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Abstract—With the rapid adoption of wireless sensor networks
(WSNs) into smart cities and vehicle networks, traffic problems
can be evaluated and predicted in real-time. In this paper, we
propose a data-driven approach to find out the most influential
causes of traffic congestions. We first find the top most influential
regions and use the Fortune’s algorithm to partition the city.
Second, we propose a model with three correlations to measure
the dependency between two traffic events, which are spatial
correlation, temporal correlation, and logical correlation. Third,
we adapt the Independent Cascade model with a pruning algo-
rithm to address traffic congestions. At last, we conduct intensive
experiments on large real-world GPS trajectories generated
by more than 10,200 taxis in Shanghai to demonstrate the
performance of our approaches.

I. INTRODUCTION

Traffic congestions are one of the most crucial problems in

major cities in the last several decades. The future adoption

of WSNs in vehicles and urban environments can improve

our understanding of basic laws governing the mobility pat-

terns of vehicles. Smart cities will open new possibilities

to achieve real-time congestion predictions [1] and a more

refined collection of data. The mobility pattern is regarded

as an effective angle to inspect the traffic condition at the

city scale [2], [3], making its characterization and modeling

an active topic in traffic anomaly study. In particular, the

GPS tracking data generated by automobiles provides us with

great opportunities to infer rich knowledge, which can be

leveraged in the improvement of thoroughfares layout and the

optimization of transportation infrastructure. Previous works

have shed light on analyzing the location traces of moving

objects, such as finding the “periodic” or frequent movement

patterns [4] as well as abnormal movement patterns [5].

Aiming at triggering the most influential change, we ask,

can we discover those areas which have the most significant
influence on the urban traffic condition as a whole to make the
best use of limited resources? Such optimizations become a

primitive for urban computing applications, guiding thorough-

fares layout design, infrastructure reconstruction, and instant

congestion resolution. We name it as seeds discovery and will

investigate its real-life feasibility in this paper.

In this paper: differing from the major cause discovery [6],

[7], the core idea of seeds discovery is introducing a problem

to find the top J most influential regions (J-KEY-Region) to a

graph representing congestion network and analyzing its diffu-

sion process to address this problem. The following challenges

should be addressed in order to have a feasible system: (1)

detecting traffic congestion from vehicles’ trajectories data;

(2) quantifying the dependence among different congestion

events; and (3) modeling the diffusion process. Since traffic

congestions are treated as anomalies in this topic, and there

is already much work on anomalies and outliers detection [5],

we choose a different approach. Inspired by [8], we adapt the

Independent Cascade model to address traffic congestions.

Summary of contributions:
• We identify seeds discovery problem as a J-KEY-Region

problem to find the top J most influential regions.

• We introduce a novel way to partition the city map

by adopting Fortune’s algorithm [9] to get the Voronoi
diagram.

• We propose an integrated correlation rule to quantify the

dependency between congestion events.

• We adapt Independent Cascade model [10], [11] to

address the J-KEY-Region problem and design a pruning

strategy to improve the efficiency.

• We experiment on a large real-dataset containing more

than 10,000 taxicabs in Shanghai and show the effective-

ness and efficiency of our approaches.

II. MODELS AND PROBLEM DEFINITIONS

Now we define the terminologies used throughout the paper

and give an overview of our approach, see Table I.

A. Traffic Congestion Detection

Traffic congestion is formally defined as a condition on road

networks that occurs as usage increases and is characterized

by slower speeds, longer trip times, and increased vehicular

queuing [12]. We detect traffic congestions analyzing the

traffic speed of the vehicles.

For the sake of generality, we choose the region as the basic

spatial unit in our model. The comparison of the Region-
based model and Road-based model will be discussed in

more detail in Section IV. Considering that state-of-the-art

models partition the city according to major road [13], which

suffers from a fundamental boundary issue [6], we propose

a novel approach to derive new regions based on that. In the

same way, as described in [13], we partition a city into dis-

jointed regions using the major roads of a city. Connected
Components Labeling is employed to partition effectively

and efficiently [14]. Then, we get centroids of all regions.

