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Abstract—Prevalent weather prediction methods are based
on sensor data, collected by satellites and a sparse grid of
stationary weather stations. Various initiatives improve the
prediction models by including additional data sources such
as mobile weather sensors, mobile phones, and micro weather
stations of, for example, smart homes. The underlying computing
paradigm is predominantly centralized, with all data collected
and analyzed in the cloud. This solution is not scalable. When
the spatial and temporal density of weather sensor data grows,
the required data transmission capacities and computational
resources become unfeasible. We identify the challenges posed by
spatial distribution of a weather prediction model, and suggest
solutions for those challenges. We propose EDISON: an edge-
native interpolation approach based on AI methods, distributed
horizontally on edge servers. Finally, we demonstrate EDISON
with a simple, simulated setup.

I. INTRODUCTION

More than half of the world’s population lives in cities.

By 2050, this number is predicted to increase to 70 percent1.

Development of information and communication technologies

plays an essential role in transforming cities into smart cities,

aiming to improve city efficiency and sustainability. City-scale

sensing technologies and data-driven solutions provide the

building blocks for novel smart applications, enlarge business

opportunities, and improve the development of urban services

across domains and stakeholders. Cities are already full of

sensor-equipped technologies [1], such as water and electric

meters, and sensors measuring traffic, buildings and weather.

Patterns, anomalies and events identified in the data provide

novel insights and help preparing for unforeseen scenarios,

and in city planning.

However, several challenges need to be tackled before

these benefits can be fully realized. The massive scale and

heterogeneity of city data requires modelling and analytics

to understand city activity. Security and privacy must to be

guaranteed as well. These solutions need to offer a feasible

trade-off between cost and quality to justify the investment.

Moreover, smart cities rely on various data sources, such

as sensing devices, spatial data, user contributed content,

and data available from authorities and services. Sensor data

is produced by a mixed set of heterogeneous sensors and

computation nodes with varying resources and capabilities. For

example, high-end sensors produce high-quality data and are

1United Nations, https://www.un.org/development/desa/en/news/population
/2018-revision-of-world-urbanization-prospects.html

intelligent and capable of, e.g., self-calibration or performing

some data analytics autonomously, whereas cheap sensors

produce lower quality sensor data that requires calibration and

subsequent data analytics. Furthermore, sensor connectivity

may be intermittent and at times low in bandwidth, which

makes cloud-based solutions infeasible.

To address these challenges, we propose a distributed,

decentralized approach, based on edge computing and artificial

intelligence (AI), for environmental sensing and sensor data

modeling at a city scale. We focus on weather sensing and

modelling, paving way for other large-scale sensing appli-

cations in mobile city environments using edge computing

capabilities. For example, smart city services like traffic man-

agement and emergency response rely on weather prediction

models [1]. Yet building such models without accurate ground

truth for calibration and training is challenging. Moreover, the

models need to be adaptable to changes in the state of the city.

In this work, we look at large-scale environmental sen-

sor networks and the models used to analyze their data.

In particular, we concentrate on interpolation models which

extend the observations of a sparse sensor network to those

areas and points in time where no observations are available.

Section II looks into the state of the art on the subject,

and section III details the challenges and related research

questions. In section IV we outline a novel, edge-native, AI-

based interpolation architecture, EDISON, and detail the steps

necessary for implementing that architecture, while section V

presents a simulated example with a preliminary prototype

model based on EDISON.

II. RELATED WORK

City-scale computing: Some platforms are suggested for

city scale computation activities [2], [3]. However, existing

solutions require data aggregation and processing in the cloud,

imposing several challenges such as high latencies, high trans-

mission costs, and loss of privacy [4]. For example, when real-

time decision-making is required, such as with autonomous

vehicles, high latencies for centralized sensor data collection

and real-time feedback are untenable.

Further, Internet of Things (IoT) devices producing data

are often limited in computational and transmission resources

[5].While instantaneous cloud-based operation is not practical,

bringing computations closer to the participating devices in the

edge computing model tackles the cloud challenges [6], [7].



