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Abstract—Speeding, slowing down, and sudden acceleration
are the leading causes of fatal accidents on highways. Anomalous
driving behavior detection can improve road safety by informing
drivers who are in the vicinity of dangerous vehicles. However,
detecting abnormal driving behavior at the city-scale in a cen-
tralized fashion results in considerable network and computation
load, that would significantly restrict the scalability of the system.
In this paper, we propose CAD3, a distributed collaborative
system for road-aware and driver-aware anomaly driving de-
tection. CAD3 considers a decentralized deployment of edge
computation nodes on the roadside and combines collaborative
and context-aware computation with low-latency communication
to detect and inform nearby drivers of unsafe behaviors of other
vehicles in real-time. Adjacent edge nodes collaborate to improve
the detection of abnormal driving behavior at the city-scale.
We evaluate CAD3 with a physical testbed implementation. We
emulate realistic driving scenarios from a real driving data set of
3,000 vehicles, 214,000 trips, and 18 million trajectories of private
cars in Shenzhen, China. At the microscopic (road) level, CAD3
significantly improves the accuracy of detection and lowers the
number of potential accidents caused by false negatives up to
four times and 24 times as compared to distributed standalone
and centralized models, respectively. CAD3 can scale up to 256
vehicles connected to a single node while keeping the end-to-end
latency under 50 ms and a required bandwidth below 5 mbps.
At the mesoscopic (driver-trip) level, CAD3 performs stable and
accurate detection over time, owing to local RSU interaction.
With a dense deployment of edge nodes, CAD3 can scale up to
the size of Shenzhen, a megalopolis of 12 million inhabitant with
over 2 million concurrent vehicles at peak hours.

I. INTRODUCTION

Anomalous driving patterns significantly increase the risk of

road accidents. For instance, a high variance in driving speed

results in low predictability, more vehicle encounters, more

overtaking manoeuvres, and more accidents [1]. Addressing

abnormal driving is thus critical for improving road safety.

However, classifying driving behaviors is a challenging task.

Driving patterns vary depending on contextual information,

which include the time of day, the road type, and the individual

behavior of the driver. The increasing ubiquity of connected

vehicles and their multitude of embedded sensors can be

leveraged to measure such contextual data [2]. Connected

vehicles can actively participate in anomalous driving behavior

detection, leveraging computation and communication power

of roadside units (RSUs). With collected vehicular data, an
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Figure 1: Spontaneous vehicular networks formed between

vehicles and RSUs using DSRC. One RSU at the Motorway

link and an RSU on each motorway.

RSU can train models locally and classify driving behaviors

using embedded computation units.

Identifying abnormal driving behaviors is a challenging

issue at the individual level. Scaling up to the city-scale

represents a considerable effort and raises multiple questions.

The amount and diversity of contextual information with

the number of vehicles results in a significant network and

computational load. Cloud servers provide elastic comput-

ing capabilities that can address the high computation load.

However, cloud computing facilities receive updates at city

or region-scale, resulting in a massive network load at a

single point of the network. Comparatively, edge computing

distributes the computing and network load, and provides de-

facto geographic context-awareness. This comes at the cost of

losing information on the vehicles’s behavior outside of the

coverage area of servers.

In this paper, we present CAD3, a collaborative distributed

system to detect anomalous driving behavior. CAD3 leverages

the distributed deployment of edge nodes co-located with

RSUs to maintain contextual information about the roads,

ensure low processing and network latency, and the ability to

scale up to large metropolitan areas. Vehicles act as sensing

nodes that deliver the collected data to the nearest RSU. CAD3

relies on standard and widely deployed technologies, such

as Apache Kafka and Spark, to stream and analyze driving

pattern data in real-time. CAD3 reinforces the detection pro-



cess through inter-edge collaboration. At the microscopic level

(road trunk), adjacent RSUs intercommunicate to share predic-

tion messages. At the mesoscopic level (the distance/duration

of a trip), upon vehicle handover, the former RSU passes a

prediction summary to the next, the process which is carried

on, allows the system to gain driver-awareness. We imple-

ment CAD3 on a physical testbed and apply a real driving

dataset to train the models and evaluate realistic scenarios.

The dataset contains 3,000 vehicles, 214,000 trips, and 18

million trajectories collected from private cars in Shenzhen,

China. CAD3 improves the detection of anomalous driving

behavior as compared to standalone edge or centralized cloud

systems. Thanks to its collaborative capabilities combined with

geographic context awareness, CAD3 significantly decreases

the amount of false negatives, reducing the number of potential

accidents caused by false negatives by an order of magnitude

compared to centralized solutions. Finally, by relying on a

decentralized deployment of edge nodes at the roadside, CAD3

can address the most demanding peak hours at the scale

of a 12 million-inhabitant metropolis featuring more than 2

million concurrent vehicles, such as Shenzhen, with an end-

to-end latency (the time between the transmission of a packet

by a vehicle and the subsequent dissemination of a warning

message) below 50 ms. Our contributions is threefold:

• We propose a full-stack system for decentralized and

context-aware data analytics, combining a pervasive de-

ployment of nodes at the roadside, a pipeline for real-time

data streaming, an edge-assisted distributed computing

platform for abnormal driving behavior detection, and a

mechanism for inter-edge collaboration.

• We implement a proof-of-concept prototype on a physical

testbed, to which we apply a real driving dataset from

private cars in Shenzhen, China to train the models and

evaluate the scalability of our proposed system.

• We carry out extensive experiments and analytics. The

collaborative model improves the F1 score by 3.52% and

6.44% as compared to a standalone edge model and a cen-

tralized model, respectively. It also decreases the number

of false negatives by up to 2/3, decreasing the number of

potential accidents caused by false negatives by an order

of magnitude (24 times less than the centralized model).

