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Abstract—Immersive viewing, as the next-generation interface
for human-computer interaction, is emerging as a wireless ap-
plication. A genuinely wireless immersive experience necessitates
immense data delivery with ultra-low latency, raising stringent
requirements for future wireless networks. In this regard, efficient
usage of in-device storage and computation capabilities is a poten-
tial candidate for addressing these requirements. In addition, re-
cent advancement in multi-antenna transmission has significantly
enhanced wireless communication. Hence, this paper proposes a
novel location-based multi-antenna coded cache placement and
delivery scheme. We first formulate a linear programming cache
allocation problem to provide a uniform quality of experience
in different network locations; then, cache-placement is done for
each location independently. Subsequently, based on the users’
spatial realizations, a transmission vector is created considering
diverse available memory at each user. Moreover, a weighted-
max-min optimization is used for the beamformers to support
different transmission rates. Finally, numerical results are used
to show the performance of the proposed scheme.

Index Terms—Multi-antenna communications, coded caching,
Location-Dependent Caching; Immersive Viewing.

I. INTRODUCTION

Mobile flat-screen devices such as smartphones and tablets
are the current dominant interface for human-computer in-
teraction. However, wireless immersive viewing experiences
facilitated by more capable wearable gadgets submerging users
into the three-dimensional (3D) digital world is expected to
bring forward the next interface evolution. In this regard,
powerful and agile external radio connections are required
to support the highly stringent requirements of such evolu-
tion. These requirements are simply beyond what is possible
with the current networking standards [1]. As a result, new
techniques that leverage recent advances in communication,
storage, and machine learning are highly demanded [2].

In this regard, using cheap on-device storage is considered
a promising technique for improving bandwidth efficiency [3].
Moreover, utilizing caching and computing capabilities of
mobile VR devices is shown to be effective in alleviating
the traffic burden over the wireless network [4]. Recently,
a new caching technique known as Coded Caching (CC) is
introduced in [5], which yields significantly higher caching
gain compared to the traditional caching schemes. The original
CC scheme in [5] is extended to multi-server networks in [6],
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and later to wireless multi-antenna systems in [7]. Meantime,
various practical limitations of coded caching have been
addressed by the research community. For instance, authors
in [8] address the large subpacketization requirement of the
CC, which is defined as the number of smaller parts each
file should be split into. At the same time, the effect of the
subpacketization on the low-SNR rate is investigated in [9].

Near-far issue, which affects content delivery applications
in general and immersive viewing applications in particular,
is a less-studied problem of the CC schemes. To illustrate,
the users with the worst channel condition always limit the
achievable rate in the CC schemes. In this regard, to avoid
serving users in adverse fading conditions, a congestion con-
trol technique is proposed in [10], while in [11] ill-conditioned
users are served with a lower quality-of-experience (QoE)
using multiple descriptor codes. Unlike [10], [11], which are
based on traditional XOR-ing of data elements, in [12] nested
code modulation is proposed to allow building codewords that
serve every user in the multicasting group with a different rate.
Later on, authors in [13] extended the system model in [12] to
a dynamic real-time applications, where users can move inside
the network, and their achievable rate changes accordingly.

On the other hand, considering the recent advancement in
the multi-antenna devices and fast converging beamforming
approaches proposed in the literature (e.g., [14] and [15]), the
next step is to extend [13] to a multi-antenna environment. As
a result, this paper introduces a new multi-antenna location-
dependent coded caching scheme for efficient content delivery
in wireless access networks. We consider a wireless communi-
cation scenario in which the users are free to move, and their
requested content depends on their current locations.