Edge computing for smart cities: A number of smart city

studies apply the edge computing paradigm. For instance,

Hossain et al. [8] present an edge computing framework

for situation awareness in an IoT-based smart city. First

experiments were conducted in terms of latency and situation

awareness when raw IoT data is processed at the edge devices.

Cicirelli et al. [9] present an agent-based, distributed platform

for managing a network of computing nodes, spread within a

city. Computation is executed at the edge as well as the cloud,

which handles computationally demanding tasks.

City-scale sensing and data analytics: Smart cities rely

on IoT, big data, cyber-physical systems, and cloud com-

puting technologies [2], [10]. Analysing the huge amount

of data available is challenging and time-consuming. Smart

city applications use different processing approaches, e.g.,

batch and stream processing, supported by various big data

architectures. Such solutions, however, are cloud-based, and

hence have their challenges. Some studies do concentrate on

edge-based platforms, but they are not focusing on distribution

of interpolation and analytics models [11].

Intelligent transportation systems: Efficiency, safety and

ecology are essential properties for intelligent transport sys-

tems (ITS) in smart cities. City level digitalisation for situation

awareness [12], [13], [14] is well on the way around the

world2 and data from different phenomena in the cities is

starting to be available. Availability of data enables AI-based

prediction of transport flows, congestion, and need for mainte-

nance, generally planning for a more sustainable, pleasant and

prosperous city life. In essence, ITS aims to create decision

support in the special case of mobility. Information on weather

and driving conditions is essential for traffic safety [15],

[16]. Road weather information systems (RWIS) rely, e.g.,

on road weather stations (RWSs), observing road weather

and the driving conditions. However, RWSs are sparse as

professional weather stations (including sensor, electronics,

mast, and power supply) are expensive. Building RWISs with

higher spatial densities requires serious investment.

III. CHALLENGES

The challenges for city scale sensor data interpolation can

be separated to resource, transmission, data, and distribution

layers. Some particular challenges for each layer are listed

in the subsections below; Table I details the related research

questions on each layer.

1) Resource: If sensors are battery-powered, they may stop

sending data due to the energy saving mode or an empty

battery. Further, some sensors have less bias and variance in

their observations than others. For example, expensive weather

sensors deployed at dedicated weather stations produce better

observations than cheap thermometers. Properly calibrated, the

cheap thermometers can still contribute to an understanding

about local variance. However, large-scale sensor calibration

is challenging. Further, sensors may experience drift, i.e., their

2https://arrayofthings.github.io/, https://www.hudsonyardsnewyork.com/,
https://www.c40.org/, accessed 12th April 2019.

TABLE I
CENTRAL RESEARCH QUESTIONS OF LARGE-SCALE ENVIRONMENTAL

DATA INTERPOLATION.

Layer Research questions

Resource How does the interpolation model handle data missing
due to energy constraints? Are sensors self-calibrating, or
is some external entity managing the calibration? How
much computational resources can be used during and
after the calibration? How is data made accessible for the
calibration? How to implement on-line calibration? How
to mitigate for faulty installations? How to mitigate for
crowd-sourcing errors?

Transmission How does the interpolation model handle data missing due
to intermittent connectivity? What parts of the interpola-
tion model can or should be computed locally and what
offloaded? If a location was observed recently, how long
will that observation be valid? How does the uncertainty
related to an observation change after the observation?
How and where to store the data produced by mobile
sensors?

Data How to handle big data? How does the interpolation model
handle data missing due to the spatial or temporal scarcity
of sensors? How does the distribution take into correlation
both short and long term covariance structures in the data?
How to handle drift?

Distribution How can local models exchange information effectively?
How to implement scalable and reliable orchestration for
local model data exchange? How to reach consensus
among decentralized, co-operative local models.

observations may slowly gain bias or variance. Drift calls for

online or continuous calibration, posing further challenges.

Additional challenges are caused by the misplacement of

the sensing devices, e.g., near exhaust pipes or heat sinks, or

improper data collection procedures, e.g. in crowd-sourcing

[17]. Relying only on local data processing and analysis may

cause errors resulting from faulty measurements.