Afterward, we get a set of N points. Here for the concern of



TABLE I
MEANINGS OF SYMBOLS USED

Notation Description

Fi
Boolean indicator shows whether traffic congestions
occur or not

R set of regions
Ei/ Ei.ri traffic congestion in a patio-temporal unit
TC(Ei, Ej) time correlation between two events
SC(Ei, Ej) spatial correlation between two events
LC(Ei, Ej) logical correlation between two events

pu,v / p(u → v)
influence probability from node u to v in independent
cascade model

σ(.)
the expectation of total weight of events influenced
by selected region

Φ
one of the possible outcomes of the traffic events
network

Ψ partial realization

simplicity, we assign points with the average value of highest

and lowest longitude and latitude.

Pi = (
max{Xi}+min{Xi}

2
,
max{Yi}+min{Yi}

2
), (1)

where Xi is the set of all possible longitude in the Region i,
Yi is the set for latitude.

We adopt Fortune’s algorithm [9] to generate a Voronoi
diagram with the city map and the set of points P . After this

process, every point on the map is in the region whose centroid

is the closest to it. Thus in the subsequent modeling, the

bias in the spatial correlation from various scales of original

regions declines. Again, for computational simplicity, we use

Manhattan Distance in Fortune’s algorithm. For each region,

we partition the spatial region into T spatial, temporal units.

We detect the traffic congestions in each Spatio-temporal unit

and mark those units with traffic congestions as infected units.

Each infected unit represents a traffic event Ei, and continuous

infected units in the same region will be merged as a single

traffic event. As we are only interested in the influences

between different traffic congestions, we do not parametrize

the duration of given congestion. The concrete steps are:

• Computing the average speed vnormal.ri of each region

for each day. We use it as the normal speed of this region.

• Computing the average speed vins.ri of each region for

each time interval. We treat Vi as the instantaneous speed

of each Spatio-temporal unit.

• Comparing every vins.ri with vnormal.ri. We identify

Spatio-temporal units with congestions by:

Fi =

{
1 if vins.ri ≤ αvnormal.ri
0 otherwise

(2)

where F is a Boolean indicator shows whether traffic

congestions occur or not, and α is between 0 and 1.

By adopting the approach above, we identify the Spatio-

temporal units that encounter traffic congestions. In other

words, we detect traffic congestions in specific regions within

certain periods.

B. Influence Measurement

We dilate how to compute the influence probability in the

network. If the traffic event Ei happens, the traffic event Ej

will happen with the probability Pij(0 ≤ Pij ≤ 1), we add a

directed edge from Ei to Ej with weight Pij .

Definition 1 (Influence): The influence from event Ei to

Ej is defined as the probability Pij(0 ≤ Pij ≤ 1) when Ei

happens then Ej also happens afterwards.

The principle underlies this probability is the same as that

underlies correlation, which is specified in the covariance

matrix L consisting of average passing time in the basic spatial

unit. In [8], authors captured correlation by appropriately

specifying the structure of the covariance matrix L, consisting

of average passing time in the basic spatial unit. The spatial

correlation between route links is captured by LLT , while

temporal correlation is captured by LTL, [15] calculates these

correlations in a more sophisticated fashion. Covariance is cal-

culated from traffic data that have been calibrated based on the

Stochastic Cell Transition Model to represent the correlation.

However, both [8] and [15] build their model on low-level

data, taking input directly from traffic data like traffic flows or

passing the time. From their points of view, correlation mining

is a means to decipher current traffic conditions. While in our

work, traffic anomalies detected from the previous phase are

objects, we intend to measure correlations, which usually have

attributes like location and time that are conventionally utilized

in correlation measurement. Hence though well elaborated,

these state-of-the-art models do not match our requirements.

We propose an integrated correlation to measure the influence

probability between two traffic events by combining spatial

correlation, temporal correlation, and logical correlation (all

the correlation values are normalized in the domain of [0, 1]).

1) Temporal Correlation: The temporal correlation

TC(Ei, Ej) between traffic event Ei and traffic event Ej is

defined as the confidence of the association rule Ei → Ej

under the temporal constraint that traffic event A is before

traffic event Ej , and their difference does not exceed a

threshold ht. When two events satisfy the time constraint,

they can be counted as one support for the rule Ei → Ej .

