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Decentralized Deep Reinforcement Learning for

Delay-Power Tradeoff in Vehicular Communications
Xianfu Chen, Celimuge Wu, Honggang Zhang, Yan Zhang, Mehdi Bennis, and Heli Vuojala

Abstract—This paper targets at the problem of radio resource
management for expected long-term delay-power tradeoff in
vehicular communications. At each decision epoch, the road side
unit observes the global network state, allocates channels and
schedules data packets for all vehicle user equipment-pairs (VUE-
pairs). The decision-making procedure is modelled as a discrete-
time Markov decision process (MDP). The technical challenges
in solving an optimal control policy originate from highly spatial
mobility of vehicles and temporal variations in data traffic. To
simplify the decision-making process, we first decompose the
MDP into a series of per-VUE-pair MDPs. We then propose
an online long short-term memory based deep reinforcement
learning algorithm to break the curse of high dimensionality
in state space faced by each per-VUE-pair MDP. With the
proposed algorithm, the optimal channel allocation and packet
scheduling decision at each epoch can be made in a decentralized
way in accordance with the partial observations of the global
network state at the VUE-pairs. Numerical simulations validate
the theoretical analysis and show the effectiveness of the proposed
online learning algorithm.

I. INTRODUCTION

The vehicle-to-vehicle (V2V) communication technologies

have been gaining increasing popularity for the feasibility of

enabling emerging vehicle-related services [1]–[3]. However,

this ad hoc type of vehicular communications requires intense

coordinations among the vehicles in close proximity [4]. With-

out the support of an infrastructure, the high vehicle mobility

makes the design of efficient radio resource management

(RRM) techniques extremely challenging [5]. There are a large

body of literatures on RRM in V2V communications. In [6],

Sun et al. proposed a separate resource block and power

allocation algorithm for the RRM in device-to-device based

V2V communications. In [7], Yao et al. derived a loss differ-

entiation rate adaptation scheme to meet the stringent delay

and reliability requirements for V2V safety communications.

In [8], Egea-Lopez et al. designed a fair adaptive beaconing

rate algorithm for the problem of beaconing rate control in

inter-vehicular communications. Most of these efforts have not

taken into account the network dynamics, such as the temporal

and spatial variations in transmission quality as well as data

traffic, and hence fail to optimize the expected long-term RRM

performance.

A Markov decision process (MDP) has been successfully

applied to model RRM in vehicular communications with
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Fig. 1. An illustrative Manhattan grid vehicle-to-vehicle communication
network (VUE: vehicle user equipment; LOS: line-of-sight; WLOS: weak-
line-of-sight; NLOS: non-line-of-sight.).

time-varying nature. In [9], Liu and Bennis formulated a

latency and reliability [10] constrained transmit power min-

imization problem, for which the Lyapunov stochastic opti-

mization was leveraged to handle the network dynamics. The

problem with the Lyapunov stochastic optimization is that only

an approximately optimal solution can be constructed. In [11],

Chen et al. studied the non-cooperative RRM in vehicular

communications from an oblivious game-theoretic perspective

and put forward an online algorithm based on reinforcement

learning to approach the optimal solution. Consider a more

practical scenario, where the channel qualities are affected by

the vehicle mobility, the explosion in the state space makes

the technique developed in our priori work [11] infeasible.

In this paper, we investigate a Manhattan grid V2V network,

where the data traffic changes across the time horizon and

the channel quality state depends on the locations of vehicle

user equipment (VUE)-transmitter (vTx) and VUE-receiver

(vRx) of a VUE-pair. The primary goal of this paper is

to design an optimal RRM algorithm for each VUE-pair to

strike a tradeoff between the queuing delay and the transmit

power consumption over the long run. We formulate the RRM

problem as a MDP and resort to a deep neural network based

function approximator to deal with the curse of state space

explosion [12]. In [13], Ye and Li devised a decentralized

RRM mechanism based on deep reinforcement learning (DRL)

for V2V communication systems. However, the mechanism

does not account for the vehicle mobility, which helps facilitate

frequency resource sharing among different groups of VUE-

pairs. As the major contribution from this paper, we propose

an online decentralized learning algorithm by exploring the

recent advances in both long short-term memory (LSTM) [14]

and DRL [15], with which each VUE-pair with partially local

network state observations is hence able to realize a significant

performance improvement.