The requested content at each location is assumed to be
of the same size. As a specific use-case, we assume a multi-
user immersive viewing environment where a group of users
is submerged into a network-based immersive application that
runs on high-end eyewear. Such a use case necessitates heavy
multimedia traffic and guaranteed QoE throughout the operat-
ing environment. In this regard, a location-dependent, uneven
memory allocation is carried out based on the attainable data
rate at each given location. Moreover, a multicast transmission
scheme based on weighted-max-min optimization is devised
to deliver the missing user-specific content with different
transmission rates. Finally, it is worth noting that the worst-
case delivery time is minimized across all the locations due
to the optimized location-dependent cache placement.



II. SYSTEM MODEL

We envision a bounded environment (game hall, operating
theatre, etc.) in which a server with L antennas serves K
single-antenna users through a wireless communication link.
The set of users is denoted by K = [K], where [K] denotes the
set of integer numbers {1, ...,K}. The users are equipped with
finite-size cache memories and are free to move throughout the
environment. Every user requests data from the server at each
time slot based on the application’s needs and its location.
The requested data content can be divided into static and
dynamic parts, where the former can be proactively stored in
the user cache memories. This paper focuses on the wireless
delivery of the static location-dependent content, partially
aided by in-device cache memories.1 A real-world application
of this communication setup is a wireless immersive digital
experience environment, where the requested data is needed
to reconstruct the location-dependent 3D field-of-view (FoV)
at each user. Due to the wireless nature, users in different
locations experience different channel conditions. Therefore,
the goal is to design a cache-aided communication scheme
that minimizes the maximum required delivery time to serve
all the users. In other words, the aim is to provide a uniform
QoE, irrespective of the users’ location.

Intuitively, a larger share of the total cache memory should
be reserved for storing data needed in locations where the
communication quality is poor. In this regard, We split the
environment into S regions, such that all points in a given
region have almost the same distance from the server (i.e., the
channel-state can be considered the same for all the points in
a given region). In the following, we refer to these regions as
states and denote the set of states as S. A graphical example
of an application environment with its states is provided in
Figure 1. The file required for reconstructing the FoV of state
j ∈ S is denoted by W (j). We assume for every region j ∈ S,
the size of W (j) is F bits, and every user is equipped with
a cache memory of size MF bits. For the sake of simplicity,
we consider a normalized data unit and drop F in subsequent
notations. Moreover, we consider the delivery procedure in
a specific time slot and ignore the time index (the same
procedure is repeated every time slot).

We assume a wideband communication scheme, where the
total bandwidth is divided into several small frequency bins.
To perform the location-dependent cache placement, we need
an estimation of the achievable rate at different states. To
this end, we define a single-user scenario, where we assume
there exists only one user to be served. As a result, the
expected interference-free data rate attained in state j ∈ S
is approximated as

r̄(j) = E[log(1 +
PT ‖hj‖2

N0
)] (1)

where PT is the transmission power, N0 is the additive white
Gaussian noise power, and hj ∈ CL is the channel vector

1We assume that a portion of the achievable data rate available at each user
is dedicated to deliver the dynamic content without cache assistance.
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Fig. 1: An application environment with K = 3 users, split into S = 8 states,
where r(3) > r(2) > r(7). The black bar below each user indicates how
much of the requested data is cached.

between the server and the user located in state j2. Thus, the
expected data rate over all the frequency bins is approximated
as r̂(j) ∼ Br̄(j), where B is the communication bandwidth.
For ease of exposition, we consider normalized data rate, i.e.,
r(j) = r̂(j)

F , throughout this paper.

III. CACHE PLACEMENT

The cache placement phase in this paper comprises two
processes, 1) memory allocation and 2) data placement.