2) Spatial Correlation: Recall that the map is partitioned

into N regions. The spatial correlation of two traffic events

is computed as the inverse of Euclidean distance between the

geographical centroids of two traffic events (SC).

SC(Ei, Ej) =
1√

((xi − xj)2 + (yi − yj)2)
(3)

where (xi, yi) and (xj , yj) are the geographical centroids of

event Ei and Ej respectively.

Recall that the map is partitioned into N regions. The spatial

correlation of two traffic events is computed as the inverse of

Euclidean distance between the geographical centroids of two

traffic events:

SC(Ei, Ej) =
1√

((xi − xj)2 + (yi − yj)2)
(4)



where (xi, yi) and (xj , yj) are the geographical centroids

of event Ei and Ej respectively.

3) Logic Correlation: The conventional measurement of

correlation may engender discrepancy in the situation that two

viaducts leading to different destinations may be adjacent to

each other at some points, where congestion at one viaduct

will little likely affect the other one. We filter these errant

factors out using the inner relationships of traffic flows that

are scrutinized through logical correlation mining. In our work,

logical correlation is defined as the volume of identical vehi-

cles’ appearing in different events, as shown in the following

Chi-Square formula

LC(Ei, Ej) =
(N ij

11N
ij
00 −N ij

10N
ij
01)

2

(N ij
11 +N ij

10)(N
ij
10 +N ij

00)(N
ij
00 +N ij

01)(N
ij
01 +N ij

11)
(5)

where N11 denotes the number of common vehicles appear

both in traffic event Ei and Ej , N01 means the number of

vehicles only appear in the traffic event Ei, while N10 means

the number of vehicles only appear in the traffic event Ej ,

and N00 represents the number of vehicles neither appear in

traffic event Ei nor traffic event Ej .

We finally obtain the influence probability P (Ei, Ej) be-

tween traffic event Ei and Ej as follow in Equation 6

P (Ei, Ej) = αSC(Ei, Ej) + βTC(Ei, Ej) + γLC(Ei, Ej) (6)

where α+ β + γ = 1.

C. Independent Cascade Model

In considering operational models for the spread of a traffic

event through a city (network), represented by a directed graph

G, we will speak of each node as being either influenced
or uninfluenced. Thus, the process will look as follows from

the perspective of an initially uninfected node Ei: once the

propagation is initiated, more and more Ei’s neighbors be-

come infected, and Ei’s situation may, in turn, trigger further

congestions by nodes to which Ei is connected. Many models

have been proposed to capture the diffusion process in our

traffic events network. The conceptually simplest model of

this type is called Independent Cascade Model, which is

investigated [10], [16].

The Independent Cascade model can well represent the

scenario of our traffic network, and it is very efficient to

compute. The process starts with an initial set of active nodes

A0. When node u first becomes active in step t, it is given

a chance to activate one of its currently inactive neighbor v
with probability pu,v (independently of the history so far). If u
succeeds, then v will become active in step t+1. The process

terminates when no more activations are available.

D. Problem Formalization

We can now formally express the optimization problem.

Definition 2 (J-KEY-Region): Given a set S of traffic events,

we define the influence of S, denoted by σ(S), as the expected

total weight of nodes influenced during the diffusion process

initiated by S. Given a traffic event network, G(V,E). We

denote V to be the set containing all the nodes in G, each

TABLE II
σ(T ∗) OF ALL POSSIBLE SIZE-2 COMBINATIONS

Regions Corresponding Events σ(T ∗)
{ri, rj} {E1.ri, E2.ri, E3.ri, E1.rj , E2.rj , E3.rj} 6.2
{ri, rl} {E1.ri, E2.ri, E3.ri, E1.rl, E2.rl} 7.81
{ri, rk} {E1.ri, E2.ri, E3.ri, E1.rk, E2.rk} 6.82
{rj , rl} {E1.rj , E2.rj , E3.rj , E1.rl, E2.rl} 6
{rj , rk} {E1.rj , E2.rj , E3.rj , E1.rk, E2.rk} 5.5
{rl, rk} {E1.rl, E2.rl, E1.rk, E2.rk} 5.3

of which corresponds to a traffic event and E to be the set

containing all the directed edges in G. Each edge ej ∈ E in

form of (u, v) is associated with a weight p(u,v) ∈ [0, 1].
Given G, an integer J and a region-event relation function

