortest gen and Quickest gen.

Traffic density analysis. Due to lack of bad and constrained
traffic cases, no interesting patterns were revealed here.

C. Analysis from fuel-economy perspective

To understand the effects of the route selection on fuel
consumption, we compare the fuel spent by driven routes
with estimated fuel consumption of their generated versions.
Different machine learning and statistical techniques have been
utilized for fuel prediction [8], [12]. In this study, we develop
the generalized boosted regression model GBM (gbm library
in R package) to predict the fuel (l/km) from the predictor
variables describing trips’ spatial and weather characteristics.
We have also explored other machine learning models like k-
NN, C4.8, SVM and Neural Networks, but GBM proved to
treat efficiently the complex relationships within our dataset.

For analysis, we use dataset of actually driven trips, Table II,
which resulted in 2447 trips after removing the outliers. This
dataset was divided into 11 folds with caret R package. One
fold is left for model validation (test set), the rest 10 folds
(training set) were used to select the proper predictors and
model training. We have used 10-fold cross validation to select
the feature set. Based on the predictor’s importance, feature
set was revised after each round and the most meaningful
features were selected for the model. The task appeared to
be difficult, as for artificially generated routes behavioural
characteristics, having direct effect on fuel consumption, are
not known, Fig. 6. Table IV lists the model predictors as well
as their importance given by GBM.

Fig. 7 shows the effect of model predictors on fuel con-
sumption. Rush hours, high proportion of crossings, traffic
lights, turns ratio, the amount of 40 km/h speed limit increase
the fuel consumption. The effect of air temperature is harder
to interpret; maybe the negative effects on fuel consumption
could be explained by the use of air conditioning or opened
windows.

We used the developed model to predict the possible fuel
consumption on artificially created Shortest gen and Quick-
est gen routes. Quickest gen trips have better fuel-efficiency
per km than Shortest gen, possibly because of the differences
in types of the roads, their speed limits, number of crossings.
To evaluate the overall fuel efficiency for the driven and
generated routes, their length was multiplied to the predicted
fuel per km. Fig. 8 shows the results for trips grouped by the

Fig. 6. Fuel prediction performance of selected model.



Fig. 7. Effects of the selected variables on the fuel consumption.

TABLE IV
PREDICTORS OF THE MODEL AND THEIR INFLUENCE

Predictor Influence
hour of day 28.680350
crossings 11.327502
% of the trip driven on the road with speed limit 40 km/h 6.546710
ratio of turns right 6.518235
ratio of turns left 6.148643
traffic lights 4.521123
air temperature 3.933696
% of the trip driven on the road with speed limit 50 km/h 3.833127
% of the trip driven on the road with speed limit 60 km/h 2.954860
road surface temperature 2.889482
day of week 2.856259
% of trip driven on multiple carriageway, not motorway 2.840442
pedestrian crossings 2.810359
% of trip driven on feeder street/class I private road 2.800542
dew point 2.517138
% of trip driven on part of a single carriageway 2.283501
% of trip driven on local main street 2.054013
% of trip driven on slip road 1.761632
% of trip driven on road 1.415402
% of trip driven on street 1.306984

length of the actually driven routes, to observe if there were
any differences between short and longer trips.

As Fig. 8 shows, Driven routes demonstrated worse re-
sults in fuel consumption in comparison to Quickest gen
and majority cases for Shortest gen. This can be explained
by the fact that Driven trips are longer than Shortest gen
and some Quickest gen. So, even though, the fuel spent per
km could be higher for Shortest gen, the distance difference
could result in fuel savings. Shortest gen and Quickest gen
do not demonstrate statistically significant difference in fuel.
However, for the longest trips (≥17km), Quickest gen spend
less fuel than Shortest gen regardless the difference in the
route length. This can be explained by the road characteristics
of Quickest gen trips.

Fig. 8. Difference in fuel (a) and route distances (b) between driven and
generated routes categorised by the length of the route.

