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Abstract—Cell-Free massive MIMO system performance can
be improved with cooperative beamforming strategies. Typically,
local beamforming strategies are assumed at base stations (BSs)
to avoid extensive channel state information exchange via back-
haul links. A fully distributed framework relying on a novel over-
the-air (OTA) signaling mechanism has been recently proposed
to design cooperative beamformers for cell-free massive MIMO
systems. However, the existing distributed exact solution has a
suboptimal global convergence behaviour because of outdated
information used at each BS. This paper proposes a Newton
method with an adaptive regularization to design uplink receivers
for the fully distributed framework. Numerical results show a sig-
nificantly faster convergence of the proposed method compared
to the distributed exact solution and gradient methods.

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (MIMO) is

one of the promising physical layer technology to improve the

spectral efficiency. Cell-free massive MIMO suitably combines

elements from massive MIMO, small cells, and user-centric

coordinated multi-point (CoMP) with joint beamforming, to

enhance overall coverage and to suppress the interference [1],

[2]. Cell-free massive MIMO networks have been shown to

outperform their traditional cellular massive MIMO and small-

cell counterparts in several scenarios of practical interest [1],

[3]. To avoid cumbersome and costly channel state infor-

mation (CSI) exchange among the base stations (BSs) via

backhaul signaling and to reduce the overall computational

complexity, most works on cell-free massive MIMO assume

simple uncoordinated beamforming strategies at the BSs, such

as maximum ratio transmission/combining (MRT/MRC), local

zero-forcing (ZF), and local minimum mean squared error

(MMSE), which can be implemented based on local CSI.

Nevertheless, the performance of cell-free massive MIMO

systems can be significantly boosted by increasing the level

of coordination among the BSs [3]. However, the cooperative

beamforming requires enormous amount of CSI exchange via

backhaul signaling, either between the BSs and a central

processing unit (CPU) or among the BSs [4].

Recently, a fully distributed framework was proposed to

design the cooperative beamforming strategies at each BS for

cell-free massive MIMO systems [5], [6]. The performance

of the fully distributed precoder design in downlink is close

to the CPU based centralized design [5]. However, the fully

distributed receiver design in uplink scenarios [6] has a some-

what higher performance loss with respect to the centralized

design. The exact minimization used for the receiver design

in [6] turns out to be equivalent to the distributed Newton

method introduced in this paper. Due to delayed over-the-air

(OTA) feedback, the distributed Newton method has outdated

global second order information available at each BS, which

leads to overly aggressive optimization towards incorrect

global direction resulting in suboptimal performance. As an

alternative solution we have analyzed the distributed gradient

(GD) method, which indeed provides the same performance

as the centralized design, but with much slower convergence

as it uses only first order information for beamformer updates.

In this paper, we propose a distributed Newton method

with additional adaptive regularization term for the considered

sum MSE minimization problem. In the proposed method, the

outdated second order information is regulated with a variable

regularization term for a faster global convergence. Numerical

results show a faster convergence of the proposed method

compared to the distributed GD and the distributed Newton

methods, and the final converged value is very close to the

centralized design.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a cell-free massive MIMO system where a

set of M -antenna BSs B , {1, . . . , B} serves a set of N -

antenna user equipments (UEs) K , {1, . . . ,K} in the uplink.

Assuming a time division duplex (TDD) setting and a single

data stream transmitted by each UE, let Hb,k ∈ C
M×N

denote the uplink channel matrix between UE k ∈ K and

BS b ∈ B, with Hk , [HT
1,k, . . . ,H

T
B,k]

T ∈ C
BM×N being

the aggregated uplink channel matrix seen by UE k. Moreover,

let wk ∈ C
N×1 denote the precoding vector used by UE k.

The receive signal at BS b is given by

yb ,
∑

k∈KHb,kwkdk + zb ∈ C
M×1 (1)

where dk ∼ CN (0, 1) is the transmit data symbol of UE k and

zb ∈ C
M×1 is the additive white Gaussian noise (AWGN) term

at BS b, with elements distributed as CN (0, σ2
BS
). Likewise, the

aggregated receive signal at all the BSs is given by

y ,
∑

k∈K Hkwkdk + z ∈ C
BM×1 (2)

with z , [zT1 , . . . , z
T
B ]

T ∈ C
BM×1. Let vb,k ∈ C

M×1 de-

note the BS-specific combining vector used by BS b for

UE k, with vk , [vT
1,k, . . . ,v

T
B,k]