Memory Allocation: Before proceeding with the data place-
ment, we first conduct a memory allocation process to deter-
mine the dedicated amount of cache memory for storing (parts
of) W (j) at each user. In this regard, since there is no prior
knowledge about the users’ spatial realizations in the delivery
phase, we minimize the maximum delivery time for the single-
user scenario assuming uniform access probability for all the
states. Let us denote m(j) as the allocated normalized cache
size at each user for storing (parts of) W (j). Since the size
of W (j) is normalized to one data unit, a user in state j
needs to receive 1−m(j) data units over the wireless link to
reconstruct the FoV of state j. As a result, the delivery time
to transmit data for state j is T (j) = 1−m(j)

r(j) seconds. Hence,
the memory allocation is done by solving the following linear
programming (LP):

LP : min
m(j),γ≥0

γ

s.t.
1−m(j)

r(j)
≤ γ ∀j ∈ S,

∑
j∈S

m(j) = M.
(2)

The solution to (2) is given in closed-form using Karush-
Kuhn-Tucker (KKT) conditions:

γ =
S −M∑
j∈S r(j)

, m(j) = 1− (S −M)r(j)∑
j∈S r(j)

, ∀j ∈ S. (3)

Data Placement: After the memory allocation process, we
store data in the cache memories of the users following the
cache placement method proposed in [9].3 In this regard, we
define S location-dependent binary matrices Vj , ∀j ∈ S ,
with size K × K. The first row of Vj has t(j) = Km(j)
consecutive one elements (other elements are zero); and for

2Although we use (1) for convenience, the expected location-specific data
rates can be attained through various means, e.g., via collecting statistics from
past active users.

3With appropriate modifications, the model can be applied to other CC
schemes also. Nevertheless, a thorough discussion is left for the extended
version of the paper.



j=1 j=2 j=3 j=4 j=5
Expected rate r(j) 3 2 1 2 3

Allocated memory m(j) 0.25 0.5 0.75 0.5 0.25

TABLE I: Location-specific rate and memory allocation for Example 1.

the other rows, each row is a circular shift of the previous row
by one unit.4 Next, for every j ∈ S we split W (j) into K
packets denoted by Wp(j). Then, at the cache memory of user
k, we store {Wp(j),∀p} for every state j ∈ S if Vj [p, k] = 1.

Example 1. Consider an application with K = 4 users and
a server with L = 2 antennas, where the environment is split
into S = 5 states and for each state, the required data size
is F = 400 Megabytes. Each user has a cache size of 900
Megabytes, and hence, the normalized cache size is M = 2.25
data units. The spatial distribution of the achievable rate and
its resulting memory allocation are as shown in Table I. It
can be easily verified that t(1) = t(5) = 1, t(2) = t(4) = 2,
and t(3) = 3. As a result, each file should be split into four
sub-files, and each user caches one sub-file from W (1), and
W (5), two sub-files from W (2) and W (4), and three sub-files
from W (3), based on the following placement matrices,

V1 = V5 =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
,V2 = V4 =

(
1 1 0 0
0 1 1 0
0 0 1 1
1 0 0 1

)
,V3 =

(
1 1 1 0
0 1 1 1
1 0 1 1
1 1 0 1

)
.

As W (j) is split into K sub-files and t(j) sub-files are
stored in the cache memory of each user, the total memory size
dedicated to W (j) at each user is t(j)× 1

K = m(j), and hence,
the proposed algorithm satisfies the cache size constraints.
In comparison with [9], here the required files in each state
are considered as a separate library, and the cache placement
algorithm in [9] is performed for each state independent of the
others. Also, different from the existing works, here, files of
different locations have distinct t(j) values, which should be
carefully considered in the delivery phase.

IV. DELIVERY

At the beginning of the delivery phase, every user k ∈ K
reveals its requested file Wk ≡W (sk).5 Note that Wk depends
on the state sk where user k is located. The server then
builds and transmits several multiplexed codewords, such that
after receiving the codewords, all users can reconstruct their
requested files. From the system model, user k requires a
total amount of one normalized data unit to reconstruct Wk.
However, a subset of this data, with size mk ≡ m(sk) data
units, is available in its cache. Note that due to the distinct
caching gain of users in different states, the conventional
delivery scheme of [9], which is based on the same caching
gain for all the users, is no longer applicable to the considered
network.

