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Abstract—We investigate the transmission of multiple corre-
lated binary sources to a single destination over non-orthogonal
Gaussian multiple access channels (MACs). By considering a
binary codebook, we derive the admissible rate regions of the
two-source Gaussian MAC. It is demonstrated that the admissible
rate region increases as the correlation between the sources
increases. Furthermore, we develop an iterative joint source
channel decoding scheme based on systematic irregular low-
density parity-check codes by exploiting the correlation between
the two sources. The constituent decoders corresponding to
each source are implemented in parallel via local iterations,
exchanging extrinsic information with each other during the
global iterations. Simulation results are provided to verify the
performance improvement of the transmission of correlated
sources compared to its independent sources counterpart.

Index Terms—Non-orthogonal Gaussian multiple access chan-
nel (MAC), joint source channel decoding (JSCD), systematic
irregular low-density parity-check (LDPC) codes, log-likelihood
ratio (LLR).

I. INTRODUCTION

Transmission of multiple correlated sources1 has a wide
range of applications, for example, data collected from the
geographically closely located sensor nodes in super dense
sensor networks and videos captured in real-time monitoring
systems. The reliable and/or efficient transmission of cor-
related sources is of great importance, especially for non-
orthogonal multiple access channels (MACs). To the best of
the authors’ knowledge, only a limited number of literatures
dealt with the issue of transmission over non-orthogonal
MACs. For instance, Roumy and Declercq in [1] optimized the
low-density parity-check (LDPC) codes for the transmission
of two independent sources over non-orthogonal Gaussian
MACs under the constraint of equal power allocation. This
approach was extended to more generalized unequal power
allocation scenarios in [2]. It is demonstrated that both the
transmission schemes can achieve the Shannon limit within
0.1−0.6 dB without time sharing or rate splitting [3]. However,
the transmission of correlated sources over MACs is yet to
be investigated from both information-theoretic and practical
code design perspectives.

This work has been performed in the framework of the FP7 project
ICT-619555 RESCUE (Links on-the-fly Technology for Robust, Efficient
and Smart Communication in Unpredictable Environments), which is partly
funded by the European Union. This work is also partially supported by
the network compression based wireless cooperative communication systems
(NETCOBRA, No. 268209) project, funded by the Academy of Finland.

1The terms “source” and “user” are interchangeable throughout the paper.

From the information-theoretic perspective, the study of
transmission of correlated sources was carried out within the
scope of general sufficient and/or necessary conditions for the
lossless or lossy transmission in [4]–[6]. Moreover, achievable
rate regions of the correlated quadratic Gaussian two-encoder
source coding problem were investigated in [7], [8]. Joint
source channel coding (JSCC) schemes were explored for
the transmission of multiple memoryless and inter-correlated
Gaussian sources over Gaussian MACs in [9], [10]. Based on
JSCC, the transmission of two binary correlated sources over
independent additive white Gaussian noise (AWGN) channels
was studied in [11]. Near Shannon/Slepian-Wolf limit perfor-
mance was obtained when the perfect/estimated correlation
information of the two sources was utilized at the receiver.
However, the transmission of binary correlated sources over
non-orthogonal MACs has not been fully addressed yet.

In this paper, we first derive the achievable rate regions for
the two-user case under the assumption of a binary codebook,
which can also be extended to the scenarios of larger number
of users and/or larger codebooks. It is very important to
analyze the achievable rate regions since super dense wireless
networks require the achievable rate regions to eliminate the
traffic flooding by properly allocating the rates to the users.
Then, we investigate the consequences of the correlation be-
tween the sources over the derived achievable rate regions. The
achievable rate regions expand as the correlation increases. In
addition, we introduce a new iterative joint source channel
decoding (JSCD) scheme based on the systematic irregular
LDPC codes (without any source codes). It is tailored for the
reliable transmission of correlated sources over non-orthogonal
Gaussian MACs. The correlation information of the sources
are exploited in the JSCD procedures to enhance the trans-
mission performance. Theoretical analysis confirms significant
performance gain of the proposed scheme compared to the
one designed exclusively for the transmission of independent
sources as verified by the numerical examples with a fixed rate
pair.

The rest of the paper is organized as follows. The system
model is given in detail in Section II. Under the constraint of a
binary codebook, the achievable rate regions of transmission of
independent and correlated sources are studied in Section III.
Section IV provides a practical JSCD scheme, which takes
the correlation between the sources into account. Simulation
results are provided in Section V, and concluding remarks are
drawn in Section VI.
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Fig. 1: A multiple access channel with correlated binary sources.