F = {f, T,R|∀t ∈ T, ∃r ∈ R, f(t) = r} (7)

where T and R represents the set of traffic events and set

of regions respectively. J-KEY-Region problem asks, for a

parameter J , to find a subset R∗ ⊆ R of size J , such that

σ(T ∗) is maximized, where T ∗ = {t∗|f(t∗) = r∗, r∗ ∈ R∗}.

J-KEY Running Example: We have a set of regions with

traffic congestion (candidates) {ri, rj , rk, rl}. Each region

contains a group of events and the weight between two nodes

represents the influence probability between two events. We

further assume we want to select the two most influential

regions from them. Hence we have J = 2, R = {ri, rj , rk, rl}.

There are C2
4 possible combinations, each of which indicates

a σ(T ∗), see Table II. The candidate regions with traffic

congestions {ri, rl} is the optimal choice. Because when

{ri, rl} occur congestions, the expectation of the number

of regions be influenced to have congestions is maximized.

Unfortunately, the J-KEY-Region problem is NP-hard for the

Independent Cascade (IC) model (Proof 1).

III. APPROXIMATION ALGORITHM

A. Greedy Approach

Our first main result is that the optimal solution for J-KEY
Region problem can be efficiently approximated to be within

a factor of 1 − 1/e − ε in Independent Cascade model; here

e is the base of the natural logarithm and ε is any positive

real number. We discuss our ration approximation on the

submodular property of function σ(.).
Theorem 1 (Submodularity): Let U be a universe set of

regions and S be a subset of U . Function f(.) which maps

S to a non-negative value is said to be submodular if given

any S ⊆ U , it holds for any regions x1, x2 ∈ U − S that

f(S∪{x1})+f(S∪{x2}) ≥ f(S∪{x1, x2})+f(S) (Proof 2).

Property 1: Function σ(.) in J-Key-Region is submodular.

Algorithm 1 achieves the performance guarantee, which is

a natural greedy hill-climbing strategy related to the approach

1https://github.com/solrac1986/optimal seeds traffic congestions/blob/
master/models.md

2https://github.com/solrac1986/optimal seeds traffic congestions/blob/
master/approximation algorithm theorem 1.md



Require:
G(V,E): a traffic event network.
J : the maximun size of seed region set.
F: a region-event relation function,
F = {f, T,R|∀t ∈ T, ∃r ∈ R, f(t) = r}.
R: a region set.

Ensure:
R∗: a seed region set.

1: R∗ ← ∅
2: while |R∗| < J do
3: u ← argmaxx∈R−R∗(σ(T ∗ ∪ Tx)− σ(T ∗)), T ∗ =

{t∗|f(t∗) ∈ R∗}, Tx = {t|f(t) ∈ x}
4: R∗ ← R∗ ∪ {x}
5: end while
6: return R∗
Algorithm 1: Greedy Algorithm for J-Key-Region.

considered in [17]. Thus, the main content of this result is

the framework needed for obtaining a provable performance

guarantee, and the fact that hill-climbing is always within a

factor of at least (1− 1/e) of the optimal in this problem.

B. Adaptive Approach

The adaptive approach is a strategy that chooses the optimal

region based on the realization of the previous decision. In

general, after selecting each region r (a set of events), we can

realize which other events have been influenced by observa-

tion. As a result, we are required to adaptively pick a sequence

of regions with uncertain outcomes under partial observability,

which leads to a stochastic optimization problem. In this

Section, we study how to select regions sequentially in such

a dynamic scenario.

1) A Dynamic Scenario: First, we will consider the prob-

lem where we sequentially pick a region r ∈ R, then observe

its influence (i.e., determine the events influenced), then pick

the next region r′, observe its influence, and so on. After

each selection, our observations so far can still be represented

as a Traffic Event Network, but with some edges having

probabilities updated to 0 or 1.