To solve this issue, we first consider a virtual network with
the same setup as the original one, but assuming each user

4Here we assume for every j ∈ S, m(j) > 0 and t(j) is an integer. For
the non integer caching gains, memory sharing will be adopted. The details
will be provided in the extended version of this paper.

5Note that we have used W (j) to represent the file required for reconstruct-
ing the FoV of the state j, and Wk to denote the file requested by user k.
The same convention is used for all notations in the text.

has the same cached data ratio of m̄ = minmk. To avoid
confusion, we use k̄ to mention the virtual twin of the user
k. As all virtual users have the same cached data ratio, the
caching gain for all users in the virtual network is the same
(independent of their location) and equal to t̄ = Km̄. Now,
applying the delivery scheme of [9] to the virtual network,
virtual users are served in K rounds, where at each round,
K − t̄ transmissions are performed. The corresponding vector
for the j-th transmission at round r is built as

x̄rj =
∑

n∈[t̄+L]

W̄ q̄
p̄r

j [n](k̄
r
j [n])w̄R̄r

j (n) (4)

where p̄rj and k̄rj are the packet and user index vectors, and
R̄rj(n) is the interference indicator set used for the n-th data
term, in the j-th transmission of round r. Also, w̄R̄r

j (n) is the
optimized beamforming vector suppressing data at every user
in R̄rj(n), W (k̄) denotes the file requested by the virtual user
k̄. Also, q̄ is the subpacket index which is initialized to one and
increased every time a packet appears in a transmission vector.
All these parameters are exactly defined in [9]. Specifically, p̄rj
and k̄rj are built such that the graphical representation of the
transmission vectors follows two perpendicular circular shift
operations over a grid. The following example clarifies how
the transmission vectors are built for the virtual network.

Example 2. Consider the network in Example 1, and assume
in a specific time slot, s1 = 1, s2 = 2, s3 = 3, s4 = 4. Thus,
the virtual network will have four users K̄ = {1̄, 2̄, 3̄, 4̄}, and
coded caching gain is t̄ = 1. Then, the data delivery will
require four rounds, where at each round, three transmissions
are done. According to [9], user and packet index vectors for
the first round are built as

k̄1
1 = [1̄, 2̄, 3̄], k̄1

2 = [1̄, 3̄, 4̄], k̄1
3 = [1̄, 4̄, 2̄] ,

p̄1
1 = [2̄, 1̄, 1̄], p̄1

2 = [3̄, 1̄, 1̄], p̄1
3 = [4̄, 1̄, 1̄] ,

(5)

and the resulting transmission vectors are

x̄1
1 = W̄ 1̄

2̄ (1̄)w̄3̄ + W̄ 1̄
1̄ (2̄)w̄3̄ + W̄ 1̄

1̄ (3̄)w̄2̄ ,

x̄1
2 = W̄ 1̄

3̄ (1̄)w̄4̄ + W̄ 2̄
1̄ (3̄)w̄4̄ + W̄ 1̄

1̄ (4̄)w̄3̄ ,

x̄1
3 = W̄ 1̄

4̄ (1̄)w̄2̄ + W̄ 2̄
1̄ (4̄)w̄2̄ + W̄ 2̄

1̄ (2̄)w̄4̄ ,

(6)

where the brackets for interference indicator sets are dropped
for notational simplicity. For better clarification, we use a
tabular view, borrowed from [9], to graphically represent
the transmission vectors in Figure 2. In this representation,
columns and rows denote user and packet indices, respectively.
A darkly shaded cell means the packet index is cached at the
user, while a lightly shaded cell indicates that (part of) the
packet index is transmitted to the user. As can be seen in
Figure 2, the transmission vectors in a single round are built
using circular shift operations of the lightly shaded cells over
non-colored cells of the table, in two perpendicular directions.