II. SYSTEM MODEL

The transmission of two correlated, discrete, and memo-
ryless sources over a Gaussian MAC is depicted in Fig. 1.
The two sources are uniformly distributed with Pr(Ui = 1) =
Pr(Ui = 0) = 0.5, for i ∈ {1, 2}. The correlation between
the two sources is represented by the bit flipping model, i.e.,
U1 = U2 ⊕ E with Pr(E = 1) = pe and 0 ≤ pe ≤ 0.5.
Alternatively, the correlation coefficient can also be expressed
as ρ = 1− 2pe. The two extreme cases are 1) fully correlated
(ρ = 1) and 2) independent (ρ = 0). Without being source
coded, the two sources are directly and independently encoded
to X1 and X2, and then synchronously transmitted over a
Gaussian MAC with the received signal at the decoder as

Y =
√
P1X1 +

√
P2X2 + Z, (1)

where Pi is the transmission power of source i and E[|Xi|2] =
1, for i ∈ {1, 2}. The additive noise Z is Gaussian distributed
with zero mean and unit variance (i.e., σ2 = 1), expressed as
N (0, 1). Note that the correlation information is not exploited
in the encoding process and no cooperation exists between the
two sources. The discrete, memoryless, Gaussian MAC can be
characterized by the transition probability p(y|x1, x2), where
x1, x2, and y are the binary phase shift keying (BPSK2) mod-
ulated version of the realizations of random variables (R.V.s)
X1, X2, and Y , respectively. Depending on the applications,
equal power (P1 = P2) or unequal power (P1 6= P2) can be
assigned to the two sources.

After receiving the transmitted data, an iterative JSCD
scheme between the two constituent decoders by utilizing
the correlation information is implemented to estimate the
original message pair (U1, U2) with the estimated version
being (Û1, Û2). The individual average bit error rate (BER)
of each user is considered as a performance metric, which can
be determined by

P i
e = Pr{Ui 6= Ûi}, for i ∈ {1, 2}. (2)

III. ACHIEVABLE RATE REGIONS

For the transmission of independent sources, the MAC rate
region can be expressed as [12]

R1 ≤ I(X1;Y |X2), (3)
R2 ≤ I(X2;Y |X1), (4)

R1 +R2 ≤ I(X1, X2;Y ), (5)

2The BPSK mapping {0→ 1, 1→ −1} is used throughout the manuscript.

where R1 and R2 denotes the encoding rates of user 1
and user 2, respectively. When the Gaussian codebooks are
employed, the MAC region becomes

R1 ≤
1

2
log2(1 + P1), (6)

R2 ≤
1

2
log2(1 + P2), (7)

R1 +R2 ≤
1

2
log2(1 + P1 + P2). (8)

However, the Gaussian codebook is not applicable in practical
communication systems. Therefore, we exploit a binary code-
book, which can be achieved by virtue of BPSK, and derive
its corresponding achievable rate regions. In the following
subsections, we consider the transmission of both independent
and correlated sources.

A. Independent Sources
We assume that the two binary sources are independent and

uniformly distributed, that is, Pr(Ui = 0) = Pr(Ui = 1) = 0.5,
for i ∈ {1, 2}. The joint probability mass function (PMF) can
be expressed as Pr(U1 = i, U2 = j) = 1

4 , for i, j ∈ {0, 1}. We
further assume that the encoding process does not introduce
any additional correlation to the resulting encoded sequence
Xi, for i ∈ {0, 1}. Subsequently, the encoded sequence Xi

is independent and uniformly distributed, i.e., Pr(Xi = 0)
= Pr(Xi = 1) = 0.5, for i ∈ {1, 2}. The corresponding
achievable rate region can be calculated as

R1 ≤ I(X1;Y |X2) = H(X1 + Z)−H(Z)

= −
∫ ∞
−∞

p(y1) log2 p(y1)dy1 −
1

2
log2(2πe), (9)

R2 ≤ I(X2;Y |X1) = H(X2 + Z)−H(Z)

= −
∫ ∞
−∞

p(y2) log2 p(y2)dy2 −
1

2
log2(2πe), (10)

and

R1 +R2 ≤ I(X1, X2;Y ) = H(X1 +X2 + Z)−H(Z)