Second, we pursue the stochastic optimization under this

dynamic scenario. In the previous section, we found that

the function of traffic influence σ(.) is submodular. Hence

the greedy algorithm achieves a near-optimal solution. This

stochastic optimization fulfills the property of adaptive sub-
modulariy, generalizing submodular set functions to adaptive

policies. As a result, a simple adaptive greedy algorithm in

the dynamic scenario is guaranteed to be competitive with the

optimal policy.

2) Formulation: Now we formulate the stochastic optimiza-

tion. Each region r ∈ R is in a particular state Φ(r) ∈ O from

a set O of possible states. In other words, O refers to the

possible world of the traffic event network G; Φ indicates one

of the possible outcomes of the traffic event network; Φ(r)
reveals the state of the incoming edges of r after r is selected.

Hereby, Φ : R → O is a random realization of R, indicating in

which state each region is. The probability distribution P(Φ)
over the realizations can be easily computed based on the

probabilities associated with the edges.

After selecting each region r ∈ R, our observation so far

can be represented as a partial realization Ψ ⊆ R × O, a

function from some subset of E (i.e., the set of regions that

we already selected) to their states. A partial realization is

consistent with a realization if they are equal everywhere in

the domain of Ψ. In this case, we write Φ ∼ Ψ. If Ψ and Ψ′

are both consistent with some Φ and dom(Ψ) ⊂ dom(Ψ′), we

say Ψ is a sub-realization of Ψ′.
Then an adaptive strategy for selecting regions as a policy

π, which is a function from a set of partial realizations to R,

specifying which region to select next under a particular set

of observations. If Ψ /∈ dom(π) the policy terminates (stops

selecting regions) upon observation of Ψ. Then, E(π,Φ) is

defined as the set of regions selected by π conditioned on

realization Φ. Given a policy π, its expected number of events

to be influenced, becomes f(π) := EΦσ(E(π,Φ),Φ). Finally,

the goal of the adaptive stochastic maximization problem is

formulated as follows:

π∗ ∈ argπ max f(π)

s.t.∀Φ, |E(π,Φ)| ≤ J
(8)

3) Adaptive Submodularity: Submodularity, as mentioned

before, is an intuitive notion of diminishing returns, which

states that adding an element to a small set helps more

than adding that same element to a superset. The adaptive
submodularity extends the property of submodularity to cases

where the plan can be changed as new information is in-

corporated. Recent advances in stochastic optimization have

extended the property of submodularity to cases where the plan

can be changed as new information is incorporated. Hence,

the adaptive monotonicity and submodularity properties are

defined in terms of the conditional expected marginal benefit

of an item.

In the rest of this Section, we show that function f(π) from

the optimization problem (formula 8) is adaptive submodular.

We demonstrate this result with the following theorem.

Theorem 2 (adaptive Submodularity): The function f(π)
defined in the stochastic maximization problem defined in

formula 8 is adaptive submodular (Proof 3).

As a result, a simple extension of the J-KEY-Region algo-

rithm would achieve a near-optimal solution. We demonstrate

the adaptive greedy algorithm - at each iteration, we find the

optimal region according to the current traffic event network

G. After each region is selected, G is updated according to the

new information learned from the seed, i.e., the probabilities

of edges are updated 0 or 1.

IV. PRUNING

In this Section, we illustrate our pruning strategy to increase

the efficiency of our approach. The influence from node u to

node v is defined as P (u → v). If there is a path from u to

v, the influence diffused from u to v via this path is no more

3https://github.com/solrac1986/optimal seeds traffic congestions/blob/
master/approximation algorithm theorem 2.md



than the minimal probability of an edge in this path. That is

to say, P (u → v) ≤ 1 − ∏n
i=1[1 − Pi(u → v)], where n is

the number of paths from u to v. Then we have:

• u’s influence on the whole graph P (u) ≤ Σv[1 −∏
i = 1n[1− Pi(u → v)]].

• Region r’s influence on the whole graph P (R) ≤
ΣuΣv[1−

∏
i = 1n[1− Pi(u → v)]].