Next, we use an elevation mechanism to build transmission
vectors for the original network using the vectors for the virtual
network. Every transmission vector x̄rj is elevated into exactly
one transmission vector xrj , and hence, data delivery for the
original network is also done in K rounds where at each round,
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Fig. 2: Graphical representation of transmission vectors for the virtual network

K − t̄ transmissions are performed. The transmission vector
xrj is built as

xrj =
∑

n∈[t̄+L]

∏
m∈[α]

W q
Pr

j [n,m](skr
j [n])wRr

j (n) (7)

where
∏

denotes the bit-wise concatenation operation, and
krj and Rrj(n) contain the original counterparts of virtual
users in k̄rj and R̄rj(n), respectively. Also, Prj and α are the
packet index matrix and stretch factor for the elevation process,
respectively.

The process to create Prj will be explained shortly after.
The need for the α parameter stems from the fact that each
virtual user k̄ appears precisely (t̄ + L)(K − t̄) times in the
virtual vectors. On the other hand, its original counterpart
needs K − tk packets to decode its FoV. Thus, to uniformly
map the needed packets of user k into transmitted data of
its counterpart in the virtual network, we need to divide each
packet into D̂k = (t̄+L)(K−t̄)

K−tk subpackets. However, D̂k is not
necessarily integer for all k ∈ K. Therefore, α is considered
to guarantee that Dk = αD̂k is an integer for all k. Note that
the total number of delivered subpackets to user k is equal to
DT = (K − tk)Dk = α(t̄+L)(K − t̄). The elevation process
in (7) implies that every subpacket in x̄rj is replaced by the
bit-wise concatenation of α subpackets in xrj , i.e.,

W̄ q̄
p̄r

j [n] →
∏
m∈[α]

W q
Pr

j [n,m]. (8)

The subpacket indices Prj [n,m] are designed to ensure that
1) all the missing data parts are delivered to the users, and
2) the cache-aided interference cancellation is done properly.
Prior to build P matrix, we form K user-specific File-Mapping
(FM) matrices Fk,∀k ∈ [K], with size K × K, to map the
actual missing subpackets to their virtual counterparts. The
matrix elements are denoted by fi,j,k, where, fi,j,k belongs to
the i’th row and j’th column of matrix Fk. The element fi,j,k,
indicates how many subpackets of Wj(sk) must be allocated
to virtual packet W̄ī(k̄). Then, Prj [n,m] is build using the
process outlined in Algorithm 1. In a nutshell, a subpacket of
Wω(skr

j [n]) is assigned to Prj [n,m] if fpr
j [n],ω,kr

j [n] is positive
and fpr

j [n],ω,kr
j [n] is subtracted by 1 for the following turns.

To form the FM matrices, we consider the following state-
ments; however, the detailed solution is left for the extended
version of this paper.

1) The different packets delivered to user k̄ in the virtual
network constitute a dedicated index set (DIS) Ik, where
|Ik| = K − t̄. Therefore, the elements in those rows which
are not included in DIS are all set to zero, i.e., {fi,j,k,∀k ∈

Algorithm 1 Packet Index Matrix

1: function INDEX-GENERATOR({Fk}, {prj}, {krj})
2: for all r ∈ [K] do
3: for all j ∈ [K − t̄] do
4: for all n ∈ [t̄+ L] do
5: χ← prj [n]
6: ψ ← krj [n]
7: for all m ∈ [α] do
8: for all ω ∈ [K] do
9: if fχ,ω,ψ > 0 then

10: Prj [n,m]← ω
11: fχ,ω,ψ ← fχ,ω,ψ − 1
12: Break;
13: return {Prj}

[K],∀i ∈ [K]\Ik,∀j ∈ [K]}. On the other hand, based on [9],
each packet in Ik appears t̄ + L times during the K rounds.
Thus, from DT missing subpackets of user k, DT

K−t̄ = α(t̄+L)
subpackets will be delivered by each virtual packet in Ik
during K rounds, i.e.,

∑
j∈[K]fi,j,k = α(t̄+L), ∀k,∀i ∈ Ik.