= −
∫ ∞
−∞

p(y3) log2 p(y3)dy3 −
1

2
log2(2πe),

(11)

where y1 = x1 + z, y2 = x2 + z and y3 = x1 + x2 + z
with z being the realization of R.V. Z. The probability density
functions (PDFs) of p(y1), p(y2) and p(y3) in (9)-(11) are
given by

p(y1) =
1

2
√
2π

(
exp

(
− (y1 −

√
P1)

2

2

)
+exp

(
− (y1 +

√
P1)

2

2

))
,

(12)

p(y2) =
1

2
√
2π

(
exp

(
− (y2 −

√
P2)

2

2

)
+exp

(
− (y2 +

√
P2)

2

2

))
,

(13)

p(y3) =
1

4
√
2π

(
exp

(
− (y3 −

√
P1 −

√
P2)

2

2

)
+ exp

(
− (y3 −

√
P1 +

√
P2)

2

2

)
+ exp

(
− (y3 +

√
P1 −

√
P2)

2

2

)
+ exp

(
− (y3 −

√
P1 −

√
P2)

2

2

))
. (14)
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Fig. 2: The relationship between the upper bounds of the rates and
correlation coefficient ρ.

B. Correlated Sources

In this subsection, we assume that the two sources are
correlated before the encoding. We also assume the encoding
process does not completely eliminate the correlation and can
preserve a certain amount of the correlation information after
encoding. This can readily be achieved via systematic channel
codes. As a result, the codewords of the two sources are
also correlated. Similar to the original sources, we model this
correlation using bit flipping model, i.e., X1 = X2 ⊕X with
Pr(X = 1) = px. Since X1 ↔ U1 ↔ U2 ↔ X2 forms a
Markov chain, the amount of correlation between X1 and X2

can be upper bounded by

I(X1;X2) ≤ I(U1;U2), (15)

due to the data processing inequality. By solving (15), we can
obtain the following relationship 0 ≤ pe ≤ px ≤ 0.5. The
achievable rate region of correlated sources can be derived
as [12]

R1 ≤ I(X2, Y ;X1) = I(X1;Y |X2) + I(X1;X2), (16)
R2 ≤ I(X1, Y ;X2) = I(X2;Y |X1) + I(X1;X2), (17)
R1 +R2 ≤ I(X1, X2;Y ) + I(X1;X2). (18)

Since X1 and X2 can be regarded as the input and output of
a binary symmetric channel (BSC) with crossover probability
px, the common component (i.e., I(X1;X2)) in (16)-(18) can
be computed as I(X1;X2) = 1 − Hb(px), where Hb(px) =
−px log2(px)− (1− px) log2(1− px). More details regarding
the derivations of the upper bounds of R1, R2, and R1 +R2

in (16)-(18) can be found in Appendix A. The three upper
bounds are illustrated in Fig. 2 as a function of ρ.

C. Examples

The achievable rate regions for equal power case are shown
in Fig. 3. Similarly, the achievable rate regions for unequal
power case are depicted in Fig. 4. The achievable rate region
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Fig. 3: Achievable rate regions of correlated sources when P1 =
P2 = 1.25.
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Fig. 4: Achievable rate regions of correlated sources when P1 = 1.5
and P2 = 1.

of Gaussian codebook is also provided as a benchmark. We
observe from the figures that when the individual signal-to-
noise ratios (SNRs), i.e., Pi/σ

2, for i ∈ {1, 2}, are small,
the achievable rate region of a binary codebook is close to
its Gaussian counterpart for the transmission of independent
sources. From the numerical results shown in Figs. 3 and 4,
we can conclude that the achievable rate region becomes larger
as the correlation coefficient increases (or pe decreases).

IV. JOINT SOURCE CHANNEL DECODER

We use two different and independent systematic irregular
LDPC codes to encode the information bits of each user.
Therefore, the codewords are in the form of xi = [ui pi],
for i ∈ {1, 2}, where ui = (ui[1], · · · , ui[Ki]) with each
entry generated by R.V. Ui and pi = (pi[Ki+1], · · · , pi[Ni])
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consists of the parity bits of the LDPC codes. The resultant
individual coding rate can be computed by Ri = Ki/Ni. Then,
BPSK modulated sequences are transmitted simultaneously by
both users over a Gaussian MAC.