T ∈ C
BM×1 being the

aggregated combining vector used for UE k (accordingly, we

have
∑

b∈B vH
b,kHb,k̄ = vH

k Hk̄). Each BS b estimates dk by

combining yb with vb,k and the estimates from all the BSs



are collected by the CPU. The resulting signal-to-interference-

plus-noise ratio (SINR) for UE k reads as

SINRk,
|∑b∈B vH

b,kHb,kwk|2
∑

k̄∈K\{k}

|∑
b∈B

vH
b,kHb,k̄wk̄|2+σ2

BS

∑

b∈B

‖vb,k‖2
. (3)

We use the sum rate R ,
∑

k∈K log2(1 + SINRk) (measured

in bps/Hz) as performance metric of the overall system.

In this paper, we target the sum MSE minimization problem

to optimize the precoding vectors {wk}k∈K and the combining

vectors {vb,k}b∈B,k∈K. This can be used as a surrogate of the

more involved weighted sum rate maximization problem (or,

equivalently, of the iterative weighted sum MSE minimization

problem [7]). In fact, since the total number of BS antennas in

the network BM is much larger than the number of UEs K,

the weighted sum MSE minimization yields only a minor

penalty in terms of sum-rate performance as compared with

the weighted sum rate maximization, while being much easier

to handle and providing an inherent fairness across the UEs.

From (2), we define the MSE at UE k as

MSEk , E
[∣

∣

∑

b∈B vH
b,kyb − dk

∣

∣

2]

=
∑

k̄∈K

∣

∣

∑

b∈B vH
b,kHb,k̄wk̄

∣

∣

2
(4)

− 2Re
[
∑

b∈B vH
b,kHb,kwk

]

+ σ2
BS

∑

b∈B ‖vb,k‖2 + 1

which is convex with respect to either the transmit or the

receive strategies (but not jointly convex with respect to both).

Therefore, we use alternate optimization, i.e., we optimize the

combining vectors (vb,k) for fixed precoding vectors (wk)

and vice versa in an iterative best-response fashion, with

guaranteed local convergence [7]. Next, we describe realistic

pilot-aided CSI acquisition at both the BSs and the UEs, which

will be needed in Sections III and IV.

A. Uplink Pilot-Aided Channel Estimation

Let hb,k , Hb,kwk ∈ C
M×1 denote the effective uplink

channel vector between UE k and BS b, and let pk ∈ C
τ×1

denote the pilot assigned to UE k, with ‖pk‖2 = τ . In

the uplink pilot-aided channel estimation phase, each UE k
synchronously transmits its pilot pk precoded with wk, i.e.,

XUL-1

k , wkp
H
k ∈ C

N×τ . (5)

Then, the receive signal at BS b is given by

YUL-1

b ,
∑

k∈K Hb,kX
UL-1

k + ZUL-1

b (6)

=
∑

k∈K hb,kp
H
k + ZUL-1

b ∈ C
M×τ (7)

where ZUL-1

b is the AWGN term at BS b with elements dis-

tributed as CN (0, σ2
BS
), and the least-squares (LS) estimate

of hb,k is obtained as

ĥb,k ,
1

τ
YUL-1

b pk (8)

= hb,k +
1

τ

∑

k̄∈K\{k} hb,k̄p
H
k̄
pk + 1

τ
ZUL-1

b pk. (9)

Here, perfect channel estimation is attained when:

i) The pilot contamination in the second term of (9) is

eliminated using, e.g., orthogonal pilots (i.e., {pH
k̄
pk =

0}k̄∈K\{k}) or non-orthogonal random pilots with infinite

length (i.e., τ → ∞);

ii) The channel estimation noise in the third term of (9) is

eliminated using pilots with infinite length.

In the centralized joint receiver design, the estimation of

the channel matrix Hb,k calls for N antenna-specific pilots

for UE k. In this context, let Pk ∈ C
τ×N denote the pilot

matrix assigned to UE k, with ‖Pk‖2F = τN . As in (5), each

UE k synchronously transmits its pilot matrix, i.e.,

XUL

k ,
√

βULPH
k ∈ C

N×τ (10)

where the scaling factor βUL , ρUE/N ensures that each col-

umn of XUL

k complies with the UE transmit power constraint.