2) Following the cache placement proposed in section III,
file W (sk) is divided to K packets, from which tk ones are
available in the cache memory of user k in state sk. As a
result, K − tk missing packets should be delivered to user
k, which constitute a requested index set (RIS) Nk, where
|Nk| = K − tk. Thus, the elements in those columns which
are not included in RIS are all set to zero, i.e., {fi,j,k,∀k ∈
[K],∀j ∈ [K]\Nk,∀i ∈ [K]}. Also, to make sure that all DT

missing subpackets are delivered to each user, the sum of the
elements in those columns belonging to RIS must be equal to
Dk, i.e.,

∑
i∈[K]fi,j,k = Dk, ∀k, ∀j ∈ Nk.

Example 3. Consider the network in Example 2. Denoting the
set of requested packets for user k with Mk and assuming
A ≡ W (1), B ≡ W (2), C ≡ W (4), D ≡ W (5), we
have M1 = {A2, A3, A4}, M2 = {B3, B4}, M3 =
{C4}, M4 = {D1, D2}. As the result, the RIS of each user
is N1 = {2, 3, 4}, N2 = {3, 4}, N3 = {4} and N4 = {1, 2}.
Note that, the size of the packets of A,B,C,D are 1

4 data
units; however, the number of needed packets for each user
(i.e., |Mk| = K − tk) is different.

Since the common coded caching gain is t̄ = 1, based
on [9], the corresponding DISs are I1 = {2, 3, 4}, I2 =
{1, 3, 4}, I3 = {1, 2, 4} and I4 = {1, 2, 3}. Based on the
delivery procedure, the requested packets of user k are divided
into Dk subpackets, where D1 = 6, D2 = D4 = 9,
D3 = 18, and α is equal to 2. It is clear that there exist
DT = Dk(K− tk) = 18 subpackets to be transmitted to each
user. Based on the delivery procedure, in each transmission,
we target t̄+L = 3 users, where for each user in the targeted
group a data comprised of α subpackets is transmitted. As the
result, the size of the transmitted data intended for user 1, 2, 3
and 4 are equal to 1

12 ,
1
18 ,

1
36 and 1

18 data unit, respectively.
Note that the size of the intended data towards each user is
proportional to the approximated rate of its location.

Now, let us review how the downlink message xrj is built
from x̄rj . First, we solve the FM matrices {F1, . . . ,F4} to map



the RISs {Nk,∀k ∈ [K]} in to their corresponding DISs, i.e.,
{Ik,∀k ∈ [K]}. The result is as follows

F1 =

(
0 0 0 0
0 6 0 0
0 0 6 0
0 0 0 6

)
, F2 =

(
0 0 0 6
0 0 0 0
0 0 6 0
0 0 3 3

)
, F3 =

(
0 0 0 6
0 0 0 6
0 0 0 0
0 0 0 6

)
, F4 =

(
6 0 0 0
3 3 0 0
0 6 0 0
0 0 0 0

)
.

Accordingly, based on FM matrices, the packet index matrix
Prj for the first round is formed as follows

P1
1 =

(
2 2
4 4
4 4

)
,P1

2 =
(

3 3
4 4
1 1

)
,P1

3 =
(

4 4
1 1
4 4

)
.

Therefore, based on packet index matrix Prj and equation (7),
the first transmissions of the first round is

x1
1 = w3

∏
(A1

2, A
2
2) + w3

∏
(B1

4 , B
2
4) + w2

∏
(C1

4 , C
2
4 ) ,

where
∏

(A,B) denotes the bit wise concatenation of sub-
packets A and B.