2) Transmission: Sensors may be mobile, in which case

they may occasionally observe locations that no stationary

sensors see. However, mobility makes distributed data man-

agement difficult especially for rapidly moving sensors such

as those on vehicles and trains. Further, mobile sensor con-

nectivity may be intermittent, leading to data loss.

3) Data: Sensors may be deployed in a geographically

small or wide area, densely or sparsely. The wider the area,

the more spatial variability needs to be considered. The denser

the network, the more data is produced, calling for Big

Data methodologies or distributed modelling [18]. Varying

spatial densities, due to for example the popularity of some

mobile sensor trajectories, may produce biased models if not

accounted for. Further, sensors may produce observations fre-

quently or less so. Varying frequencies will introduce sparsity

and synchronization challenges. Finally, environmental – in

particular weather-related – data typically incorporates com-

plex short and long term covariance structures, both spatially

and temporally. An interpolation model not considering these

covariance structures risks providing faulty interpolations.



4) Distribution: Large setups may require the distribution

of data as well as the computations related to interpolation

model training and inference. Since data is produced locally,

data is naturally distributed based on sensor locations. Local

data, however, does not include the possible long-distance

covariance structures present in the global data. Models based

on local data thus need a way of exchanging information.

Information exchange can be implemented either centrally, by

an orchestrator, or cooperatively among the decentralized local

data managers. Orchestration introduces scalability and relia-

bility challenges while co-operative model building requires

potentially complex consensus algorithms [19], [20].

There are several approaches to distributed model building.

For example, ensemble learning methods create a set of models

to be used together, while federated learning relies on the

collaborative learning of a shared model, using training data

subsets available on the devices [21]. Such approaches provide

a number of benefits, like reducing latency and supporting

privacy, as data stays at the node and is not shared with

the peers [4]. However, while some propositions are starting

to appear [22], the question of decentralized model building

without cloud coordination is still an open question.

IV. EDISON

We propose EDISON, an edge-native, AI-based distributed

approach to interpolating the observations of a sensor network.

The sensor network can be heterogeneous, with a sparse set

of mobile and stationary sensors, observing the environment

with varying temporal frequencies in a wide spatial area. The

interpolation model provides predictions of the variables of

interest on a dense spatio-temporal grid, based on the sparse

observations. As such, the model captures the spatio-temporal

dependency structure of the variables in the observed area, and

use that structure to interpolate between sparse observations.

EDISON comprises data collection, distribution, local

model building, and model calibration. Data is collected by a

sensor network with edge connectivity. Distribution partitions

the data for the local interpolation models, which predict the

values of variables in places with no observations. Finally,

model calibration shares information between the local mod-

els, ensuring they are in agreement with each other. Each part

of the method is further detailed below.

1) Data collection: To ensure some data is always available

for interpolation, EDISON expects some of the sensors in the

network to be stationary, with fixed connections. However,

the majority of the sensors can be mobile. EDISON assumes

the sensors are connected to edge servers with configurable

networks, i.e., such that the edge server serving each sensor

can be configured (by, e.g., SDN) at least during system setup.

This requirement stems from EDISON grouping the sensors

based on the spatial density of data. Fig. 1 illustrates an urban

sensor network setup with high-quality stationary sensors, and

a number of mobile sensors installed on, e.g., vehicles or

drones, with varying fidelity.

2) Distribution: EDISON distributes the data as well as

model computations on edge servers. First, EDISON partitions

Stationary sensor

Mobile sensor

Edge server

Fig. 1. Example of EDISON sensor setup. The setup comprises stationary
sensors (e.g., RWSs), mobile sensors (e.g., installed in vehicles), and edge
servers. Mobile sensor traces are depicted in gray.

Stationary sensor

Mobile sensor

Edge server

Fig. 2. Example grouping of spatial cells (squares in the underlying grid)
into connected observation regions (colored areas). The resulting observation
regions have roughly a similar distribution of observations.

the spatial area into a dense grid of rectangular cells. The

cells are all grouped into small connected areas, referred to

as observation regions, with a similar distribution of historical

observations on each region (Fig. 2). This reduces bias for

those areas which are densely observed.