Then, the receive signal at BS b is given by

YUL

b ,
∑

k∈K Hb,kX
UL

k + ZUL

b (11)

=
√

βUL
∑

k∈K Hb,kP
H
k + ZUL

b ∈ C
M×τ (12)

where ZUL

b is the AWGN term at BS b with elements distributed

as CN (0, σ2
BS
), and the LS estimate of Hb,k is obtained as

Ĥb,k ,
1

τ
√
βUL

YUL

b Pk (13)

=
1

τ

∑

k̄∈K Hb,k̄P
H
k̄
Pk + 1

τ
√

βUL
ZUL-1

b Pk. (14)

These observations of (9) also hold for (14), for perfect

channel estimation.

B. Downlink Pilot-Aided Channel Estimation

Let gk ,
∑

b∈B HH
b,kvb,k ∈ C

N×1 denote the effective

downlink channel vector between all the BSs and UE k. In

the downlink pilot-aided channel estimation phase, each BS b
synchronously transmits a superposition of the pilots {pk}k∈K

precoded with the corresponding combining vector vb,k, i.e.,

XDL

b ,
√

βDL
∑

k∈K vb,kp
H
k ∈ C

M×τ (15)

where the scaling factor βDL (equal for all the BSs) ensures

that each column of XDL

b complies with the BS transmit power

constraint. Then, the receive signal at UE k is given by

YDL

k ,
∑

b∈B HH
b,kX

DL

b + ZDL

k (16)

=
√

βDL
∑

b∈B

∑

k̄∈K HH
b,kvb,k̄p

H
k̄
+ ZDL

k ∈ C
N×τ (17)

where ZDL

k is the AWGN term at UE k with elements dis-

tributed as CN (0, σ2
UE
), and the LS estimate of gk is

ĝk ,
1

τ
√
βDL

YDL

k pk (18)

= gk+
1

τ

∑

b∈B

∑

k̄∈K\{k}

HH
b,kvb,k̄p

H
k̄
pk+

1

τ
√

βDL
ZDL

k pk. (19)

These observations of (9) also hold for (19), for perfect

channel estimation.

III. CENTRALIZED DESIGN

In the centralized design, channel {Hb,k}b∈B,k∈K is esti-

mated using the antenna specific pilots as in (13) at each

BS. All the BSs feed back the estimated CSI to the CPU

via backhaul links. At the CPU the estimate of the sum MSE

can be written as in (20) at the top of next page. The CPU

performs the alternate optimization to obtain the optimized

precoder {wk}k∈K and combiner {vb,k}b∈B,k∈K.



∑

k∈K

MSEk ≃ ∑

k∈K

∑

k̄∈K

∣

∣

∑

b∈B

vH
b,kĤb,k̄wk̄

∣

∣

2 − 2
∑

k∈K

Re
[
∑

b∈B

vH
b,kĤb,kwk

]

+ σ2
BS

∑

k∈K

∑

b∈B

‖vb,k‖2 +K. (20)

A. Optimization of the precoding vectors

For a fixed set of combining vectors {vb,k}b∈B,k∈K, the

precoding vectors {wk}k∈K are computed by minimizing

the sum MSE given in (20). The precoding vector wk that

minimizes (20) is the MMSE precoder

wk =

(

∑

k̄∈K

(
∑

b∈B

ĤH
b,kvb,k̄

)(
∑

b∈B

(vH
b,k̄

)Ĥb,k

)

+ λkIN

)−1

× ∑

b∈B

ĤH
b,kvb,k (21)

where λk is the dual variable associated with the UE k power

constraint. For ideal channel estimates, Ĥb,k in (21) is replaced

with Hb,k.

B. Optimization of the combining vectors

For a fixed set of precoding vectors {wk}k∈K, the CPU

computes the BS-specific combining vectors {vb,k}b∈B,k∈K

as a solution of sum MSE given in (20). Next, we discuss the

exact minimization of (20) to obtain the BS-specific combining

vectors {vb,k}b∈B,k∈K.

1) Exact Minimization
The combining vector {vk}k∈K that minimizes (20) is the

MMSE receiver

vk =
(
∑

k̄∈K Ĥk̄wk̄w
H
k̄
ĤH

k̄
+ σ2

BS
IBM

)−1
Ĥkwk. (22)

For the subsequent use, we introduce the following pre-

liminary definitions: hk , [hT
1,k, . . . ,h

T
B,k]

T ∈ C
BM×1,

ĥk , [ĥT
1,k, . . . , ĥ

T
B,k]

T ∈ C
BM×1, Φ ,

∑

k∈K hkh
H
k ∈

C
BM×BM , where the latter may be rewritten as

Φ ,







Φ11 . . . Φ1B

...
. . .