Then, the corresponding received signal at user 1 is

y1 =
∏

(A1
2, A

2
2)hH1 w3 +

∏
(B1

4 , B
2
4)hH1 w3

+
∏

(C1
4 , C

2
4 )hH1 w2 + z1,

where z1 denotes the receiver noise at user 1. Recall that
file B and C correspond to the content of states 2 and 3.
Therefore, based on the placement matrices V2 and V3, sub-
files B4 and C4 are available in the cache memory of user
1. As the result, by estimating hH1 wRk

, the underlined terms
can be removed from the received signal and

∏
(A1

2, A
2
2) can

be decoded interference free [9]. Moreover, by assuming zero-
forcing (ZF) beamformers, i.e., hHi wRk

= 0 if i ∈ Rk, the
received signal at users 2 and 3 is as follows

y2 =
∏

(B1
4 , B

2
4)hH2 w3 +

∏
(A1

2, A
2
2)hH2 w3 + Z2 ,

y3 =
∏

(C1
4 , C

2
4 )hH3 w2 + Z3 .

Following similar argument as above, users 2 and 3 can
decode their intended data interference free. The rest of the
transmitted messages can be created following similar steps.
Note that we have assumed ZF beamforming for ease of expo-
sition. The optimal beamformers are discussed in section V.

It can be shown that the proposed cache placement and
delivery algorithm, delivers all the required data to all the
users with degrees of freedom (DoF) equal to t̄+L. However,
we leave the details for the extended version of this paper.

V. WEIGHTED MAX MIN BEAMFORMING

As illustrated in examples 2 and 3, in each transmission
interval, a group of users U with size |U| = t̄+L is targeted by
the base station to be served. In this regard, t̄+L total messages
Xk are transmitted (one for each user k ∈ U), where each
message Xk is precoded with beamforming vector wRk

. Now,
based on the delivery procedure, the message Xk contains α
subpackets with the size F (K−tk)

αK(K−t̄)(t̄+L) . Hence, the required

time to transmit Xk to user k is equal to F (K−tk)
K(K−t̄)(t̄+L)rk

, where
rk is the dedicated transmission rate to user k.

Since we aim to achieve minimum delivery time to serve all
the users in U , we design {rk,∀k ∈ U} such that |Xk|

rk
=
|X

k
′ |

r
k
′

for all (k, k
′
) ∈ U and k 6= k

′
. Thus, the optimal beamformers

{wRk
, k ∈ U}, are designed by solving the following
max

{wRk
,rk}

min
k∈U

rk
|Xk|

subject to

rk ≤ log

1 +
|hH

kwRk
|2∑

k̄∈U,k∈Rk̄

|hH
kwR

k̄
|2+N0

 , ∀k ∈ U ,∑
k∈U ‖wRk

‖2 ≤ PT ,

(9)

where PT is the total transmit power at the transmitter. Prob-
lem (9) is quasi-convex, and it can be efficiently solved using
iterative methods such as successive convex approximation
(SCA) or uplink-downlink duality [9]. The detailed solution
for the optimization problem (9) is left for the extended version
of this paper. It is worth noting that compared to [9], the max-
min problem in [9] is now changed to a weighted max-min
problem in (9). As a result, we can avoid wasting wireless
resources by the users in bad channel conditions.

Remark 1. Let us denote Tp,q := max{ |Xk|
rk
}, ∀p ∈

[K],∀q ∈ [K − t̄], as the transmission time of the q’th
transmission of p’th round, where rk is computed in (9). Then,
the total required time to deliver all the messages to all the
users can be expressed as TT =

∑
p∈[K]

∑
q∈[K−t̄] Tp,q . Now,

based on (9), at the optimal point, we have |Xk|
rk

=
|X

k
′ |

r
k
′

for all

(k, k
′
) ∈ U and k 6= k

′
. Let us denote RWMM := rk

1−m(sk) as
the common weighted rate. As a result, Tp,q can be expressed
as Tp,q = F

(K−t̄)(t̄+L)RWMM
. Now, assuming RWMM is almost

the same for any group of targeted users U , we can Approx-
imate TT as TT = KF

(t̄+L)RWMM
. Consequently, defining Rsym

WMM

as Rsym
WMM := KF

TT
results in Rsym

WMM = (t̄+L)RWMM. Following
similar arguments, we can express Rsym

MM = (t+L)RMM as the
symmetric rate for uniform memory loading case proposed
in [9], where t = KM

S , RMM = r̄k
1−M/S , and r̄k is the common

max-min rate for the symmetric cache placement case in [9].