By conserving an end-to-end latency below 50 ms up to

256 vehicles, and a bandwidth of 20 Kb/s per vehicle,

CAD3 can handle the data load from peak hour traffic of

up to 13 million vehicles spread over 55K road trunks.

The remainder of this paper is organized as follows. After

summarizing the core research motivations in Section II, Sec-

tion III presents the background and related works. Section IV

describes the system architecture and methodology. We then

describe our dataset in Section V, present the experiments and

analysis in Section VI, and discuss our findings in Section VII.

Finally, we conclude the paper with suggesting future research

in Section VIII.
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Figure 2: Speed profile of motorway vs. motorway link roads,

between weekends, weekdays, and the beginning and end of

July 2016. Spatio and temporal variations in speed profile

which reflects the time and space changing behavior.

II. RESEARCH MOTIVATION

Machine learning-driven anomaly detection has the potential

to significantly improve road safety. However, applying such

techniques at the city-scale presents numerous challenges. In

this section, we summarize such challenges and justify the

need for lightweight and distributed algorithms.

A. Detection Challenges

The challenges of machine learning-driven anomalous driv-

ing behavior detection are threefold:

• Changing Patterns: Driving behavior changes over time,

owing to the day time (rush hours vs. normal hours), the

day of the week (weekday or weekend), and the road type

(motorway or street road), as shown in Figure 2.

• Context-awareness: Due to the above changing patterns,

spatio-temporal context awareness is crucial for abnormal

driving behavior detection. However, current solutions

often fail to capture such context. On-board detection

solutions lack the holistic view to assess what normal

driving behavior is, based on other drivers’ behavior for

a specific road trunk. On the other hand, cloud solutions

tend to deploy city-scale models that lack the fine-

grained resolution to address road-level abnormal driving

behavior detection, as well as requiring higher latency [3].

• Continuous Big Data Stream: Connected vehicles con-

tinuously generate massive amounts of data. Integrating

data from multiple vehicles further amplifies this chal-

lenge. The latest received data is the most valuable for

accurate timely decision making. It is therefore crucial

to ingest the continuously incoming big data, process,

consider the most recent data points, and make decisions

in real time [4].

B. The Need for a Lightweight Distributed Models

The above-mentioned challenges are difficult to address

with typical centralized detection models. With the continuous

generation of massive amounts of data, these models burden

the backhaul network with heavy loads. In our dataset, vehicles

sharing only 200 Bytes of information at 10Hz result into



a collective data rate of 4 GB/s. With the constant addition

of new data, the size of the dataset will increase over time,

proportionally increasing the training time. Finally, achieving

spatio-temporal awareness at the city-scale with centralized

models is non-trivial, and may result either in low accuracy

or overfitting. On the other hand, lightweight, geographically-

bound models allow real-time inference and require less

computation and communication resources. Deploying such

models at the edge relieves the already burdened backhaul

network by keeping data transmission and processing within a

single hop. In our dataset, each edge node receives on average

256 KB/s for 2560 events, a much more reasonable load,

even on constrained access links. Moreover, by considering

only a small portion of the road network, lightweight models

considerably reduce the amount of data, thus the training

times [5], while facilitating local and context-aware processing

and minimizing latency. Lightweight distributed models at

the edge of the network therefore allow low-latency data

transmission and processing, while enabling de-facto fine-

grained spatio-temporal context-awareness.

III. BACKGROUND AND RELATED WORK

In this section, we review the related literature on compu-

tation paradigms and the proper model for anomalous driving

detection.

A. Edge Architecture For Context-aware and Low-latency

Data Analytics

Unsafe driving detection is a highly latency-sensitive ser-

vice, where unexpected latency may cause severe accidents.

Offloading the detection tasks to the cloud fails to address the

rapidly changing context of driving conditions [6]. Edge com-

puting features proximity to the end-user, dense geographical

distribution, and support for mobility, context-awareness and

real-time interactions. This paradigm delivers scalable, highly

responsive services and masks transient cloud outages [7].

White et al. [5] use a stacked autoencoder with dropout on

a deep edge architecture to reduce the training and request

time for quality of service prediction. Edge Based Reinforce-

ment Learning (ERL) [8] employs multi-level edge computing

to optimize traffic light control in real-time and alleviate

congestion in urban environments. Su et al. [9] presents an

edge architecture for semantic reasoning and investigates how

to distribute reasoning tasks on cloud and edge devices to

deduce the activities of vehicles. Moreover, collaborative edge

computing promises better performance. EF-dedup [10] de-

duplicates the data at the network edge and introduces inter-

edge collaboration. It improves the throughput and lowers the

cost of network storage compared to the standalone cloud-

based approach. CAD3 offloads anomaly driving detection

to edge nodes deployed alongside roads (RSUs), equipped

with communication and computation capabilities. Each node

learns the normal behavior over time and maintains contextual

information of the road in its coverage. CAD3 also introduce

inter-edge collaboration to improve the detection.

B. Anomalous Driving Detection

Three types of anomalies exist, including point anomalies,

contextual anomalies, and collective anomalies [11]. Convo-

lutional neural network (CNN) [12] and CapsNet [13] are

potential machine learning (ML) architectures for collective

anomaly driving detection. They detect the invasion of center-

lines based on road image data and centralized ML models.

Matousek et al. [14] analyze an LuST-based simulated dataset

to detect driving behavior. Their approach handles the over-

lapping behaviors. Chen et al. [15] identifies specific types

of abnormal driving behaviors in real-time using smartphone

sensors. The above-mentioned focus on unrealistic trends and

apply point anomaly detection. Trip recommendation [16]

assists drivers in avoiding stressful driving. It employs a multi-

task learning based neural network to predict stress level. This

level and the driving behavior are used to recommend the

driver to accept or reject the planned trip. However, the system

is driver-centric, and thus does not ensure the holisticness nor

the safety of others if he/she takes non-recommended trips.