...

ΦH
1B . . . ΦBB






(23)

with Φbb̄ ,
∑

k∈K hb,kh
H
b̄,k

∈ C
M×M . Similarly, Φ̂ ,

∑

k∈K ĥkĥ
H
k ∈ C

BM×BM and Φ̂bb̄ ,
∑

k∈K ĥb,kĥ
H
b̄,k

∈
C

M×M .

With the above definitions the receiver combining vector

{vk}k∈K can be rewritten as

vk = (Φ̂+ σ2
BS
IBM )−1ĥk. (24)

For ideal channel estimates, the combining vector vk in (24)

can be obtained by replacing ĥk with hk and, Φ̂ with Φ.

As an alternative to the exact solution, and due to practical

reasons that appear useful in Section IV, an iterative solution

for the receiver can be attained using either gradient or Newton

approaches which are described in the following.

2) Gradient Descent Method
In GD method, the receiver combing vector {vk}k∈K will

be updated in the negative direction of the sum MSE gradient,

evaluated at the previous iteration [8]. The gradient of the sum

MSE (20) is

∇vk

(
∑

k∈K MSEk

)

= −2(ĥk − (Φ̂+ σ2
BS
IBM )vk), (25)

where vk is the combining vector of the previous iteration.

The GD update of the combining vector {vk}k∈K, with

step-size αc is given as [8]

vk = vk + 2αc(ĥk − (Φ̂+ σ2
BS
IBM )vk). (26)

For ideal channel estimates, the receiver combining vector

vk can be obtained by replacing ĥk with hk and Φ̂ with Φ.

3) Newton Method
In general, GD method is slow in convergence due to the

fact that it uses only first order information. To increase

the convergence Newton method is preferred, in this method

second order information is used for a faster convergence [8].

For the sum MSE minimization given in (20), the Newton

direction for combining vector vk is given as

∇2
vk

(
∑

k∈K MSEk

)−1∇vk

(
∑

k∈K MSEk

)

= −((Φ̂+ σ2
BS
IBM )−1ĥk − vk). (27)

Similar to (26), the Newton update for the combining vector

{vk}k∈K is given as [8]

vk = (1− βc)vk + βc(Φ̂+ σ2
BS
IBM )−1ĥk, (28)

where βc is the Newton update step-size. For ideal channel

estimates, the receiver combining vector vk can be obtained

by replacing ĥk with hk and Φ̂ with Φ.

Remark 1. The optimal combining vector vk obtained

with the Newton method is the same as the exact minimization

for βc =1.

Since the centralized design requires CSI exchange between

the BSs and the CPU via backhaul links, a distributed design is

preferred to avoid the CSI exchange via backhaul links. Also,

the complexity of the distributed design is greatly reduced

compared to the centralized design [5].

IV. DISTRIBUTED DESIGN

In the distributed joint receiver design, the alternate opti-

mization of the combining vectors (vb,k) and the precoding

vectors (wk) is carried out by means of iterative bi-directional

signaling between the BSs and the UEs (see [4], [6], [9]).

A. Optimization of the precoding vectors

Let us define the component of sum MSE associated with

the UE k precoding vector wk as MSEk. Each UE k computes

the precoding vector {wk}k∈K based on the downlink receive

signal YDL

k . From the receive YDL

k signal, UE k associated

MSEk can be written as

MSEk ≃ 1

τβDL
wH

k

(

YDL

k (YDL

k )H − τσ2
UE
IN

)

wk

− 2

τ
√
βDL

Re[wH
k Y

DL

k pk]. (29)

The precoding vector wk can be computed locally at UE k as

wk =
√

βDL
(

YDL

k (YDL

k )H + τ(λk − σ2
UE
)IN

)−1
YDL

k pk, (30)



where λk is the dual variable associated with the UE k power

constraint. The ideal precoder wk with perfect CSI can be

obtained as τ → ∞.