The block diagram of the joint source channel (JSC) decoder
is shown in Fig. 5, where maximum a posteriori (MAP) algo-
rithm [13] is applied to both decoders. Local iterations (LIs)
within the constituent LDPC decoders and global iterations
(GIs) between the constituent LDPC decoders are involved in
the joint decoding procedures, exchanging the updated log-
likelihood ratio (LLR) information. The notations utilized in
Fig. 5 are defined as follows.
• VN, PN, CN are the variable, parity and check nodes of

LDPC codes, respectively.
• L(ui,C) = [L(ui,C[1]), · · · , L(ui,C[Ki])] denotes the ini-

tial LLR from the channel for the information bits of user i,
for i ∈ {1, 2}.
• L(pi,C) = [L(pi,C[1]), · · · , L(pi,C[Ni−Ki])] denotes the

initial LLR from the channel for the parity bits of user i, for
i ∈ {1, 2}.
• L(u1,A) = [L(u1,A[1]), · · · , L(u1,A[Ki])] denotes the

updated LLR for the information bits of user 1 from user 2
via GIs; it acts as a priori LLR of these information bits for
the next round of LI. The same rule is applied to L(u2,A).
• L(p1,A) = [L(p1,A[1]), · · · , L(p1,A[Ki])] denotes the

updated LLR for the parity bits of user 1 from user 2 via
GIs; it acts as a priori LLR of these parity bits for the next
round of LI. The same rule is applied to L(p2,A).
• L(ui,P) = [L(ui,P[1]), · · · , L(ui,P[Ki])] denotes the a

posteriori LLR for the information bits of user i, for i ∈
{1, 2}.

The initial symbol-wise or bit-wise LLR information re-
ceived from the channel can be calculated by (19) and (20) for
user 1, shown on the top of the next page. Similar calculations
can also be applied to user 2.

For better illustration, (19) and (20) can be further written
by (21) and (22), from which we can observe that L(u1,C[j])
is a function of pe3 while L(p1,C[j]) is independent of pe.
Each individual LDPC decoder proceeds in parallel via LIs
based on the classical sum-product algorithm [14]. Moreover,
the two decoders exchange extrinsic LLR information through

3We assume that this type of correlation information can be perfectly
available at the receiver side.

GIs, which is described in (23) and (24) using user 1 as an
example. It is noted that both the extrinsic information from
user 2 (denoted by L(u2,E[j]) in (23) and (24)) and correlation
information are considered for the updating of the information
bits of user 1. However, only the extrinsic information from
user 2 is involved for the updating of the parity bits of user 1.

Finally, the hard decisions are made based on the a poste-
riori LLR information of u1 and u2.

ûi[j] =

{
0, if L(ui,P[j]) ≥ 0,

1, if L(ui,P[j]) < 0.
(25)

V. SIMULATION RESULTS

The degree distribution of systematic irregular LDPC codes
for the two users are [2]

λ1(x) = 0.2429x+ 0.3595x2 + 0.1433x21 + 0.0800x22

+ 0.0631x97 + 0.1111x98, (26)

λ2(x) = 0.1853x+ 0.2762x2 + 0.0489x11 + 0.0705x12

+ 0.0569x31 + 0.0567x32 + 0.3054x199, (27)

ρ1 = ρ2 = x7. (28)

The code rates of user 1 and user 2 are set to 0.506 and 0.3726
(marked with red dot in Fig. 4), respectively. The sum rate of
the two users approaches the theoretical result, which is 0.8813
under the constraint of a binary codebook, derived in Section
III. The gap between them is less than 0.03. The codeword
length for each user is 104. The number of LIs of each LDPC
decoder is set to 20 followed by 1 GI in the iterative decoding
process. The number of GIs in our simulations is 20.

The BER performance of user 1 as a function of SNR is
shown in Fig. 6. Likewise, the BER performance of user 2 as a
function of its individual SNR is depicted in Fig. 7. As demon-
strated in Section III, the achievable rate region expands with
increase in the correlation between the sources. Consequently,
the BER performance improves as the correlation increases
for a fixed rate pair. The BER performance improvement is
verified by the simulation results as demonstrated in Figs. 6
and 7. As shown in Fig. 6, there exists approximately 2.2 dB
coding gain for user 1 at the BER level of 10−4 when ρ
changes from 0 to 0.8. Similarly, at the same BER level, more
than 2.5 dB coding gain can be achieved for user 2 when ρ
changes from 0 to 0.8, as illustrated in Fig. 7.