QF-COTE [17] employs mobile edge computing (MEC) to

detect road anomalies in real-time (i.e., end-to-end delay> 300
ms). QF-COTE enables coarse-grain geographic context-aware

detection that is offloaded partially to the cloud for collective

detection.

Most of these works are either centralized which lack the

context-awareness and the responsiveness, or coarse-grained

context-awareness. In this paper, we present CAD3, a col-

laborative, distributed edge computing framework for real-

time abnormal driving behavior detection. This framework

enables fine-grained geographical awareness and introduces

inter-RSU collaboration to provide both collective and context-

aware anomaly detection, and thus road and driver-aware

detection. To the best of our knowledge, this is the first attempt

for anomalous driving detection with leveraging collaborative

and distributed edge computing. We also present a complete

implementation of the proposed architecture, complemented

with a comprehensive evaluation. We use a real driving dataset

(i.e., trips and trajectories data collected from private cars

in Shenzhen, China) to train and evaluate the models, and

investigate the system’s performance in terms of scalability

and accuracy in light of providing collaboration between RSUs

from the ML perspective.

IV. SYSTEM ARCHITECTURE AND METHODOLOGY

We propose to distribute computation to enable context-

awareness, run anomaly detection on the distributed computing

units on RSUs, and enable collaboration between them. In this

section, we first discuss the system infrastructure, followed by

the distributed computing architecture. Finally, we focus on

enabling technologies for road-and-driver aware and collabo-

rative anomalous driving detection.

A. System Infrastructure

We consider the scenario described in Figure 1. To offload

the driving activity analysis tasks, we adopt the Edge Com-

puting paradigm. By installing the RSUs in proper locations,



they can communicate directly with vehicles, i.e., vehicle-to-

infrastructure (V2I) and infrastructure-to-vehicle (I2V) within

a localized area. We compare alternative communication tech-

nologies and consider Dedicated short-range communication

(DSRC) outperforms long term evolution (LTE) in latency-

sensitive applications [18], and fulfills the active safety re-

quirements without involving a centralized network infrastruc-

ture [2]. Therefore, we propose to equip the RSUs and vehicles

with DSRC communication modules to intercommunicate.

RSUs also feature either a wired connection (either coaxial

or optical Ethernet) for fast and reliable intercommunications,

or cellular communication (5G or LTE) as the latency re-

quirements and data volumes are lower. The onboard vehicle

Inertial Measurement Unit (IMU) measures the speed, accel-

eration, deceleration, angular rate, and the orientation of the

body, using a combination of accelerometers, gyroscopes, and

magnetometers. Then, the onboard DSRC module transmits

this information several times per second over a range of a

few hundred meters. Each RSU collects this information from

the vehicles in its range. The RSUs contain a computationally

powerful chip to process the collected data, and they dissem-

inate any notifications using V2I communications afterwards.

Owing to the dedicated nature of the spectrum band and the

low latency feature of DSRC, unsafe driving activity alerts can

be delivered in near-real-time to the drivers.

B. Distributed Computing Architecture

Streaming and analyzing high-velocity continuous data

flows in real-time is a challenging problem, especially in

decentralized systems. The MapReduce streaming architecture,

which extends the consistent hashing function, is a solution to

support run-time elasticity and fault-tolerance [19]. Apache

Spark1 achieves high performance for both batch and stream-

ing data, up to 100 times faster than Hadoop MapReduce.

Moreover, Spark offers over 80 high-level operators that make

it easy to build parallel apps. To provide real-time data

streaming and analytics, we integrate the most promising

technologies, i.e., Apache Kafka2 and Spark. Apache Kafka is

used for distributed event streaming and Spark for batch-based

data streaming and data analytics. Each RSU trains a model

that learns the normal driving behavior locally, and maintains

road contextual information. The detection algorithm imports

the model, recognizes the driving behaviors and detects any

anomalies. We create three data topics, i.e., “IN-DATA” for

ingesting the incoming vehicular data, “OUT-DATA” for writ-

ing detected anomalies, and “CO-DATA” for writing detection

summaries.

We propose a two-stage framework, the offline pre-

processing and training stage and the online streaming, data

analytics, and dissemination stage.

In the offline stage (i.e., outliers detection, labelling, pre-

processing, and training), we identify abnormal data points

in the dataset and label them as abnormal or otherwise normal.

1https://spark.apache.org
2https://kafka.apache.org/
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From our dataset II, we consider four features, including the

instantaneous vehicle speed and acceleration (InstSpeed, ac-

cel), the hour of the day (Hour), and the road type (RoadType).

The speed data of each road type is Gaussian-like; therefore,

we use the standard deviation as a cut-off for identifying

outliers. We label a data point as normal (class=1), if it exhibits

a speed and acceleration in the range [µ − 1 ∗ σ, µ + 1 ∗ σ].
Otherwise, we label it as abnormal (class=0). In Model

Training, we divide our dataset into sub-datasets based on the

road type, i.e., motorway, motorway link. We fit each subset

with a Naı̈ve Bayes model, resulting in a model per road type.

Each RSU uses the model that complies with the road type it

is responsible for.

In the online streaming and detection stage, shown in

Figure 3, we implement a pipeline of the following:

Data Streaming and Analytics. Vehicles use DSRC to push

their data via Kafka Brokers to “IN-DATA”. Spark streaming

then consumes the continuous stream, divides it into micro-

batches of 50 ms, and creates a resilient distributed dataset

(RDD). The RDD is then passed to the Spark engine for

processing to detect any deviation from normal driving, and

write the anomalies into “OUT-DATA”.

Data Sharing. The RSUs account for vehicular mobility

by transferring summaries of the model to adjacent RSUs.

Motorway RSU transmits the summary to motorway link RSU

(writes to its “CO-DATA” topic).