http://arxiv.org/abs/1906.00625v1
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k =





ρ ·

(√∣∣∣x(1),t
k − x

(2),t
k

∣∣∣
2

+
∣∣∣y(1),tk − y

(2),t
k

∣∣∣
2
)−e

, if VUE-pair k is in LOS

ρ ·
(∣∣∣x(1),t

k − x
(2),t
k

∣∣∣+
∣∣∣y(1),tk − y

(2),t
k

∣∣∣
)−e

, if VUE-pair k is in WLOS

ξ ·
(∣∣∣x(1),t

k − x
(2),t
k

∣∣∣ ·
∣∣∣y(1),tk − y

(2),t
k

∣∣∣
)−e

, if VUE-pair k is in NLOS

(1)

II. SYSTEM MODEL

As in Fig. 1, we consider a Manhattan grid V2V com-

munication scenario. A set K = {1, · · · ,K}1 of VUE-pairs

share a set J = {1, · · · , J} of orthogonal channels within

the coverage C of a road side unit (RSU), where C represents

a two-dimensional Euclidean space. The time horizon is dis-

cretized into decision epochs, each of which is of duration

δ and is indexed by an integer t ∈ N+. Each vTx always

follows the corresponding vRx with a fixed distance of ϕ and

the vRx moves in C according to a Manhattan mobility model

[11]. Denote by x
t
k = (x

(1),t
k , x

(2),t
k ) and y

t
k = (y

(1),t
k , y

(2),t
k ),

respectively, the Euclidean coordinates of the vTx and the

vRx of a VUE-pair k ∈ K during each epoch t. Depending

on whether the vTx and the vRx are in the same lane or in

perpendicular lanes, the channel model during each decision

epoch belongs to: 1) line-of-sight (LOS) – both the vTx and

the vRx are in the same lane; 2) weak-line-of-sight (WLOS) –

the vTx and the vRx are in perpendicular lanes and at least one

of them is near the intersection within a distance of ϕ0; and

otherwise, 3) none-line-of-sight (NLOS). More specifically,

the channel quality state gtk,j = νtk,j · H
t
k ∈ G experienced

by VUE-pair k over channel j ∈ J during epoch t includes

a fast fading component νtk,j of a Rayleigh distribution with

a unit scale parameter and a path loss Ht
k that applies the

model in (1) for urban areas using 5.9 GHz carrier frequency

[9], where e is the path loss coefficient while ρ and ξ are the

path loss exponents with ξ < ρ · (ϕ0/2)
e.

In order to mitigate the interference during wireless trans-

missions and maximize the channel utilization, the RSU clus-

ters2 the VUE-pairs into a set I = {1, · · · , I} of disjoint

groups based on their geographical locations, where I > 1.

The RSU allocates J channels to the I groups, while in each

group, we assume that a VUE-pair can be assigned at most one

channel and a channel can be assigned to at most one VUE-

pair. Let ut
k = (ut

k,j : j ∈ J ) denote the channel allocation

for a VUE-pair k ∈ Ki during decision epoch t, where Ki is

the set of VUE-pairs in a group i ∈ I and

ut
k,j =





1, if channel j is allocated to VUE-pair k

during decision epoch t;

0, otherwise.

(2)

Thus we have

∑

j∈J

ut
k,j ≤ 1, ∀k ∈ K, (3)

∑

k∈Ki

ut
k,j ≤ 1, ∀j ∈ J , ∀i ∈ I. (4)

1For a well defined road segment, the VUE density tends to be steady [16].
2Considering the vehicle mobility, clustering is done every T epochs [9].

At the vTx of each VUE-pair k, a data queue is maintained to

buffer the arriving packets. Let atk be the random new packet

arrivals at epoch t with average arrival rate E[atk] = λ. The

queue evolution for VUE-pair k can be expressed as

qt+1
k = max

{
qtk − rtk · 1{

∑
j∈J

ut
k,j

=1}, 0
}
+ atk, (5)

where qtk and rtk are, respectively, the queue length and the

number of packets to depart during decision epoch t, while

1{Ξ} is an indicator function that equals 1 if the condition Ξ
is satisfied and 0 otherwise. In this paper, we assume a large

enough buffer size to neglect the probability of packet drops.