After sorting regions according to P (R), we can check

the most potential region first to find the seed. Furthermore,

the probabilistic traffic congestion influence network graph

GR is simplified. Nodes in identical region are merged as

a new node. Then, the key issue is to deal with edges.

To make it clear, we take nodes from two regions as an

example: Region R1 contains nodes n1, n2, ..., nk1
, Region R2

contains nodes m1,m2, ...,mk2
. For each node pair ni and

mj , we have diffusion probability P (mj |ni). Likewise, we

have P (nj |mi), for each node node pair mi and nj . Consider

node mi, the probability that it is influenced by nodes from

R1 = 1 − ∏
j [1 − P (mi|nj)]. We add the edge from new

node R1 to R2 with probability maxi[1−
∏

j [1−P (mi|nj)]].
Similarly we have R2 → R1. Every time we pick a possible

region as a new seed, we first estimate its marginal gain by

subtracting the exact influence in graph G with seeds set S
from that of S ∪R in GR. This estimated marginal gain will

act as the upper bound of R’s actual marginal gain. A list of

regions is initiated by sorting with key P (R). We update the

key after each time of estimation, with estimated value of the

picked-out region. Every updating is followed by a reordering.

Then, with descending order, we compute the exact marginal

gain of regions in the list. Once a region is computed, the

key is updated again. In the subsequent process, if a computed
region is picked out, it will be add to the seeds set R∗. Details

are shown in Algorithm 2.

V. EXPERIMENT

In this Section, we evaluate both the efficiency and effec-

tiveness of our methods using real-world trajectories obtained

from GPS-equipped taxis in Shanghai.

A. Experimental setup

The dataset consists of GPS trajectories (frequency of

minutes) of 10,200 taxis of Shanghai in two months (May

and August) in 2012. The total distance of the dataset is over

300 million kilometers, and the total number of GPS points

is almost 460 million. The average sampling interval of the

dataset is 80.2 seconds. Using the major roads (there is a road

level associated with each edge) from the network, Shanghai

has been partitioned into 367 regions.

Hardware. All experiments are conducted on a server

equipped with Intel(R) Core(TM)i7 3.40GHz PC and 16GB

memory, running on Microsoft Windows 7.

B. Evaluation on Effectiveness

In this subsection, we will evaluate the effectiveness of

greedy approach and Adaptive strategy.

Require:
G(V,E): a traffic event network.
J : the maximun size of seed region set.
F : a region-event relation function,
F = {f, T,R|∀t ∈ T, ∃r ∈ R, f(t) = r}.
R: a region set.

Ensure:
R∗: a seed region set.

1: R∗ ← ∅
2: Build priority queue Q for regions in R according to

approximated P (R).
3: Build GR.
4: while |R∗| < J do
5: while Q is not empty do
6: r = Q.pop()
7: if r is fresh then
8: Estimate(r) using GR

9: add r into Q with new estimated value
10: else if r is estimated then
11: Compute(r) using original graph
12: add r into Q with new computed value
13: else if r is computed then
14: add r into R∗ and break
15: end if
16: end while
17: mark all elements in Q as fresh
18: end while
19: return R∗

Algorithm 2: Greedy algorithm with pruning.

1) Effectiveness of Greedy Approach: We conduct an effec-

tiveness evaluation on our Greedy approach and compare our

proposed Greedy algorithm against three alternative methods:

(1) Enumeration (optimal), a brute-force algorithm, which

computes all Cj
r possible combination of regions and picks the

one with maximal expectation of influenced events, where r is

the number of candidates regions, and j is the number of key

regions to select; (2) MaxEvent, an algorithm that chooses the

set of regions of size j that contains maximal number of events

and pick the regions with the most severe traffic problems; (3)

Random, the regions are chosen randomly.