Data Dissemination. The vehicle consumes any warnings by

pulling the messages of “OUT-DATA”. These warnings can

then be conveyed audibly, visually, or haptically using an

infotainment system to raise the driver’s awareness and allow

them to react in-time.
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C. Context-aware Anomaly Driving Detection (AD3)

Each RSU receives vehicle status information (e.g., location,

time, speed, and acceleration), utilizes contextual information

(i.e., road type, hour of the day, and speed profile), runs

driving activity analysis on them, and notifies the drivers

in range of potential danger. The activity is abnormal, if it

deviates from the normal distribution [20]. For instance, a

driver speeding at 90 km/h on an motorway link where most

vehicles drive between 0 km/h and 35 km/h (see Figure 2)

will be classified as abnormal. Context-awareness allows for

fine-grained distinction between normal and abnormal driving

behaviors to avoid any overlap or confusion. For this purpose,

Naı̈ve Bayes classifier is trained locally to learn the normal

profile, provide road-awareness, and classify accordingly.

D. Collaborative and Context-aware Detection (CAD3)

Neighboring RSUs collaborate to share a summary of

driving activity analysis and carry on this process to provide

collective driver-aware detection. As a vehicle moves from a

motorway to a motorway link, its previous predictions (Pprevs)

are forwarded to the motorway link RSU, written to its “CO-

DATA” topic, (see Figure 4). As part of the collaborative

model, the vehicle data is passed to the Naı̈ve Bayes model

to predict, resulting in a prediction probability of PNB .

A probability PX is then computed through the following

equation:

PX = 0.5 ∗ P prevs + 0.5 ∗ PNB (1)

PNB is the prediction probability computed by Naı̈ve

Bayes, and P prevs is the average of prediction probabilities

along the motorway. Afterwards, the Decision Tree classifier

uses the feature vector [Hour, PX , ClassNB] to predict the

driving activity, whether normal (class=1) or not (class=0).

Once the motorway link RSU detects anomalous driving

(speeding, sudden acceleration), it produces a message into the

“OUT-DATA” topic. The vehicles in the RSU range consume

the message and interpret it as an aggressive driving warning

(warning dissemination), as shown in Figure 3.

E. Potential Accidents

For each data point labeled as abnormal, we compute a

binary value, fni, indicating whether the model recognizes the

point as abnormal (1) or normal (0). We also compute δ, the

proximity of vehicle’s speed to the normal speed. According

to the Nislon formula [21], the number of injury-causing

accidents A2 after changing the road speed vr from v1r to

a safer one, v2r, is equal to the number of injury-causing

accidents before the change A1 multiplied by the square of

the speed change ratio (see Equation 2).

A2 = A1

(

v2r

v1r

)2

(2)

This formula can be applied directly to an instantaneous speed

vr(i) of a vehicle i on road r, given that vr is the target speed

that is the road’s normal speed. vr(i) deviates from the normal

speed vr, causing abnormal speeding or slowing.

A2 =











A1

(

vr

vr(i)

)2

if speeding,

A1

(

vr
vr+(vr−vr(i))

)2

if slowing.

A smaller difference between vr and vr(i) reflects a driver’s

commitment to safe speeds, whereas a higher difference may

lead to an increase in potential accidents. We denote the

proximity of this difference to 1 by δ as follows:

δ =











1−
(

vr
vr(i)

)2

if speeding,

1−
(

vr
vr+(vr−vr(i))

)2

if slowing.

Ultimately, we calculate the vector of the difference between

driving speed and road speed ~vδ , and a binary false negative

vector ~vFN . When δ tends to 1 (δ → 1) and the model does

not detect (fni = 0), an accident has a higher probability to

occur. As such, the number of potential accidents is estimated

based on the falsely unreported FN speed violation as follows:

E(Λ) =
∑

~vFN . ~vδ (3)

V. DATASET DESCRIPTION

In order to evaluate our system, we use real-world driving

data. We use a dataset collected from 68,000 privately owned

vehicles for one month (1-31 July 2016) in China [22].

The dataset contains trips and trajectories of the cars (see

Table I). Using Shenzhen’s boundaries, we extract the trips

and trajectories within the city and map them onto its road

network using a map-matching algorithm [23].

We compute the instantaneous vehicle speed and average

road speed vr as follows:

vr(i) =
Dist(lpi

, lpi+1
)

tpi+1
− tpi

, vr =

m
∑

i=1

vr(i) (4)



Table I: Attributes of a trip and its trajectories.
ObjectID StartTime StopTime StartLon

556605 01/07/2016 09:27:33 01/07/2016 11:10:00 109.82224
StartLat StopLon StopLat Mileage Fuel Period

40.64159 110.522649 40.597578 85,611 6,979 6,147

ObjectID Lon Lat GPSTime AcMileage

556605 109.8223 40.6416 01/07/2016 09:27:33 6,383

Table II: Preprocessed dataset used in the analysis.
CarID RdID accel Speed Hour Day RdType vr
1235 5636 30 36 18 0 motorway 43

Table III: Dataset statistics after filtering the erroneous values.

Region #Cars #Trips Speed #Trajectories

Shenzhen 3,306 214,718 23.7 17,926,810

Motorway 2,986 69,182 160 1,338,552

Motorway Link 2,824 48,030 115 445,482

where m is the number of measurements for a car on a road

segment r of normal road speed vr. Each car moves over a

distance Dist(lpi
, lpi+1

) from point pi to point pi+1 at speed

vr(i). Dist is a function calculating the great-circle distance

between two geographical points, tpi
is the time at GPS

location lpi
(i.e., longitude and latitude). Vehicle acceleration

is thus the difference in speed over time between the specified

points. By applying a map-matching algorithm, we obtain the

road ID, road type, and tag ID that define the context of each

vehicle displacement on the roads. The instantaneous and av-

erage speeds determine the speed profile of the vehicle. These

derived attributes (see Table II) are used as the features for

the anomalous driving detection algorithm. After we filter out

erroneous measurements, we get our second input dataset II to

be used as vehicle status information. Table III illustrates some

statistics about this dataset after filtration, including some

context-dependent anomalous records. It shows the number of

private cars, trips, trajectories, and average speed in Shenzhen

and some types of roads there.