The required transmit power for delivering rtk ·1{
∑

j∈J
ut
k,j

=1}
packets can be computed as

ptk =
ϑ+ w · σ2

gtk,j
·

(
2

µ·rt
k

w·δ − 1

)
· 1{ut

k,j
=1}, (6)

where ϑ is the received interference due to inter-group channel

reuse, w is the frequency bandwidth of the channels, σ2 is the

power spectral density of additive background noise, and µ is

the constant size of a data packet.

III. PROBLEM DESCRIPTION

This section formulates the problem of RRM in the consid-

ered V2V network as a discrete-time MDP with a discounted

criterion and discusses the general solution.

A. MDP Formulation

During each decision epoch t, the local state of a VUE-pair

k ∈ K can be described by s
t
k = (gt

k, (x
t
k,y

t
k), q

t
k) ∈ S =

GJ×C×Q, which includes the information of channel quality

g
t
k = (gtk,j : j ∈ J ), geographical location (xt

k,y
t
k) and queue

state qtk. We use s
t = (stk, s

t
−k) ∈ S

K to represent the global

network state, where −k denotes all the other VUE-pairs in K
without the presence of VUE-pair k. The RSU aims to design

a stationary control policy π = (π(u), π(r)), where π(u) and

π(r) are, respectively, the channel allocation policy and the

packet scheduling policy. Specifically, the RSU observes s
t

at the beginning of epoch t and accordingly, makes channel

allocation and packet scheduling decisions for the VUE-pairs,

that is, π(st) = (π(u)(s
t), π(r)(s

t)) = (ut, rt), where u
t =

(ut
k : k ∈ K) and r

t = (rtk : k ∈ K). From the assumptions on

the mobility of a VUE-pair, the packet arrivals and the queue

evolution, the randomness lying in {st : t ∈ N+} is Markovian

with the following controlled state transition probability

P
(
s
t+1|st,π

(
s
t
))

=
∏

k∈K

P
(
gt+1
k |

(
x
t+1
k ,yt+1

k

))
·

P
((
x
t+1
k ,yt+1

k

)
|
(
x
t
k,y

t
k

))
· P
(
qt+1
k |qtk,u

t
k, r

t
k

)
, (7)

where P(·) denotes the probability of an event.
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We need a cost function to tradeoff the queuing delay and

the consumed transmit power for each VUE-pair k ∈ K during

each decision epoch t, which can be chosen as

fk
(
s
t,ut

k, r
t
k

)
= φ · d

(
qtk
)
+ η · ptk, (8)

where d(qtk) = qtk/λ, while φ and η are two positive weights.

Given a control policy π and an initial global network state

s
1 = s ∈ SK , we express the expected long-term cost function

Vk(s,π) for VUE-pair k as

Vk(s,π) = (1 − γ) · Eπ

[
∞∑

t=1

(γ)t−1fk
(
s
t,ut

k, r
t
k

)
|s

]
, (9)

where γ ∈ [0, 1) is the discount factor. As a result, the delay-

power tradeoff problem, which the RSU aims to solve, can be

formally formulated as a MDP, namely, ∀s ∈ SK ,

min
π

V (s,π) =
∑

k∈K

Vk(s,π) (10)

= (1− γ) · Eπ

[
∞∑

t=1

(γ)t−1f
(
s
t,π(st)

)
|s

]

s.t. constraints (3) and (4),

where f(st,π(st)) =
∑

k∈K fk(s
t,ut

k, r
t
k) is the immediate

cost accumulated across all the VUE-pairs in the network at

a decision epoch t. V (s,π) is also named as the state value

function in state s under a policy π.