B. Optimization of the combining vectors

For the computation of the combining vec-

tors {vb,k}b∈B,k∈K, let us define YUL-1 ,

[(YUL-1

1 )T, . . . , (YUL-1

K )T]T ∈ C
BM×τ , V , [v1, . . . ,vK ] ∈

C
BM×K and P , [p1, . . . ,pK ] ∈ C

τ×K . Building upon

this, from the uplink receive signal YUL-1 we can write the

estimated sum MSE as
∑

k∈K MSEk ≃ 1

τ
tr
(

VHYUL-1(YUL-1)HV
)

− 2

τ
Re

[

tr(VHYUL-1P)
]

+K. (31)

Each BS computes combining vectors {vb,k}b∈B,k∈K as a

solution of sum MSE given in (31). Next, we discuss the

exact minimization of (31) to obtain the combining vectors

{vb,k}b∈B,k∈K.

1) Distributed Exact Minimization

Each BS b computes the combining vector {vb,k}k∈K

by minimizing sum MSE (31) for a fixed set of precoding

vectors {wk}k∈K and combining vectors {vb̄,k}b̄∈B\{b},k∈K.

The local combining vector v∗
b,k that minimizes (31) reads as

v∗
b,k =

(

YUL-1

b (YUL-1

b )H
)−1

YUL-1

b

×
(

pk −∑

b̄∈B\{b}(Y
UL-1

b̄
)Hvb̄,k

)

, (32)

where vb̄,k is the previously obtained receiver combining

vector obtained from BS b̄. For ideal channel estimates, the

local combining vector v∗
b,k can be obtained as τ → ∞ and,

is given as

v∗
b,k = (Φbb + σ2

BS
IM )−1(hb,k − ξb,k) (33)

where we have defined

ξb,k ,
∑

b̄∈B\{b} Φbb̄vb̄,k. (34)

To compute the combining vector v∗
b,k at BS b, ξb,k infor-

mation is required from all other BSs (b 6= b̄). This can be

obtained via backhaul links as in [4]. However, the amount of

backhaul signaling required in cell-free massive MIMO grows

large with the number of BSs and UEs makes the practical

implementation challenging. Thanks to the OTA signaling

framework proposed in [5], [6] for avoiding the extensive

signal exchange via backhaul links to design the cooperative

precoders/combiners.

With the OTA signaling framework, each BS b can obtain

an estimate of ξb,k in (34) without any backhaul signaling

for CSI exchange among the BSs [6]. This is achieved us-

ing an extra uplink signaling resource, whereby each UE k
synchronously transmits YDL

k in (17) precoded with the rank-1

matrix wkw
H
k , i.e.,

XUL-2

k ,
√

βUL-2wkw
H
k Y

DL

k ∈ C
N×τ , (35)

where βUL-2 is the scaling factor. The scaling factor βUL-2 ensures

that each column of XUL-2

k is transmitted with a large enough

power while still complying with the UE transmit power

constraint. More specifically, each UE k uses its precoding

vector wk to combine YDL

k and then transmits it using again

wk. Then, the receive signal at BS b is given by

YUL-2

b ,
∑

k∈K Hb,kX
UL-2

k + ZUL-2

b ∈ C
M×τ , (36)

where ZUL-2

b ∈ C
M×τ is the AWGN term at BS b with elements

distributed as CN (0, σ2
BS
). Each BS b can obtain an estimate

of ξb,k as follows (for more details see [6])

ξ̂b,k =
1

τ

(

1√
βUL-2βDL

YUL-2

b pk

−
(

YUL-1

b (YUL-1

b )H − τσ2
BS
IM

)

vb,k

)

. (37)

For ideal estimates of YUL-1

b and YUL-2

b , above ξ̂b,k simplifies

to ξb,k given in (34). Finally using YUL-2

b signal, v∗
b,k can be

rewritten as

v∗
b,k =

(

YUL-1

b (YUL-1

b )H
)−1(

YUL-1

b

(

pk + (YUL-1

b )Hvb,k

)

− τσ2
BS
vb,k − YUL-2

b pk√
βUL-2βDL

)

. (38)

In parallel and distributed system, best response update on

local computed values v∗
b,k leads to the global optimal solution

with guaranteed convergence [10].

The best response update of the BS specific precoding

vector vb,k is performed as follows

vb,k = (1− γd)vb,k + γdv
∗
b,k, (39)

where γd is the best response step-size.

Proposition 1. For {vb̄,k}b̄∈B\{b},k∈K = {vb̄,k}b̄∈B\{b},k∈K

in (34), the combining vector vb,k obtained with the distributed

exact minimization (39) is the same as the one given by the

Newton method in (28), when using ideal channel estimates

and γd = βc.

Proof. This can be proved using Schur complement, similarly

to the proof given in Appendix-I of [5].