VI. SYSTEM EVALUATION

To validate our system, we implement a prototype system

consisting of two RSUs on two adjacent roads. We evaluate

our system performance in terms of network and bandwidth

scalability, computation scalability, and model accuracy.

A. Use Case

In this section, we consider a microscopic scale use case,

vehicular movement from a motorway to a motorway link, and

its corresponding workflow, as presented in Figure 3. During

movement, the motorway RSU collects status information

from vehicles in its range, and runs anomaly detection on

this data in real-time. Upon handover, the data collection and

anomaly detection results are offloaded to the latter RSU.

B. Experiment Setup and Implementation

We install and configure Apache Spark and Kafka on PC2

(Ubuntu 18.04 LTS, Intel i7-5820K CPU @ 3.30GHz). We

configure Apache Spark to run a cluster of 6 worker nodes,
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Figure 5: Experimental Testbed. PC1 emulates the vehicle

usage of the shared bandwidth of DSRC (27Mbps), and

PC2 emulates the RSU components (Kafka, Spark) and the

workflow. In PC1, vehicles are emulated using tc tool and

Hierarchy Token Bucket (HTB).

and Apache Kafka to run 2 servers (Brokers) to act as

motorway and motorway link RSUs. In Kafka, we create three

topics, “IN-DATA” to ingest the data from Kafka Producers,

“OUT-DATA” to save the warning messages generated by

the anomaly detection algorithm, and “CO-DATA” to ingest

the summary messages handed over from Motorway RSU to

Motorway Link RSU. We assign three partitions for each topic

to speed up reading and writing. We develop the anomaly

detection algorithm using Spark MLLib2, serializer and

deserializer to send and read the vehicular data. To keep the

processing latency minimized, we create micro-batches of 50

ms (RDDs) to read data from the topic “IN-DATA”, on which

we apply the algorithm.

On PC1 (Ubuntu 18.04 LTS, Intel(R) Core(TM) i5-4590

CPU @ 3.30GHz), we emulate the contributing vehicles by

running several Kafka producers that read from the dataset II

and publish to “IN-DATA”, and Kafka consumers to subscribe

to “OUT-DATA” through Kafka Brokers. We configure the pro-

ducers and consumers to push/pull messages instantaneously.

To the best of our knowledge, there is currently no readily

available DSRC chips for PCs in the consumer market. PC1

and PC2 are connected through a 1Gb/s Ethernet link. On

PC1, we emulate the DSRC bandwidth using the hierarchical

token bucket (htb) feature of netem. We rely on iptables

to mark the packets from different producers. We then use

netem to construct a hierarchy that sets the bandwidth of each

producer to a minimum of 100 Kbps, up to a maximum shared

bandwidth of 27 Mb/s (bandwidth of DSRC). Such a setting

allows us to emulate vehicles occupying different shares of

the bandwidth of DSRC based on their distance to the RSU

and the amount of data to send.

C. Experiment Scenario

In our experiment, we attempt to mimic the scenario il-

lustrated in Figure 3, with the architecture in Figure 4. We



extracted two real roads using OpenStreetMap, a motorway

road, and a motorway link road, for which we extracted the

vehicular data from our dataset. PC1 emulates vehicles by

running Kafka Producers and Consumers, while PC2 emulates

two adjacent RSUs: one RSU located on a motorway, and

another located on a motorway link. The motorway RSU

collects and processes the data sent by Kafka Producers,

read from the motorway subdataset (see Table II). Similarly,

the motorway link RSU collects and processes data from

Kafka Producers, read from the motorway link subdataset.

The anomalous driving detection algorithm on the motorway

RSU forwards summary messages to the motorway link RSU

by writing to “CO-DATA” topic of the Motorway Link. We

emulate the handover by migrating a portion of Kafka Pro-

ducers from the motorway RSU to the motorway link RSU.

This portion of producers start reading from the motorway link

subdataset. Thus, we emulate the mobility of the vehicles in

practice and provide a continuous process of driving behavior

analysis. As a result, we ensure collective anomalous driving

behavior detection.

D. Results

Latency, scalability, and accuracy are the primary concerns

for driving behaviour detection systems. The latency between

the detection of an aggressive driving event and the delivery of

a warning must be small enough to support an in-time reaction.

The system should be scalable with an ever increasing number

of concurrent vehicles, and address peak-hour traffic. The

bandwidth usage must also scale and never exceed the trans-

mission medium’s capability (27 Mb/s for DSRC). Finally, the

detection model should be accurate enough to minimize the

false negatives.

1) Scalability with the Number of Vehicles: The total

number of vehicles that are simultaneously offloading driving

activity detection to an RSU, varies from road to road. The

safety system must deliver warnings in-time once unsafe driv-

ing is detected. Moreover, it must scale up with an increasing

number of vehicles, and consider events, such as rush hours.