B. Optimal Solution

The problem formulated as in (10) is a typical infinite-

horizon discrete-time MDP with a discounted criterion. Denote

by π
∗ = (π∗

(u), π
∗
(r)) the optimal control policy, which can be

obtained from solving the Bellman’s equation: ∀s ∈ SK ,

V (s) = (11)

min
π(s)

{
(1− γ) · f(s,π(s)) + γ ·

∑

s
′∈SK

P(s′|s,π(s)) · V (s′)

}
,

where V (s) = V (s,π∗) is the optimal state value function and

s
′ ∈ SK is the resulting global network state at a subsequent

epoch. The conventional solutions to (11) based on the value

or policy iteration [17] require the complete knowledge of

network dynamics (7), which is challenging in practice. Let

us define the right-hand side of (11) by

Q(s,u, r) = (1− γ) · f(s,u, r)

+ γ ·
∑

s
′∈SK

P(s′|s,u, r) · V (s′), (12)

the Q-function, where u = (uk : k ∈ K) and r = (rk : k ∈ K)
are the decision makings under s with uk = (uk,j : j ∈ J ).
V (s) can then be directly obtained from

V (s) = min
u,r

Q(s,u, r). (13)

By substituting (13) back into (12), we have

Q(s,u, r) = (1− γ) · f(s,u, r)

+ γ ·
∑

s
′∈SK

P(s′|s,u, r) ·min
u

′,r′
Q(s′,u′, r′), (14)

where u
′ = (u′

k : k ∈ K) and r
′ = (r′k : k ∈ K) denote the

decision makings under s′ with u
′
k = (u′

k,j : j ∈ J ).
Using a state-action-reward-state-action (SARSA) algorithm

[17], [18], the RSU tries to learn Q(s,u, r) in a recursive

way with observations of the global network state s = s
t, the

decision making (u, r) = (ut, rt), the realized cost f(s,u, r)
at a current decision epoch t and the resulting global network

state s
′ = s

t+1, the decision making (u′, r′) = (ut+1, rt+1)
at the next epoch t+ 1. The updating rule is given by

Qt+1(s,u, r) = Qt(s,u, r)+ (15)

αt ·
(
(1− γ) · f(s,u, r) + γ ·Qt(s′,u′, r′)−Qt(s,u, r)

)
,

where αt ∈ [0, 1) is the learning rate. It has been proven that

if 1) the network state transition probability under the optimal

stationary control policy is stationary, 2)
∑∞

t=1 α
t is infinite

and
∑∞

t=1(α
t)2 is finite, and 3) all state-action pairs are visited

infinitely often (which can be satisfied by a ǫ-greedy strategy

[17]), the SARSA learning process converges and finds π
∗

[19]. However, two challenges remain as follows:

1) from the channel model applied in this work, the global

network state space SK is semi-continuous; and

2) the number ((1+J) · (1+A))K of decision makings at

the RSU grows exponentially as K increases, where A
is the maximum number of packet departures at a vTx,

i.e., atk ≤ A, ∀k ∈ K and ∀t ∈ N+.

IV. A DEEP REINFORCEMENT LEARNING APPROACH

We shall address in this section the technical challenges in

solving an optimal control policy and derive a deep reinforce-

ment learning algorithm.

A. Linear Q-function Decomposition

The centralized decisions made by the RSU are performed

by the VUE-pairs in a decentralized way. We hence propose

to linearly decompose the Q-function, that is,

Q(s,u, r) =
∑

k∈K

Qk(s,uk, rk), (16)

where Qk(s,uk, rk) is the per-VUE-pair Q-function for each

VUE-pair k ∈ K that satisfies

Qk(s,uk, rk) = (1− γ) · fk(s,uk, rk)+ (17)

γ ·
∑

s
′∈SK

P(s′|s, (uk,u−k), (rk, r−k)) ·Qk(s
′,u′

k, r
′
k),

where the optimal decision making from a VUE-pair k across

the time horizon should reflect the optimal control policy

implemented by the RSU. In other words, (u′
k, r

′
k) in (17)

under the network state s
′ follows π

∗(s′), i.e.,

π
∗(s′) = argmin

u
′,r′

∑

k∈K

Qk(s
′,u′

k, r
′
k), (18)

which minimizes the sum of per-VUE-pair Q-function values

from all VUE-pairs in the network. Two key advantages of the

decomposition approach in (16) are highlighted.

1) Simplified decision makings: The linear decomposition

motivates the RSU to let the VUE-pairs submit the local
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per-VUE-pair Q-functions of the channel allocation and

packet scheduling decisions with the global network

state observations, based on which the RSU allocates

channels and the VUE-pairs then schedule packet trans-

missions. This reduces ((1 + J) · (1 +A))K centralized

decision makings at the RSU to K · ((1 + J) · (1 +A))
decentralized decisions for all VUE-pairs.