The observation regions are further allocated to edge lo-

cales, with edge servers ideally positioned near the center of

each edge locale. To allow for model calibration (see Section

IV-4 below), the edge locales overlap such that each observa-

tion region is allocated to two edge locales, both centred by

nearby edge servers. Fig. 3 illustrates three overlapping edge

locales, centred by three edge servers.

3) Local models: Edge servers are responsible for creating

and managing local interpolation models for their edge locales.

Each model estimates the value of variables in observation

regions where the sparse sensor network has no recent observa-

tions. The local models consider short and long term temporal

covariance structures as well as short distance (within edge

locales) spatial covariance structures between and among the

observations of each variable.

4) Model calibration: To account for long distance (be-

tween edge locales) spatial covariance structures in the data,

the local models exchange information. In more detail, the



Edge server

Fig. 3. Example of three overlapping edge locales, each centred by an edge
server. The lines denote the observation regions belonging to each of the three
edge locales.

parameters of each local model are updated to mitigate the

differences between the interpolations of the neighbouring

edge clusters with overlapping observation regions. If a cloud

connection is available, EDISON can use a centralized or-

chestrator for forcing a consensus between the local models.

Lacking cloud access, EDISON edge servers negotiate the

consensus among themselves.

Algorithm 1 outlines our approach. Each edge server builds

a local interpolation model. Periodically (after receiving new

observation data of some quantum), each edge server up-

dates its own model and communicates this new model to

the neighboring edge servers with overlapping observation

regions. When an edge server receives a model update from

a neighboring edge server, it evaluates the accuracy of the

new model against its own local model. If the accuracy of the

received model is higher than its own, the edge server performs

model calibration to achieve consensus. The decision to re-

calibrate the model also takes into account the computational

effort in re-training as against the accuracy difference between

the models. This process will go on ad infinitum to ensure the

local models are current and consistent.

V. SIMULATED EXAMPLE

We constructed a simple example of EDISON processing

spatial data. Some of the steps outlined in Section IV were

omitted for simplicity and brevity.

A. Data

The example sensor network is deployed in a rectangular

area, consisting of 101 × 101 rectangular cells. The network

has 440 stationary, high-quality sensors spread evenly (at

coordinates divisible by 5) across the area. Mobile and station-

ary sensors have produced an equal number of observations

in every cell, so that observation regions are equal to the

cells. 61 edge servers (5 × 5 ”blue” and 6 × 6 ”red”) and

their respective edge locales are placed such that each cell is

covered by two edge locales. Figure 4 illustrates the stationary

sensors, the edge servers, and the edge locales.

120 spatial data frames, comprising the sensor data for each

cell (each frame thus consisting of 101 × 101 observations),

Algorithm 1: Edge-native distributed interpolation

Input:
The n×m rectangular spatial grid G.
Rectangular spatial cells gi,j ∈ G.
M edge servers.
Output:
A set of local interpolation models, one for each edge server,
which are in consensus with the models of their neighboring
edge servers.
The interpolations inferred by local models.
// Set up the observation regions and the

edge locales.

1 Assign each gi,j to connected ObservationRegions O1...k

such that the distribution of historical observations in each Oi

is approximately equal.
2 Assign each Oi to two connected EdgeLocales E1...M ,

Oi ∈ Ex and Oi ∈ Ey . Minimize the distance between Oi

and the centers of Ex, Ey .
3 Allocate one edge server for each edge locale. Minimize the

distance between edge servers and the centers of the edge
locales.
// The following procedure runs at each

edge server.

4 while True do
5 if timer ≥ threshold AND enough new observations have

arrived then
6 Update the local model.
7 Send the local model (sufficient statistics) to all edge

servers covering the observation regions in the edge
locale.

8 if ModelUpdateFromNeighboringEdgeServer then
9 Evaluate the received model update for the recent data.

10 if (accuracy(LocalModel) ≥
accuracy(ReceivedModel) then

11 Send the local model (sufficient statistics) to all
edge servers covering the observation regions in
the edge locale.

12 else
13 Perform model calibration.
14 Send the new model (sufficient statistics) to all

edge servers covering the observation regions in
the edge locale.