We assess the scalability of the system with an increasing

number of vehicles, from 8 to 256. Each vehicle transmits

records of the dataset at a frequency of 10 Hz. Given the

density of 30 vehicles/km/lane corresponds to fluent traffic

with a high density of vehicles [24], and assuming the road

comprises of eight lanes, we regard 256 as the maximum

number of vehicles within an RSU range. As Figure 6a shows,

the system maintains an average total latency below 50 ms,

which is small enough for the receiving drivers to react and

avoid accidents. Offloading the computation to the RSUs

requires total latency of 39.7 ms for 8 vehicles and up to

48.1 ms for 256 vehicles. The average processing time ranges

between 7.3 ms, and 11.7 ms, respectively. The remaining

latency encompasses the queuing and dissemination that are

collectively 31.8 ms up to 36.4 ms, for 8 to 256 vehicles,

respectively. The lower error of total latency error bars shows

that dissemination of warnings is almost instantaneous after

processing the event, whereas the upper error reaches 40 ms

at maximum. The testbed emulates multiple concurrent access

to a shared access link at the physical and MAC layers. DSRC

physical standard (IEEE 820.11p) controls the access to the

shared medium using CSMA/CA. Assuming 256 vehicles on

a motorway link, sharing the status information at load update

rate of 10 Hz (every 100 ms), and each packet is approximately

200 bytes. Each vehicle listens to the medium for DIFS time,

and sends a packet if the medium is free, otherwise waits

for backoff time, then sends the packet. The time required to

access and get all vehicles’ packets through the medium, is

given by:

tv = tBackoff + numv ∗ (DIFS + tpkt), (5)

tbakoff = pc ∗ cwmax ∗ tslot, DISF = SIFS + 2 ∗ tslot. (6)

Given the IEEE 802.11p modulation and coding schemes

(MCSs) [25], the time is 92.62 ms, using MCS 3 and 54.28
ms using MCS 8, where tslot = 9µs, SIFS=16 µs [26], [27],

cwmax = 255, and pc ≤ 0.03 [24], the collision probability

that is proportional to vehicle density and the distance to

RSU. Each vehicle waits backoff time at maximum. It is thus

possible for 256 vehicles to send at 10 Hz while preventing

the buildup of packets at the sender side, as all packets are

sent before the next packets are generated, 100 ms later.

The system scales particularly well with road traffic con-

ditions, from almost empty roads (8 vehicles) to peak hour

(256 vehicles) with an increase of only 10 ms of the end-

to-end latency. With an average end-to-end latency below

50 ms for all traffic conditions, the system can process and

disseminate potential accident warnings in real-time even

during the busiest peak hours.

2) Bandwidth Usage with the Number of Vehicles:

Figure 6c illustrates the average bandwidth usage per vehi-

cle and the total bandwidth with an increasing number of

vehicles from 8 up to 256 vehicles. The concurrent number

of vehicles at the city-scale (i.e., Shenzhen) can reach over

2 million on the road in the morning rush3. According to

Figure 6c, each vehicle uses 20 Kbps on average. Two million

vechicles would thus require over 40 Gbps. In contrast, the

decentralized deployment of RSUs allows CAD3 to scale

with increasing traffic with a load of 5 mbps per RSU for

256 vehicles, much lower than the DSRC bandwidth of 27

mbps. Our dataset contains 51,129 individual road trunks for

the city of Shenzhen. With a single RSU per road trunk,

CAD3 can support a total of 13 million concurrent road users

supported by the system, while exploiting only 1/5 of the

DSRC bandwidth. By leveraging a decentralized deployment

of edge computing nodes, CAD3 can therefore scale far beyond

the current records of peak hour traffic in one of the largest

megalopolis in the world.

3) Performance of multiple RSUs: We emulate the sce-

nario illustrated in Figure 1. We set up 5 Kafka Brokers

as 5 RSUs on PC2. Among them, a Motorway Link RSU

connects to 4 Motorway RSUs. On PC1, we run 5 sets of 128

Kafka Producers, each set transmits to an RSU. We assess

3https://www.eyeshenzhen.com/content/2020-05/15/content 23155107.htm
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Figure 7: Centralized vs distributed standalone (AD3) vs

collaborative (CAD3) model. CAD3 increases the F1 and ac-

curacy by 0.0352 and 0.0322, compared to AD3, and increases

them by 0.0644 and 0.0644, compared to the centralized.

the dissemination latency for each involved RSU. This latency

measures the delay between the detection and the delivery of

the warning. Figure 6b illustrates all the components of end-

to-end latency. The average dissemination time is in the range

[17.2, 17.3] ms with standard error ≈ 4.4 ms. Each Kafka con-

sumer pulls every 10 ms to avoid consuming the bandwidth.

Thus the lower bound of dissemination delay can be composed

as 10 + 7.2 ± 4.4 ms. Figure 6d illustrates the bandwidth

usage for each RSU. Owing to its collaboration with 4 adjacent

RSUs, the motorway link RSU, named Mw Link, consumes

slightly higher bandwidth as compared to Motorway RSUs,

albeit much lower than the DSRC bandwidth.

The system efficiently decentralizes the workload at large

scales through local interactions adjacent RSUs, affordable

load and real-time latency.

4) Collaborative (CAD3) Model Performance: We apply a

hybrid model using Naı̈ve Bayes and Decision Tree classifiers

to improve the detection. Both models are binary classifiers,

implemented under the Spark Mllib. Besides being reasonably

lightweight classifiers, these models are explainable. As we

are dealing with road safety, where human lives are at stake,

Figure 8: Mesoscopic (driver-trip) level illustration. Detection

of car abnormally slowing using CAD3 (green), AD3 (white),

and centralized (orange). Given the car is moving southwest

to northeast, the red car icon corresponds to driving behavior

being detected as abnormal, and a blue icon as normal. Only

CAD3 detects abnormal driving accurately and stably, while

AD3 still fluctuates, and centralized remains unpredictable.

Table IV: True positive (TP), false negative (FN) rate for 89K

records and estimated accidents E(Λ), Equation. 3, for 500K

Model #89K records TP Rate FN Rate E(Λ) #500K records

Centralized 49.2% 19.9% 9,004

AD3 52.3% 11.8% 1,475

CAD3 57.9% 6.2% 371

explaining the algorithms’ decisions is critical in case of poten-

tial lawsuits. We believe that the improvement in performance

brought by black-box models such as neural networks is not

worth the loss in explainability and accountability.