2) Near optimality: The approach in (16) ensures a guar-

antee of approximation error of the Q-function [20].

B. Learning the Optimal Control Policy

In spite of the advantages brought by the linear decomposi-

tion approach as in (16), a new challenge, however, arises. That

is, each VUE-pair k ∈ K can only obtain a partial observation

(stk,o
t
k) of the global network state st at each decision epoch t.

In this work, we assume that when VUE-pair k was in a group

it−1
k ∈ I (i.e., k ∈ Ki

t−1

k
) during the previous decision epoch

t− 1, ot
k = (it−1

k , bt−1

i
t−1

k

,υt−1

i
t−1

k

) ∈ O includes the group index

it−1
k and the number bt−1

i
t−1

k

of VUE-pairs as well as the channel

utilization state υt−1

i
t−1

k

= (υt−1

i
t−1

k
,j
: j ∈ J ) in group it−1

k , where

υt−1

i
t−1

k
,j

equals 1 if channel j ∈ J is utilized in group it−1
k at

epoch t−1 and otherwise, 0. Note that ot
k is restricted to local

group information since the decision makings across different

groups are independent.

With the local observation (sk,ok) ∈ S × O at a current

decision epoch, we abstract the per-VUE-pair Q-function (17)

of each VUE-pair k ∈ K as [20]

Qk(s,uk, rk) ≈ Qk(sk,ok,uk, rk). (19)

The semi-continuity in S and the high dimensionality in O
make it infeasible for the conventional SARSA algorithm

(15) to learn the per-VUE-pair Q-function Qk(sk,ok,uk, rk),
∀k ∈ K. Moreover, from the assumptions made in this paper

and the definition of a cost function (8), there exists homo-

geneity in the VUE-pair behaviours. Inspired by the success of

modelling the Q-function with a deep neural network (DNN)

[12], we adopt a common double deep Q-network (DQN)

to approximate Qk(sk,ok,uk, rk) [15], [21]. On the other

hand, the accuracy of (19) from the observations can be, in

general, arbitrarily bad. As in [22], we propose to add a LSTM

layer [14] to the DQN and obtain a hybrid DNN to learn a

better control policy in a partially observable V2V network.

Specifically, let Qk(s,uk, rk) ≈ Qk(Nk,uk, rk; θ), ∀k ∈ K,

where Nk denotes a set of most recent N local observations

up to a current decision epoch (which will be specified later

in this subsection) and is taken as an input to the LSTM layer

for a more accurate prediction of s, while θ denotes a vector

of parameters associated with the hybrid DNN. Our proposed

novel LSTM based deep reinforcement learning (LSTM-DRL)

algorithm for long-term delay-power tradeoff in the considered

V2V network is illustrated in Fig. 2, during which instead of

finding the per-VUE-pair Q-function, the parameters of the

hybrid DNN can be trained centrally at the RSU.

For online training of the LSTM-DRL algorithm, at each

decision epoch t, the RSU updates the replay memoryM with
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Fig. 2. Long short-term memory (LSTM) based deep reinforcement learning
for long-term delay-power tradeoff in a vehicle-to-vehicle network (RSU: road
side unit; DQN: deep Q-network.).

the most recent M experiences {mt−M+1, · · · ,mt} with each

experience m
t−m+1 (∀m ∈ {1, · · · ,M}) being given by

m
t−m+1 =(((
s
t−m
k ,ot−m

k

)
,
(
u
t−m
k , rt−m

k

)
, fk
(
s
t−m,ut−m

k , rt−m
k

)
,(

s
t−m+1
k ,ot−m+1

k

)
,
(
u
t−m+1
k , rt−m+1

k

))
: k ∈ K

)
. (20)