Remark 2. In practice each BS b obtains the combining vector

{vb̄,k}b̄∈B\{b} outdated by at-least one iteration. This makes

the distributed exact minimization solution (39) to be different

from the Newton method given in (28).

In the distributed exact minimization approach, each BS b
optimizes the combining vector vb,k for a fixed set of com-

bining vectors {vb̄,k}b̄∈B\{b}. This implies that each BS

aggressively optimizes the combining vectors towards the

local optimal with the outdated combining vectors from the

other BSs (b 6= b̄), which may lead to a suboptimal global

convergence. Next, we introduce alternative receiver combin-

ing vector optimization approaches using distributed GD and

distributed Newton methods.

2) Distributed Gradient Descent Method
As discussed in Section III, the receiver combing vector

{vb,k}b∈B,k∈K is updated in the negative direction of the sum

MSE gradient, evaluated at the previous iteration [8]. The

gradient of the sum MSE (31) is

∇vb,k

(
∑

k∈K

MSEk

)

= −2

τ
YUL-1

b

(

pk − ∑

b̄∈B

(YUL-1

b̄
)Hvb̄,k

)

. (40)



Similar to (26), the GD update for the combining vector

vb,k is given as

vb,k = vb,k +
2

τ
αdY

UL-1

b (pk −∑

b̄∈B(Y
UL-1

b̄
)Hvb̄,k), (41)

where αd is the gradient step-size. Using YUL-2

b the receiver

combining vector update can be written as

vb,k = vb,k +
2

τ
αd

(

YUL-1

b pk − τσ2
BS
vb,k − 1√

βUL-2βDL
YUL-2

b pk

)

.

(42)

The ideal combining vector vb,k with perfect CSI can be

obtained as τ → ∞.

Remark 3. The optimal combining vectors {vb,k}b∈B,k∈K

obtained with distributed GD method are the same as in the

centralized GD method, assuming ideal channel estimates and

αd = αc.

Even though the distributed GD method provides the same

performance as the centralized GD method, the convergence

of the GD method is fairly slow.

3) Distributed Newton Method

Newton method is preferred for a faster convergence as it

utilizes also the second order information [8]. For the sum

MSE minimization given in (31), the Newton direction for

combining vector vb,k is given as

∇2
vb,k

(
∑

k∈K MSEk

)−1∇vb,k

(
∑

k∈K MSEk

)

=
(

YUL-1

b (YUL-1

b )H
)−1

YUL-1

b

(

pk −∑

b̄∈B(Y
UL-1

b̄
)Hvb̄,k

)

. (43)

Similar to (26), the Newton update for the combining vector

{vb,k}b∈B,k∈K is given as

vb,k = (1− βd)vb,k + βd

(

YUL-1

b (YUL-1

b )H
)−1

YUL-1

b

×
(

pk −∑

b̄∈B\{b}(Y
UL-1

b̄
)Hvb̄,k

)

, (44)

where βd is the Newton update step-size. Using YUL-2

b the

above vb,k can be rewritten as

vb,k = (1− βd)vb,k + βd

(

YUL-1

b (YUL-1

b )H
)−1

×
(

YUL-1

b

(

pk + (YUL-1

b )Hvb,k

)

− τσ2
BS
vb,k − YUL-2

b pk√
βUL-2βDL

)

.

(45)

The ideal combining vector vb,k with perfect CSI can be

obtained as τ → ∞.

Remark 4. The optimal combining vectors {vb,k}b∈B,k∈K

obtained with the distributed Newton method are the same as

those acquired using the distributed exact minimization with

γd = βd.

The performance of the distributed Newton method is

equivalent to distributed exact minimization. As discussed in

Section IV-B1, both methods converge fast but to a suboptimal

solution.

4) Adaptive-Regularized Newton Method

As discussed earlier, the distributed GD method is slow in

convergence. However, the optimal value of the distributed

GD method is the same as the centralized methods, because

at each BS b combining vector vb,k is computed entirely based

on the previously obtained combining vectors {vb̄,k}b̄∈B\{b}

from all other BSs via OTA signaling and previously computed

combining vector {vb,k} at BS b itself. Distributed Newton

method converges faster but to a suboptimal value due to

the outdated curvature information obtained from the other

BSs. This leads to overly aggressive local optimization with

outdated information. Combining the advantages of distributed

GD and distributed Newton, in the following, we reformulate

the sum MSE minimization given in (31) by adding an extra

regularization term [8]. The regularization term penalizes

the aggressive optimization towards the local optimal value

with restricted curvature information, while the bias in the

solution due to the regularization term is compensated by

considering the previously obtained combining vector vb,k in

the regularization term itself. The modified MSE problem with

the regularization term at iteration i can be written as
∑

k∈K

M̃SEk ,
∑

k∈K

MSEk + ν(i)
∑

b∈B

∑

k∈K

‖vb,k − vb,k‖22, (46)