Due to the extremely high computational cost of the

Enumeration algorithm, we only pick ten regions from the

original graph as candidate regions and set |J | as 1, 2, 3,

respectively. We test 100 sets of candidate regions and report

their performance in Figure 1. From the experimental results,

we can see that the performance of Random can be arbitrarily

bad, which is more evident when |J | is relatively small. The

Greedy algorithm proposed in this paper well approximates

the performance of the Enumeration (optimal). Because the

dataset is small, in our tests, the outputs of Greedy are

exactly the same as Enumeration. This is consistent with our

theoretical analysis that Greedy performs an approximation of

63%, as shown in the previous section. In addition, Greedy
outperforms Random in most data sets. Also, we can learn

that MaxEvent outperforms Random in some cases, but it is

not as good as Enumeration / Greedy. This further proves our

understanding that the region with the most number of traffic

congestions is not necessary to be the one which has the most

significant influence on the whole traffic condition. In addition,



(a) |J | = 1 |R| = 10 (b) |J | = 2 |R| = 10 (c) |J | = 3 |R| = 10

Fig. 1. Effectiveness of Methods with Various |J | (|J | is the number of regions to be selected).

(a) |J | = 1 |R| = 10 (b) |J | = 2 |R| = 10 (c) |J | = 3 |R| = 10

Fig. 2. Effectiveness of the adaptive approach with various |J | (|J | is the number of regions to be selected). The x-axis denotes the index of 100 data sets,
and the y-axis denotes the expectation of several events influenced, which is the objective function.

Fig. 3. Efficiency of methods.

we apply our pruning strategy to Greedy algorithm, namely

Greedy(prune). We find that the performance of Greedy(prune)
is exactly the same as Greedy, which demonstrates that the

pruning strategy does not decrease the performance on the

effectiveness of the original approach.

2) Effectiveness of Adaptive Approach: We evaluate the

effectiveness of Adaptive approach. As Adaptive approach is a

strategy that makes the decision based on the partial realization

of the last step, we compare our strategy with the other

two strategies:(1) MaxEvent*: a strategy that chooses region

with maximal events after each realization. (2) Random*: the

regions are chosen randomly after each realization. Also, we

pick 100 data sets of size ten report their performance in

Figure 2 (sorted by the outputs of adaptive approaches). The

x-axis denotes the index of 100 data sets, and the y-axis

denotes the realization of events that are influenced, which the

strategy tries to maximize. We can easily observe that adaptive
strategy significantly outperforms the Random* baseline. The

performance of Random* becomes better with the growing of

|J |, but still worse than our approach. Similarly, MaxEvent* is

generally better than Random* in most test cases, but cannot

equally compete with the performance of our approach.

C. Evaluation on Efficiency

We compare our Greedy algorithm with the Enumeration
algorithm, MaxEvent and Random algorithms. As shown in

Figure 3, the Enumeration algorithm (denoted by Enumera-

tion) entails exponential computation time, and the Greedy
algorithm is much more effective than Enumeration. Please

note that we stop Enumeration after running it over 500

seconds. Although the time cost of Random and MaxEvent are

lower than Greedy, the difference is acceptable (within 200ms)



(a) Top 10 seeds. (b) Top 3 seeds. (c) Shanghai subway network.

Fig. 4. Case study of the seeds discovery in Shanghai.

Fig. 5. Precision of J-KEY-Region selection.

even when |J | is relatively large. For the pruning strategy,

we can observe that the advantage is more evident with the

increasing of |J |.
D. A real case study

We conduct a real-data study to verify that our approaches

are beneficial for unbar constriction and management. We set

the forecast prediction as one hour [18] and determine traffic

congestion by judging whether the instantaneous speed of a

region is less than 30% of the daily average speed of that

region. Based on these settings, we carry out our experiment

and get the top 10 seeds as plotted in the first subfigure of

Figure 4.

We mark the top-10 seeds in Figure 4a; eight of them lie on

the east side of Huangpu River, given the observation that the

east side (financial district) covers one-third of the whole city,

and the city center is located on the west side. Though in this

section, the real situation of the traffic network in Shanghai

will be analyzed, and the validity of this result will be proved.

Let us take the first three seeds as examples to illustrate the

rational analysis.