Meanwhile, an observation pool N t = ∪k∈KN t
k = {nt−N+1,

· · · ,nt}, the information of which is collected from all VUE-

pairs, is kept to predict the global network state s
t at epoch

t for control policy evaluation, where n
t = {nt

k = (stk,o
t
k) :

k ∈ K}. To train the hybrid DNN parameters, the RSU first

randomly samples a mini-batch M̃t = {M̃t1, · · · ,M̃t
M̃ } of

size M̃ from Mt, where ∀m ∈ {1, · · · , M̃},

M̃tm =
{(
N tm

k ,
(
u
tm
k , rtmk

)
, fk
(
s
tm ,utm

k , rtmk
)
,

N tm+1
k ,

(
u
tm+1
k , rtm+1

k

))
: k ∈ K

}
, (21)

with N tm
k = {ntm−N+1

k , · · · ,ntm
k }. Then the set θt of param-

eters at epoch t is updated by minimizing the accumulative

loss function, which is defined as in (22), where θ
t
− is the set

of parameters of the target hybrid DNN at a certain previous

decision epoch before epoch t. The gradient is calculated as

(23). We summarize in Algorithm 1 the online training of the

proposed LSTM-DRL algorithm.

V. SIMULATION RESULTS

This section evaluates the performance from our proposed

studies through numerical simulations based on TensorFlow

[23]. We simulate a 250× 250 m2 Manhattan mobility model

with nine intersections [9], [11]. In the model, a road consists

of two lanes, each of which is in one direction and is of width

4 m. The average vehicle speed is set to be 60 km/h, and the

vehicle grouping is performed by means of spectral clustering

[11]. We list other parameter values used in simulations in

Table I. For performance comparison purpose, the following

three baseline algorithms are simulated as well.

1) Channel-Aware: At each decision epoch, the RSU allo-

cates the channels to VUE-pairs in each group based on

the channel quality states.

2) Queue-Aware: Different from the Channel-Aware algo-

rithm, the RSU allocates at each decision epoch the

channels to VUE-pairs in each group according to the

queue lengths.
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L
(
θ
t
)
=

E{((Nk,(uk,rk),fk(s,uk,rk),N ′
k
,(u′

k
,r′

k)):k∈K)∈M̃t}



(
∑

k∈K

(
(1− γ) · fk(s,uk, rk) + γ ·Qk

(
N ′

k,u
′
k, r

′
k; θ

t
−

)
−

Qk(Nk,uk, rk; θ
t)

))2

 (22)

∇θtL
(
θ
t
)
=

E{((Nk,(uk,rk),fk(s,uk,rk),N ′
k
,(u′

k
,r′

k)):k∈K)∈M̃t}




∑

k∈K

(
(1− γ) · fk(s,uk, rk) + γ ·Qk

(
N ′

k,u
′
k, r

′
k; θ

t
−

)
−

Qk(Nk,uk, rk; θ
t)

)
·

∇θt

(
∑

k∈K

Qk

(
Nk,uk, rk; θ

t
)
)




(23)

Algorithm 1 Online Training of LSTM-DRL for Long-Term

Delay-Power Tradeoff in V2V Networks

1: initialize the replay memoryMt with size M , the obser-

vation pool N t with size N , the mini-batch M̃t with size

M̃ and the decision making (ut, rt), for t = 1.

2: repeat

3: After performing (ut, rt) at epoch t, each VUE-pair

k ∈ K realizes an immediate cost fk(s
t,ut

k, r
t
k) .

4: Each VUE-pair k observes (st+1
k ,ot+1

k ) ∈ S ×O at the

next decision epoch t+ 1.

5: The RSU updates the observation poolN t with n
t+1 =

{(st+1
k ,ot+1

k ) : k ∈ K} collected from all VUE-pairs.

6: With probability ǫ, the RSU selects a decision making

(ut+1, rt+1) randomly; or with probability 1 − ǫ, the

RSU takes N t+1 as the input to the hybrid DNN with

parameters θ
t, and then determines (ut+1, rt+1) =

argminu,r
∑

k∈K Qk(N
t+1
k ,uk, rk; θ

t).
7: The RSU updates the replay memory Mt+1 with the

most recent experience m
t+1 in the form of (20).

8: With a randomly sampled mini-batch M̃t fromMt, the

RSU updates the hybrid DNN parameters θ
t with the

gradient given by (23).

9: The RSU regularly resets the target DQN with param-

eters θ
t+1
− with θ

t, and otherwise, θt
−.

10: The decision epoch index is updated by t← t+ 1.

11: until A predefined stopping condition is satisfied.

3) Random: Across the decision epochs, the RSU randomly

allocates the channels to a set of randomly picked VUE-

pairs in each group.