As baselines, we implement a distributed standalone

(AD3) model, using only Naı̈ve Bayes, and centralized model

that assumes training all road vehicular data at once. We split

the Motorway and Motorway Link data (see Table III) into

80% training data and 20% online testing data. We use Naı̈ve

Bayes to train the motorway model using the motorway sub-

dataset and train motorway link model using the motorway



link sub-dataset. In the online testing, we use PC1 to send

the vehicular data. Kafka producers send vehicle data from

the motorway test data to Motorway Kafka Brokers, and from

the test data of motorway link to Motorway Kafka Brokers

on PC2. The collaborative model (described in Subsec-

tion IV-D) uses the previous prediction probabilities passed

from Motorway RSU, Naı̈ve Bayes prediction probability,

class, and hour of the day, to predict the driving activity using

Decision Tree, as seen in Figure 4. Figure 7 illustrates that

CAD3 outperforms both AD3 and the centralized model in

the motorway link RSU. The collaborative model improves

the F1 score and accuracy by 3.52% and 3.22%, respectively,

compared to the standalone model, and both of them by

6.44%, compared to the centralized model. Figure 8 illustrates

what happens at a mesoscopic level (driver-trip) for a car

moving southwest to northwest. We compare the detection

capabilities of CAD3, AD3 and Centralized solutions. CAD3

detects abnormal points correctly, with a high stability over

time, owing to the transfer of reports between edge servers.

On the other hand, although AD3 detects most of the abnormal

driving points, the detection accuracy still fluctuates. Finally,

the centralized model results in unpredictable results as it lacks

context-awareness.

To evaluate the three models (centralized, standalone AD3,

and collaborative CAD3) in terms of number of avoided

potential accidents (see Equation 3), we train and test each

model over a dataset of 500K data samples extracted from

Table II. 35% of the samples exhibit abnormality. For each

data point detected, we compute a logical value (FN), whether

the model recognizes the point as abnormal or not. Our model

clearly reduces the expected number of potential accidents

caused by false negatives by leveraging road- and driver-

awareness to improve the prediction accuracy. CAD3 results

in only 371 expected potential accidents, 4 times less than its

edge counterpart, and 24 times less than the centralized model.

Improving the correctly detected anomalous behaviors en-

sures less disturbance to other drivers with false warnings.

CAD3 increases TP rate by 5.6% and 8.7%, compared to AD3

and centralized, respectively, as seen in Table IV. Additionally,

the lower the fake negatives (FN), the less potential accidents

if the drivers act in-time in response to the warning. CAD3

reduces FN rate by 5.6% and 13.7%, compared to AD3 and

centralized, respectively. Thanks to its low FN rate, CAD3 was

more reliable than both the edge-assisted standalone model and

the centralized model. The inter-RSU collaboration allowed

the system to address both road and driver awareness, con-

solidating the prediction accuracy and significantly lowering

the number of potential accidents.

VII. DISCUSSION

This paper presents CAD3, a full-stack framework for

collaborative anomaly detection at the edge of the network. In

this section, we analyze how CAD3 compares to alternative

systems in literature. We then discuss our data analytics model,

limitations, and suggest future works.

A. Comparison with state-of-the-art

The existing literature presents few systems comparable

to CAD3. QF-COTE [17] is an MEC system that detects

road anomalies in over 300 ms, using the cloud for inter-node

collaboration. In comparison, by distributing the collaboration

directly at the edge, we can achieve a latency as low as

50 ms, with a comparable accuracy and F1 score. Other works

focus on the detection and do not consider how to collect and

disseminate data in real-time.

B. Scalability

CAD3 achieves high scalability through inexpensive local

interactions. Adjacent RSUs collaborate to improve the detec-

tion performance at a large scale. In this paper, we demon-

strated that CAD3 can scale up to 256 vehicles connected to

a single node, with end-to-end latency below 50 ms. In this

section, we consider the practical implications of city-scale

scalability under two conditions, i.e. scalability of the access

link for dense deployment of edge computation nodes and

practical deployment of our system in urban areas.

Access-link scalability: Owing to a high vehicle density,

the system may require deployments of many RSUs in a

small area, which causes signal overlapping between adjacent

RSUs. Therefore, proper installation, setting, and techniques

are required to avoid interference.

Thoughtfully positioning the RSUs: By considering the

geographical characteristics of the area, it is possible to install

RSUs with such a way that their ranges do not interfere while

covering the vehicles on the road without interruption [28].

Heavily congested roads can deploy more RSUs located at

smaller distances from each other and set the modulation

coding rate to a mode with higher performance, i.e., higher

data rate and smaller range. For example, two RSUs at a

distance 125 m, using 64-QAM 3/4 modulation (MCS 8) [24],

and updating at 10 Hz, can serve up to 400 vehicles under

85 ms.

High-level management scheme: A manager can change the

operating service channel and use a different SCH when the

interference level increases [29]. Active channel management

would allow more vehicles to be served with lower interfer-

ence.

C. Data Analytic Performance

Thanks to the usage of well-known data analytics platforms,

including Apache Kafka and Spark, our framework allows

reusing a multitude of existing data analytics algorithms and

considerably simplifies the development of new algorithms. In

this study, we demonstrate the potential of CAD3 by using a

combination of Naı̈ve Bayes (for anomaly detection), and De-

cision Tree (for collaboration between RSUs). Even with such

simple algorithms, CAD3 displays a significant improvement

over the edge standalone model and the centralized model with

an increase in F1 score of 3.52% and 6.44%, respectively.

CAD3 also significantly decreases the false negative rates,

dividing the number of potential accidents by 4 compared to



the edge standalone model and by 24 compared to the cen-

tralized model. Our performance evaluation shows that CAD3

has a good potential deploy sophisticated algorithms while

keeping a low end-to-end latency. With such algorithms, we

expect CAD3 to bridge the gap between standalone distributed

models and centralized models in terms of latency, scalability,

and accuracy.