In Figure 4b we depict centroids of the top-3 seeds (red

points) and the Yangpu bridge (circle). East and west parts

of the city contain an approximately equal number of taxi

cabs, and most of them travel across the river several times a

day. The situation is often worse off during rush hours when

roads that lead cars to bridges or tunnels are busy and prone

to congestion. Therefore, regions where entries to bridges and

tunnels have a significant influence on the city’s traffic.

Figure 4c presents the roads and subways layout in Shanghai

city, from which we can see subways more are concentrated on

the west than the east side. Therefore, congestion happens on

the east side has a more crucial influence on the transportation

system as a whole. These all give the reason why the majority

of the top-10 seeds lie on the east side.

Since it was not feasible to get the real ground truth,

we crowdsourced4 a questionnaire where we first conduct a

qualification test to understand the respondent’s degree knowl-

edge of Shanghai traffic conditions. A score range of [0, 1]
is assigned to each respondent to indicate his/her reliability.

Then 100 respondents were asked to score the top 30 candidate

regions we give in the range [0, 10] to depict its influence on

Shanghai’s traffic condition when there is traffic congestion.

We ranked the 30 candidates regions according to the scores

and weighted by their reliability. We compare the top 2,

top 5, and top 10 seeds between the questionnaire and our

approach results, respectively. The top 10 have relatively high

hits, which can reach as high as 73% (Figure 5). For all the

scenarios, the precision of our approach outperforms other

methods by 12% on average.

VI. RELATED WORK

The increasing volume of trajectory data has led to numer-

ous studies on mobility pattern mining [19], [20], routes [21],

average speed [22], and other road-network performance met-

rics. In [6], [23], the equivalent grid, regions bounded by a

major road, and road segment are proposed as candidates. Both

the region-based and the road-based modeling are useful to

some extent. The road-based model is more accurate but has a

higher cost for computation. Splitting the traffic flow from one

road to another probably cannot solve the congestion because

the traffic is still in that conservative region. Therefore region

should be a more proper unit in urban planning from a macro

perspective.

However, regions bounded by roads leave roads lying on

boundaries out of account [6]. Seeing that this topic remains

open so far, we propose a novel approach to do the second

partition based on the result from [6]. After this partitioning,

every point on the map is affiliated to the nearest seed.

4http://gmission.github.io/



The rate that major roads lie within boundaries increases.

Moreover, the value of road-based models is amplified after

we discover seeds if they are pipelined subsequently because

of the reduction of computation and sparseness. There is no

edge in [5], they introduce Likelihood Ratio Test directly on

nodes matrix. In the literature, we find [24], which quantifies

the dependency. However, it is naively modeled as numbers

of Links between regions, which ignores the three components

spatial, temporal, and logical in our work. It has been argued

that traffic congestion is not only a condition characterized by

slower speeds but also a propagating process. It comes from

the observation that the abnormal traffic at one place affects

those elsewhere progressively [6].

All state-of-the-art frameworks focus on major cause infer-

ring for a short time span [25], [26], aiming at most anoma-

lous route link [8] or traffic pattern [6]. The influence [27]

is defined deterministically as frequency of sub-trees from

STOutlier trees. In the literature, Independent Cascade model

is used in modeling the diffusion of product adoption in social

network [28] and viral market [29].

VII. CONCLUSION

In this paper, we propose a mobility pattern mining system

to discover the most influential regions in urban traffic conges-

tions, namely, seed. We formalize the seed discovery as a prob-

lem to find the top J most influential regions, J-KEY-Region,

and prove it to be NP-hard. Solving this problem has many

challenges, which are addressed in this paper by 1) an event-
based model, which measures the correlation among traffic

anomalies from a spatial, temporal and logical perspective;

2) two approximation approaches which employ Independent
Cascade model. A pruning strategy is applied to improve the

effectiveness of our algorithms. Our experimentation verifies

the effectiveness and efficiency of our methods with a large

scale GPS dataset. Therefore, our approach presents a good

potential to be utilized in future smart cities, where vehicles

will provide their positions in real-time.
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[28] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the ninth ACM
SIGKDD. ACM.

[29] C. Long and R.-W. Wong, “Minimizing seed set for viral marketing,”
in Data Mining (ICDM), 2011 IEEE 11th International Conference on.
IEEE.