0
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Fig. 4. Edge servers (red and blue dots), centring the rectangular edge
locales they serve (bordered by the respective nearest red or blue solid lines).
Stationary sensors shown as black triangles.



were simulated with a combination of Gaussian processes with

short and long term covariance functions. 100 of the frames

were labeled as the training set, for training the interpolation

models, while 20 frames were labeled as the test set and set

aside for testing model quality. The simulation procedure is

further detailed below:

1) A grid with a short distance spatial covariance struc-

ture, representing a contour map, was sampled from a

Gaussian process with exponential covariance function.

2) A grid with a long distance spatial covariance structure

was sampled from a Gaussian process with Matern

covariance function.

3) Short and long distance covariance grids were summed

item-wise.

4) 120 frames, each a grid with long-distance covariance

structure (representing, e.g., temperature) were sampled

from a Gaussian process with exponential covariance

function.

5) The grid resulting from step 3 was item-wise added to

each grid from step 4, resulting in 120 data frames.

The process is illustrated in Fig. 5. Data was generated with

the R gstat package [23], [24], parameters for each phase can

be found in Table II.

TABLE II
SAMPLING PARAMETERS FOR EACH PHASE OF DATA SIMULATION.

Step Cov. funct. range κ anisotropy (β0, βx, βy) N

1 Exponential 40 1 (45, 0.5) (0, 0.3, 0) 1
2 Matern 80 1 (0, 0, 0) 1
4 Matern 80 1 (90, 0.9) (15, 0, 0) 120

B. Models

We used the Kriging method (with R’s gstat package [23],

[24]) for interpolating data between the stationary sensors. We

trained a local interpolation model (i.e., fitted a variogram) for

each edge locale, using only the data produced within the lo-

cale, averaged over the 100 training frames. We used the local

models for interpolating data between the stationary sensors in

each edge locale, in each of the 20 frames in the test set. After

interpolation, we simulated the first round of consensus among

the local models by averaging the overlapping predictions for

each cell. For comparison, we also simulate a global model,

with access to full training data comprising the whole grid.

C. Results

Root mean square errors (RMSE) between the ground truth

and the interpolated values by the global model, the local

models, and the first round of consensus between the local

models can be found in Table III. While the global model

is slightly ahead, the RMSEs of the local models are indeed

improved by the model averaging, simulating consensus. Fig.

6 illustrates the ground truth for the first testing frame as well

as the interpolations of the global model, the local models,

and the consensus.
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Fig. 5. Composition of simulation data. A contour map, representing short
distance covariance structures, is added to a long distance spatial covariance
map. The result is added to 120 temperature maps, producing finally 120
spatial data frames consisting of multiple types of spatial covariance.

VI. CONCLUSION AND DISCUSSION

Providing fine-grained reliable weather predictions requires

large amounts of data and processing resources. However,
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Fig. 6. Interpolation results on the first testing frame. Included are the
interpolations with the local models for blue (a) and red (b) edge locales,
their average (c), simulating consensus, the global model (d) and the ground
truth (e).



TABLE III
AVERAGED RMSES OVER THE TEST SET OF THE SIMULATED EXAMPLE.

Model RMSE

Blue local models 0.61
Red local models 0.63
Consensus 0.59
Global interpolation 0.57

often such computational resources are not available for par-

ticular scenarios and interpolation is required. This article

outlined EDISON, an edge-native distributed AI method for

interpolating the observations of a heterogeneous and sparse

set of mobile and stationary sensors. By partitioning the spatial

area to overlapping locales, EDISON develops local prediction

models with calibration capabilities. This way, EDISON is

able to achieve the full advantages of distributed processing,

as well as enjoy the possibilities of model tuning to minimize

either local measurement errors or adhere to global changes

not captured locally.

This study included a simple simulated example, which

demonstrated EDISON functionality. While the example only

simulated the first round of consensus among the local models,

it resulted in an improvement in interpolation quality.

For future work, we are interested in further elaborating

the consensus mechanism and its convergence, and testing

EDISON with real data. We will also experiment with different

interpolation and calibration models for EDISON. Finally, we

will consider whether agent-based solutions provide benefits

for EDISON.
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