Implementing these baselines, the RSU schedules packets to

minimize the immediate cost for each VUE-pair.

A. Convergence Property of the Proposed Algorithm

This simulation examines the convergence property of on-

line training of our LSTM-DRL algorithm. We select K = 36
VUE-pairs with an average packet arrival rate λ = 1, and the

distance between the VTx and the vRx of each VUE-pair is

fixed to be ϕ = 20. Fig. 3 plots the loss function defined

by (22) over the learning time horizon, which validates that

the convergence needs around 3 · 104 decision epochs. Since

the training is performed centrally at the RSU, each VUE-pair

only needs to periodically update the set θ of parameters of

the LSTM-DRL algorithm with a new one from the RSU.

TABLE I
PARAMETER VALUES IN SIMULATIONS.

Parameter Value

Replay memory capacity M 5000

Mini-batch size M̃ 200

Observation pool size N 20

Path loss exponent ρ, ξ −68.5 dB, −54.5 dB

Path loss coefficient e 1.61

Distance ϕ0 15 m

Number of VUE-pair group I 10

Clustering interval T 10 epochs

Frequency bandwidth w 500 kHz

Aggregate interference ϑ 2 · 10−9 W

Noise power spectral density σ2
7.95 · 10

−21 W/Hz

Scheduling epoch duration δ 18 ms

Weights φ, η 30, 1

Data packet size µ 9 kb

Discount factor γ 0.9

Exploration probability ǫ 0.06

0 1 2 3 4

104

0

0.2

0.4

0.6

0.8

1

Fig. 3. Illustration of the convergence property of our proposed online LSTM-
DRL algorithm.

B. Performance under Various Simulation Settings

We further verify the average cost performance per VUE-

pair across the time horizon under different simulation settings.

First, we configure a networking environment as: λ = 2 and

ϕ = 20. In Fig. 4(a), we depict the realized average cost

performance versus K , which shows the average cost per

VUE-pair from all four algorithms increases as the number

of VUE-pairs increases. It is obvious that a larger number of

VUE-pairs leads to less chance of being allocated one channel.

Next, we assume there are K = 52 VUE-pairs in the network

and ϕ = 35. By increasing the value of λ, the average cost

performance per VUE-pair is shown in Fig. 4(b) With more

packets arriving into the queues, more power is consumed

for the packet transmissions in order to maintain the queue
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(a) Average cost per VUE-pair versus number of
VUE-pairs K: ϕ = 20 and λ = 2.
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(b) Average cost per VUE-pair versus average
packet arrival rate λ: K = 52 and ϕ = 35.
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(c) Average cost per VUE-pair versus VUE-pair
distance ϕ: K = 36 and λ = 1.

Fig. 4. Average cost performance per VUE-pair under various simulation settings.

stability. Hence all four algorithms exhibit worse performance.

Finally, we illustrate in Fig. 4(c) the average cost performance

per VUE-pair when the value of ϕ varies. As the distance

between the vTx and the vRx of a VUE-pair increases, the

channel quality drops. This indicates more transmit power

for transmitting the same number of packets, which conforms

what we see from the curves in Fig. 4(c). Interestingly and

importantly, in all above three simulations, our proposed

algorithm achieves the best performance, demonstrating the

feasibility of a better delay-power tradeoff, compared with the

other three baselines.

VI. CONCLUSIONS

In this paper, we put our emphasis on investigating the

RRM for an expected long-term delay-power tradeoff in a V2V

communication network. The RSU allocates channels and

schedules packet transmissions for all VUE-pairs according to

the observations of global network states over the discrete time

horizon. This kind of decision-making process straightfor-

wardly falls into the realm of a MDP. The technical challenges

in solving an optimal control policy for the MDP motivates

us to first decompose the MDP into a series of per-VUE-pair

MDPs with much simplified decision makings. To overcome

the curse of high dimensionality in state space of a per-

VUE-pair MDP, we resort to the DQN technique and propose

an online LSTM-DRL algorithm. The LSTM-DRL algorithm

enables decentralized channel allocation and packet scheduling

decisions with only partially local network state observations

from the VUE-pairs but without a priori statistics knowledge

of network dynamics. From numerical simulations, significant

gains in average cost performance from the proposed learning

algorithm can be expected.
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