where ν(i) is the weight at iteration i. Furthermore, ν can

be varied over iterations based on the curvature information

required for the global convergence. The term ‖vb,k − vb,k‖22
penalizes the combining vector vb,k if the new local solution

is far away from the previous global solution, this steer the

solution towards the global optimal.

Similar to (45), the Newton update for the combining vector

vb,k of the modified MSE (46) at iteration i is given as

vb,k = (1− βd)vb,k + βd

(

YUL-1

b (YUL-1

b )H + τν(i)IM
)−1

(

YUL-1

b

× pk +
(

YUL-1

b (YUL-1

b )H − τ(σ2
BS
− ν(i))

)

vb,k − YUL-2

b pk√
βUL-2βDL

)

.

(47)

The ideal combining vector vb,k with perfect CSI can be

obtained as τ → ∞.

For a large value of ν, the solution (47) can be approximated

as distributed GD, and for a small value of ν the solution can

be approximated as distributed Newton update. The first order

derivative of (46) with respect to combining vector vb,k is the

same as (40). Hence the optimal value of the proposed method

is the same as the centralized method.

V. NUMERICAL RESULTS

We consider a cell-free scenario where B = 25 BSs, each

equipped with M = 2 antennas, are placed on a square

grid with distance between neighboring BSs of 30 m and

height of 10 m. Furthermore, K = 16 UEs, each equipped

with N = 2 antennas, are randomly dropped in the same

area. Rayleigh fading channel is generated as vec(Hb,k) ∼
CN (0, δb,kIMN ), where δb,k [dB] , −30.5− 36.7 log10(db,k)
is the large-scale fading coefficient and db,k is the distance

between BS b and UE k. The maximum transmit power of the

BSs and UEs in the pilot-aided channel estimation phase is

ρBS = ρUE = 30 dBm. Lastly, the AWGN power at the BSs and

at the UEs is fixed to σ2
BS
= σ2

UE
= −95 dBm. In the following

sum MSE and sum rate performances of the proposed OTA

distributed adaptive-regularized Newton (Dis-ARNW) method

are compared with the centralized joint receiver design (Cen)
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Figure 1: Average sum MSE vs. OTA iterations with ideal CSI.
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Figure 2: Average sum rate vs. OTA iterations with ideal CSI.

described in Section III, OTA distributed joint receiver design

methods of GD (Dis-GD) and Newton (Dis-NW) described in

Section IV.

In Figure 1, the average sum MSE of different approaches

are compared. ’Dis-GD’ converges to the ’Cen’ since both

methods are equivalent as shown in Section IV. ’Dis-ARNW’

shows slower convergence compared to ’Dis-NW’ in the

initial iteration, but the global convergence of ’Dis-ARNW’ is

much better than that of ’Dis-NW’. Moreover, ’Dis-ARNW’

typically converges close to the optimal value within 10

iteration, whereas ’Dis-GD’ needs more than 20 iterations.

Similar behaviour is reflected in the sum-rate plot shown in

Figure 2. Corresponding behaviour of sum MSE and sum rate

with the estimated channels are shown in Figures 3 and 4,

respectively. However, the centralized design methods are

degraded more compared to the distributed design methods,

due to the fact that centralized designs use single channel

estimate. Whereas distributed designs uses multiple channel

estimates (OTA training), and the AWGN noise differs for

each channel estimate [5].

VI. CONCLUSIONS
In this paper, we have proposed an adaptive-regularized

Newton method for receiver combining vector design for the

distributed system with OTA framework. The proposed method

shows better convergence compared to the distributed gradient

and distributed Newton methods. We have also shown that, for

the considered sum MSE minimization problem, centralized

GD method is the same as the distributed GD method, and
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Figure 3: Average sum MSE vs. OTA iterations with estimated CSI.
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Figure 4: Average sum rate vs. OTA iterations with estimated CSI.

distributed exact minimization with the best-response update

is equivalent to the distributed Newton update.
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