VI. NUMERICAL RESULTS

For simulations, we consider a bounded environment di-
vided into S = 100 states, where the channel at state s ∈ S
is assumed to be Rayleigh fading with zero mean and αs
variance, i.e., hs ∼ CN(0, αsI). To simplify the analysis,
we assume a very simple binary attenuation model where a
multi-antenna transmitter is able to provide a uniform channel
quality throughout the environment except for B states that are
highly attenuated (e.g., located behind obstacles like walls,
see Fig. 1). Therefore, in our simulations αs = 1 for non-
attenuated states and αs = β for the attenuated ones. At
each time-slot (realization), user k is placed in location s
with uniform probability, i.e., ps = 1

S . We compare different
methods based on the symmetric rate, defined as K

TT
.

We consider three benchmark schemes, as the following, 1)
unicasting : the cache placement phase is only comprised of
memory allocation procedure. The transmission phase is done
by serving L users at a time following traditional unicasting
scheme, where each user is served by a normalized data size
1−m(sk). 2) unicasting uniform: the cache placement is only



comprised of uniform memory loading, i.e., m(j) = M
S , ∀j ∈

S. The transmission phase is done by serving L users at a
time following traditional unicasting scheme, where each user
is served by a normalized data size 1− M

S . 3) Linear CC [9]:
the cache placement and transmission schemes follow the same
as in [9] with t = KM

S , i.e., without memory loading.
In Fig. 3, we have compared the proposed location-

dependent scheme with those mentioned above for different
number of attenuated slots (B). When the number of blocked
states grows, the traditional CC scheme proposed in [9]
performs poorly as it is limited by the users located in the
blocked slots. This is because the probability of finding a
user in an attenuated state grows higher with the number of
attenuated states. Hence, likely there exist an ill-conditioned
user in each transmission, limiting the transmission rate.
Thus, even performing memory loading without considering
coded transmission performs better than [9]. Such a limited
performance is completely avoided by the proposed scheme.

In Fig. 4, the same comparison is made for different atten-
uation values (β). It can be seen that for a small attenuation
level, the traditional caching scheme of [9] outperforms other
methods. This is because in the proposed scheme, we sacrifice
the global caching gain, i.e., t = KM

S , for higher local gain,
i.e., mi, which results in a higher transmission rate (Rsym

WMM)
compared to [9]. Now, comparing the symmetric rate of [9]
with the proposed scheme Rsym

WMM
Rsym

MM
= (t̄+L)RWMM

(t+L)RMM
, we can see

that when the attenuation level is low, the performance loss
due to the DoF decrements (i.e., t̄+L

t+L ) is more than the rate
improvement (i.e., RWMM

RMM
). However, as the attenuation level

increases, the effect of the worst user case becomes more
severe, and the fraction RWMM

RMM
grows much larger than t̄+L

t+L ,
and the performance gap becomes noticeable.

VII. CONCLUSION

This paper proposes a centralized Multi-antenna location-
dependent coded caching scheme tailored for future immersive
viewing applications. Two-step cache placement was proposed.
First, a memory allocation process was carried out to al-
locate larger cache portions where the channel condition is
poor. Next, data placement was performed for each state
independently. Finally, weighted-max-min optimization was
considered for beamforming, which supported different data
rates within a single transmission. The resulting scheme out-
performs state-of-the-art in ill-conditioned scenarios where the
ratio between the best and worst channel conditions is large.
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