D. Real-world Feasibility

Proposing a massively-distributed edge computing solution

requires consideration of the physical feasibility of deploy-

ment. Smart cities have already deployed roadside infrastruc-

ture along roads, co-located for instance with lamp poles and

traffic lights. We use the Overpass API4 and OSMPythonTools

wrapper5 to extract their locations from OpenStreetMap6 on

Shenzhen’s road network. Figure 9 illustrates the spatial

placement of traffic signs (blue colored dots), lamp posts

(cyan colored), and presents the vehicular density as a red

heatmap overlay. Given the vehicular density and the existing

infrastructure, Table II assesses the number of RSUs re-

quired to deploy. For cost efficiency, the deployment considers

frequently used roads, having vehicles traversing on them,

and takes into account both DSRC range and average road

length. Moreover, Table VI presents statistics about the relative

distances between the already deployed roadside infrastructure

(traffic signs and lampposts). Except the regions marked

by gray colored circles in Figure 9, the existing roadside

infrastructure almost covers the entire city with respect to

the maximum distance and DSRC range. Colocating edge

computing facilities with such infrastructure simplifies the

deployment and minimizes the cost. They can embed units to

allow communication to vehicles within each localized area7

COTS ships can also be installed to perform the required

computation, such as Raspberry Pi 48. However, the challenge

is to implement inter-RSU collaboration where RSUs are not

connected (due to long distance). LTE and 5G are potential

technologies to support distant collaboration where needed.

Interestingly, the roadside infrastructure are envisioned to

function as small cells in soon-to-com 5G era. Raspberry Pi

4 or NeoGLS RSU7 can plug LTE/5G modem to reach RSUs

beyond DSRC range (where needed). 5G addresses ultra-

reliable low latency use cases, making it an efficient candidate

to replace DSRC on the forward link, vehicle-to-RSU or RSU-

to-RSU link, and accommodate considerably the traffic volume

in any region.

E. Limitations and Future Works

Our study presents several limitations. First, CAD3 is eval-

uated through a testbed emulating a DSRC network. Although

we provide theoretical performance calculations to account for

4https://overpass-turbo.eu/
5https://github.com/mocnik-science/osm-python-tools
6www.openstreetmap.org
7They can embed RSU-301U rsu communication unit, and vehicles embed

OBU-301U DSRC onboard units unex.en.taiwantrade.com/product-catalog.
8www.raspberrypi.org/products/raspberry-pi-4-model-b/

Non Covered Roads 
Road Network
Lampposts
Traffic Light Poles
Shenzhen

Vehicle Density

Figure 9: Macroscopic level illustrating the feasibility using

traffic signals to embed roadside units. Spots marked with

gray circles require RSU installation for city-scale coverage.

Red-colored heatmap illustrates the density of vehicles on the

corresponding roads on Monday 8:00am.

Table V: RSUs required as function of vehicle density and

average road length, and classified based on road type.

Road Density # road Mean (m) STD (m) RSUs

motorway 7.7% 435 3357 7652 1460

motorway link 2.8% 159 596 1626 94

trunk 11.6% 656 1622 5520 1064

trunk link 4.4% 247 339 1931 83

primary 25.2% 1431 668 2939 956

primary link 3.4% 191 211 169 40

secondary 20.1% 1140 561 2337 639

tertiary 18.8% 1064 522 2592 555

residential 5.3% 303 334 1470 101

secondary link 0.3% 36 186 156 6

Table VI: Relative spatial distance of traffic signs and lamps.
RSU count AVG (m) STD (m) 75% (m) MAX (m)

Traffic light 3,278 244.57 299.7 444.2 999.5
Lamp poles 116 71.9 100 82.8 520

the physical and MAC layer impact on performance, these

results should be further verified through a real-life implemen-

tation involving DSRC-equipped vehicles moving at typical

speeds in an urban environment. Moreover, other communica-

tion technologies, such as 5G, should be investigated to further

enhance the scalability of the system. Additionally, as this

paper primarily focuses on providing a scalable architecture

and collaborative detection at the network edge, we employ

simple detection algorithms to highlight the improvement in

detection performance over centralized and non-collaborative

edge models. In future works, we will implement complex

anomaly detection algorithms to operate within CAD3 and

validate the system performance through experiments on real-

life vehicles.



VIII. CONCLUSION

Slowing, speeding, and sudden acceleration are the leading

causes of severe accidents on highways. However, detecting

such patterns at the city-scale is extremely challenging. We

proposed CAD3, a collaborative edge-assisted framework to

detect anomalous driving in real-time. CAD3 leverages the

decentralized deployment of computing nodes at the road-

side (RSUs) to distribute the detection. RSUs collaborate by

sharing aggregated data to account for vehicle mobility. We

implemented CAD3 and evaluated the system with a real

driving dataset of private cars collected in Shenzhen, China. In

addition to the microscopic level (an intersection connecting

four motorways), we illustrated the system performance at

the mesoscopic level (over a vehicle trip on multiple roads),

and investigated the system’s feasibility at macroscopic scale.

CAD3 presents significant scalability capabilities, allowing

up to 256 vehicles on a single RSU to be served with an

average end-to-end latency below 50 ms and a total bandwidth

around 5Mb/s. It outperformed other MEC-based standalone

systems such as QF-COTE (300 ms latency). The collaborative

mechanisms at the core of CAD3 improves the percentage of

correctly detected unsafe behaviors, and significantly reduces

the false negatives, leading to a number of potential accidents

24 times lower than a centralized model. CAD3 is also cost-

effective, lightweight, and deployable on large scale with af-

fordable infrastructure, making it accessible to municipalities.
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