Fuel consumption difference for the whole trip in percent is
not very large, Fig. 8. That is, median savings for Shortest gen
are equal to 6.5%, 3.0%, 4.1%, 5.1%, 6.2%, 6.2%, 10% and
median savings for Quickest gen are equal to 7.2%, 3.0%,
4.7%, 3.6%, 4.9%, 6.8%, 10.1% in comparison to modelled
fuel for Driven trips for corresponding distance categories.
In comparison, Ericsson et al. [11] reported about average
potential savings of 8.2% from fuel-optimized route.

V. DISCUSSION AND CONCLUSIONS

In this article, we presented a complete empirical study
for routes analysis. For this, we fused diverse kinds of
data, including weather, traffic situation, driving behaviour,
and geospatial information. Both routes and their generated
quickest and shortest counterparts were analysed. Moreover,
we developed a fuel consumption model and applied it to
the route counterparts for possible fuel economy evaluation.
Article presented thorough details on data processing, analysis,
criteria selection, and model learning procedures. Moreover,
article discusses challenges and limitations.

In our dataset, trips differing from both the shortest and
quickest counterparts appeared to be less fuel efficient when
compared to the trips following either the shortest or the
quickest route. We also found differences in route charac-
teristics and corresponding driving behaviour for these trip
categories. Analysis of driven trips and their generated shortest
and quickest counterparts revealed that longer trips rather
follow the quickest counterpart, which is a logical observation,
as long trips may follow motorways [30].

Developed in this article, fuel-consumption model demon-
strated the route characteristics affecting the fuel consumption
the most. Based on the model predictions, driven trips demon-
strated worse fuel efficiency when compared to generated
counterparts. When the quickest and shortest counterparts are
compared, no significant difference is observed in our dataset.
In comparison, Ericsson et al. [11] indicated that a fuel-
efficient route is often similar or close to the shortest one.

We found the following limitations and challenges. First, our
analysis is based on the GPS locations and does not consider
cognitive and physiological factors, as well as possible use of
navigation tools, which may have an effect on route selection.
This study does not focus on the factors affecting the route
selection, but on route’s effects on fuel consumption. We also



treat the dataset as the whole, which is a common approach
[11] allowing to abstract from individual features and to
concentrate on the overall picture. However, our dataset is not
large and it has been collected from few participants which
may increase a single driver’s impact on the results. Pruning
of the dataset might bias the results as well, e.g. the similarity
threshold has an effect on the selection of the trips and their
classification.

For modelling alternative routes, we used artificially created
shortest and quickest routes and this can generate some
errors. A larger dataset would allow using actual trip data
for alternative routes [18]. However, artificially created routes
provide flexibility to set up own criteria for minimization.
Also, the quality of available information affects greatly the
prediction model and the results. Hence, the performance of
the suggested model for fuel consumption prediction from
route characteristics and weather could be affected by inaccu-
racy or incompleteness of information observed in digital map.
Unfortunately, these kinds of issues are hard to eliminate, but
they should be considered when interpreting the results. Of
course, generalizing the results would require larger datasets
from several different cities.

This study showed that taxi drivers follow the shortest route
if the distance to travel is not long and the number of road
choices is limited. Similarly, drivers follow the quickest routes
more if the distance to travel is long. These decisions seem to
be efficient from fuel economy point of view. Also, for longer
trips, other factors like number of crossings are considered
more important. We think that experience plays an important
role, e.g. if there exists a hunch of congestion on some road
drivers prefer to avoid it. The structure of the local region with
few large roads somewhat limits the route alternatives. This
also allows us to conclude that taxi drivers are well aware
about the local region and best routes to select. Based on the
study, we confirm earlier findings [19], [21], [24] that many
factors affect the actual route choice of the drivers and these
factors should be considered altogether. Hence, routing tools
should incorporate different characteristics related both to the
route and driving behaviour [14], [16].

Although there were limitations, we gained a lot of un-
derstanding about this topic and will tackle the challenges in
our future work. For generalization of the results, a larger
dataset would be needed. Also, understanding why certain
route is preferred over the other is important; therefore we’re
planning to conduct a study where the drivers would give their
opinions on routes selected. Additional sources of information
about traffic density are required. For example, one possible
solution is to utilize private or public transportation to serve
as speed probes on the roads of the local region. Finally, we’re
interested in fusing other available data, e.g. information about
traffic accidents.
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