VI. CONCLUSION

We have derived the achievable rate regions for the trans-
mission of correlated sources over Gaussian MACs under the
constraint of a binary codebook. It has been demonstrated
that the achievable rate region increases with the increase
in the correlation between the sources. Moreover, we have
introduced a practical iterative JSCD strategy by exploiting the
correlation information of the two sources in the joint decoding
process. Simulation results have verified the performance
improvement of transmission of correlated sources compared
to its independent sources counterpart.
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L(u1,C[j]) = ln
(Pr(u1[j] = 0, u2[j] = 0|y[j]) + Pr(u1[j] = 0, u2[j] = 1|y[j])

Pr(u1[j] = 1, u2[j] = 0|y[j]) + Pr(u1[i] = 1, u2[j] = 1|y[i])

)
, for 1 ≤ j ≤ K1, (19)

L(p1,C[j]) = ln
(Pr(p1[j] = 0, p2[j] = 0|y[j]) + Pr(p1[j] = 0, p2[j] = 1|y[j])

Pr(p1[j] = 1, p2[j] = 0|y[j]) + Pr(p1[i] = 1, p2[j] = 1|y[i])

)
, for K1 + 1 ≤ j ≤ N1. (20)

L(u1,C[j]) = ln

(
exp(− (y[j]−

√
P1−
√
P2)

2

2 )(1− pe) + exp(− (y[j]−
√
P1+
√
P2)

2

2 )pe

exp(− (y[j]+
√
P1−
√
P2)2

2 )pe + exp(− (y[j]+
√
P1+
√
P2)2

2 )(1− pe)

)
, for 1 ≤ j ≤ K1, (21)

L(p1,C[j]) = ln

(
exp(− (y[j]−

√
P1−
√
P2)

2

2 ) + exp(− (y[j]−
√
P1+
√
P2)

2

2 )

exp(− (y[j]+
√
P1−
√
P2)2

2 ) + exp(− (y[j]+
√
P1+
√
P2)2

2 )

)
, for K1 + 1 ≤ j ≤ N1. (22)

L(u1,A[j]) = ln

(
exp(− (y[j]−

√
P1−
√
P2)

2

2
)(1− pe) exp(L(u2,E[j])) + exp(− (y[j]−

√
P1+
√
P2)

2

2
)pe

exp(− (y[j]+
√

P1−
√
P2)2

2
)pe exp(L(u2,E[j])) + exp(− (y[j]+

√
P1+
√
P2)2

2
)(1− pe)

)
, for 1 ≤ j ≤ min{K1,K2}, (23)

L(p1,A[j]) = ln

(
exp(− (y[j]−

√
P1−
√
P2)

2

2
) exp(L(p2,E[j])) + exp(− (y[j]−

√
P1+
√
P2)

2

2
)

exp(− (y[j]+
√

P1−
√
P2)2

2
) exp(L(p2,E[j])) + exp(− (y[j]+

√
P1+
√
P2)2

2
)

)
, for min{K1,K2}+ 1 ≤ j ≤ N1. (24)
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Fig. 6: BER performance of user 1 in terms of its individual SNR.

APPENDIX A
The conditional mutual information I(X1;Y |X2) in (16)

can be further expressed as

I(X1;Y |X2) = H(Y |X2)−H(Y |X1, X2)

= H(X1 + Z|X2)−H(Z). (29)

The relationship between X1 and X2 can be considered as the
input and output of a BSC with crossover probability px. We
can easily get Pr(x1 = 0|x2 = 0) = Pr(x1 = 1|x2 = 1) =
1 − px and Pr(x1 = 1|x2 = 0) = Pr(x1 = 0|x2 = 1) = px.
Considering the derivation in (29), the upper bound of R1 can
be calculated by

R1 ≤ H(X1 + Z|X2) + I(X1;X2)−H(Z) =
1

2
H(x1 + z|x2 = 0)

+
1

2
H(x1 + z|x2 = 1) + 1−Hb(Px)−

1

2
log2(2πe)

SNR(dB)
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Fig. 7: BER performance of user 2 in terms of its individual SNR.

= −1

2

∫ ∞
−∞

( px√
2π

exp
(
− (y +

√
P1)

2

2

)
+

1− px√
2π

exp
(
− (y −

√
P1)

2

2

))
log2

( px√
2π

exp
(
− (y+

√
P1)

2

2

)
+
1− px√

2π
exp

(
− (y−

√
P1)

2

2

))
dy

− 1

2

∫ ∞
−∞

(1− px√
2π

exp
(
− (y +

√
P1)

2

2

)
+

px√
2π

exp
(
− (y −

√
P1)

2

2

))
log2

(1− px√
2π

exp
(
− (y+

√
P1)

2

2

)
+

px√
2π

exp
(
− (y−

√
P1)

2

2

))
dy

+ 1−Hb(Px)−
1

2
log2(2πe)
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≤ −1

2

∫ ∞
−∞

( pe√
2π

exp
(
− (y +

√
P1)

2

2

)
+

1− pe√
2π

exp
(
− (y −

√
P1)

2

2

))
log2

( pe√
2π

exp
(
− (y+

√
P1)

2

2

)
+
1− pe√

2π
exp

(
− (y−

√
P1)

2

2

))
dy

− 1

2

∫ ∞
−∞

(1− pe√
2π

exp
(
− (y +

√
P1)

2

2

)
+

pe√
2π

exp
(
− (y −

√
P1)

2

2

))
log2

(1− pe√
2π

exp
(
− (y+

√
P1)

2

2

)
+

pe√
2π

exp
(
− (y−

√
P1)

2

2

))
dy

+ 1−Hb(Pe)−
1

2
log2(2πe). (30)

Similar calculation can be applied to the upper bound of
R2, yielding

R2 ≤ −
1

2

∫ ∞
−∞

( pe√
2π

exp
(
− (y +

√
P2)

2

2

)
+

1− pe√
2π

exp
(
− (y −

√
P2)

2

2

))
log2

( pe√
2π

exp
(
− (y+

√
P2)

2

2

)
+
1− pe√

2π
exp

(
− (y−

√
P2)

2

2

))
dy

− 1

2

∫ ∞
−∞

(1− pe√
2π

exp
(
− (y +

√
P2)

2

2

)
+

pe√
2π

exp
(
− (y −

√
P2)

2

2

))
log2

(1− pe√
2π

exp
(
− (y+

√
P2)

2

2

)
+

pe√
2π

exp
(
− (y−

√
P2)

2

2

))
dy

+ 1−Hb(Pe)−
1

2
log2(2πe). (31)

We can calculate the upper bound of the sum-rate (R1+R2)
as

R1 +R2 ≤ I(X1, X2;Y ) + I(X1;X2)

= H(Y )−H(Y |X1, X2) + I(X1;X2)

= H(Y )−H(Z) + I(X1;X2). (32)

By definition,

H(Y ) = −E[log2 p(y)] = −
∫ ∞
−∞

p(y) log2 p(y)dy, (33)

where p(y) is the PDF of Y , and it is in the form of

p(y) =
1− px√

2π
exp

(
− (y +

√
P1 +

√
P2)

2

2

)
+

px√
2π

exp
(
− (y +

√
P1 −

√
P2)

2

2

)
+

1− px√
2π

exp
(
− (y −

√
P1 −

√
P2)

2

2

)
+

px√
2π

exp
(
− (y −

√
P1 +

√
P2)

2

2

)
. (34)

Let p(y′) be defined as

p(y′) =
1− pe√

2π
exp

(
− (y′ +

√
P1 +

√
P2)

2

2

)
+

pe√
2π

exp
(
− (y′ +

√
P1 −

√
P2)

2

2

)
+

1− pe√
2π

exp
(
− (y′ −

√
P1 −

√
P2)

2

2

)
+

pe√
2π

exp
(
− (y′ −

√
P1 +

√
P2)

2

2

)
. (35)

The sum-rate in (32) can be further expressed as

R1 +R2 ≤ H(Y )−H(Z) + I(X1;X2)

= −
∫ ∞
−∞

p(y) log2 p(y)dy + 1−Hb(Px)−
1

2
log2(2πe)

≤ −
∫ ∞
−∞

p(y′) log2 p(y
′)dy′ + 1−Hb(Pe)−

1

2
log2(2πe).

(36)

It is not difficult to demonstrate that the upper bounds of
R1, R2, and R1 +R2 are decreasing functions of pe. In other
words, they are increasing functions of ρ, which is verified by
the numerical results in Fig. 2.
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