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Abstract—One of the 5G promises is to provide Ultra Reliable
Low Latency Communications (URLLC) which targets an end to
end communication latency that is  1ms . The very low latency
requirement of URLLC entails a lot of work in all networking
layers. In this paper, we focus on the physical layer, and in
particular, we propose a novel formulation of the massive MIMO
uplink detection problem. We introduce an objective function
that is a sum of strictly convex and separable functions based
on decomposing the received vector into multiple vectors. Each
vector represents the contribution of one of the transmitted
symbols in the received vector. Proximal Jacobian Alternating
Direction Method of Multipliers (PJADMM) is used to solve the
new formulated problem in an iterative manner where at every
iteration all variables are updated in parallel and in a closed form
expression. The proposed algorithm provides a lower complexity
and much faster processing time compared to the conventional
MMSE detection technique and other iterative-based techniques,
especially when the number of single antenna users is close to
the number of base station (BS) antennas. This improvement
is obtained without any matrix inversion. Simulation results
demonstrate the efficacy of the proposed algorithm in reducing
detection processing time in the multi-user uplink massive MIMO
setting.

Index Terms—Masive MIMO, Proximal Jacobian ADMM,
Computational Complexity, Parallel Processing

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is one of
the most promising techniques in 5G networks due to its
potential for significant rate enhancement and energy efficiency
[1], [2]. An important requirement for the emerging URLLC
5G services is to provide low latency and fast processing time
for these services [3], especially in the multi-user massive
MIMO scenario, in which the number of users is greatly
increasing [4]. The challenge of providing the low latency
and fast processing is approached in the literature through
several aspects and at different network layers [5], [6]. For
example, in [7] edge caching and high computation edge
nodes are discussed as ways to reduce latency. In physical
layer, and in particular in the resource allocation problem,
Non Orthogonal Multiple Access (NOMA) in combination
with grant-free can be used in URLLC [8]. On the other
hand, for a waveform design problem [9] presents a choice
of suitable modulation and coding schemes, and discuss the
impact of different waveform candidates. In this paper, we
focus on the signal detection component of the receiver, in

which we propose a fast signal detection algorithm based on
parallel implementation.

Reducing the computational complexity of the detection
algorithm is very important since the less the number of
computations the algorithm needs, the faster processing time
it requires. Thus, from this perspective, to reduce the compu-
tational complexity, linear MMSE detection scheme is widely
considered, but this scheme involves matrix inversion which is
computationally costly. A truncated Neumann series expansion
can be used to approximate the matrix inversion [10]. With
sufficient large truncation order, the approximation can be very
close to real matrix inversion only in cases when the ratio
between the number of BS antennas and the number of single
antenna users is large (e.g. �16 ). However, [10] indicates
that when the ratio becomes smaller, a large truncation order
is required which makes the computational complexity more
than the exact matrix inversion operations. Similar other ideas
are presented in [11] focusing on how to reduce the complexity
of the matrix inversion, but they suffer from the deficiency of
deteriorated performance and increased computations as the
number of single antenna users increases [11].

Another approach is based on iterative methods to reduce
computational complexity. The iterations are implemented to
transform the matrix inversion problem of MMSE matrix into
solving linear equations [12], [13]. The iterative methods can
also be used in a context other than finding the inversion of the
MMSE matrix, such as [14], [15], where the detection problem
is formulated as a convex optimization problem that can be
solved in an iterative manner using alternating minimization
techniques or quadratic programming techniques.

The above two approaches experience long waiting delay,
especially in the case of a large number of users. For instance,
the information symbol belongs to the last user in the received
signal vector needs to wait until all previous symbols pertaining
to all other users are detected [12]. This successive detection
manner makes the detection scheme time inefficient. Besides,
this is not efficient for hardware implementation [16].

Due to the increased interest for dealing with big data and
large scale problems such as the problem at hand, parallel
and distributed computational methods are highly desirable for
faster processing time. Alternating Direction Method of Mul-
tipliers (ADMM), as a versatile algorithmic tool, has proven
to be very effective at solving many large-scale problems and



well suited for distributed computing [17]. In this paper, we,
first, we use our propose a novel formulation of the uplink
massive MIMO detection problem in [18] in such a way that
it fits the ADMM formulation. In particular, we introduce
an objective function that is a sum of strictly convex and
separable functions based on decomposing the received vector
into multiple vectors. Each vector represents the contribution of
one of the transmitted symbols in the received vector. Second,
we use the Proximal Jacobian Alternating Direction Method
of Multipliers (PJADMM) [17] to solve the new formulated
problem in an iterative manner such that in every iteration
all variables are updated in parallel and in a closed form
expression, without requiring any matrix inversion. Therefore,
at every time instance, information symbols of all users are
updated in parallel at the receiver. This in turn provides much
faster processing time compared to the conventional MMSE
detection techniques, and also compared to the other iterative-
based techniques, especially when the number of users (each
with a single antenna) is close to the number of base station
(BS) antennas. Note, unlike the existing techniques such as in
[16], our proposed algorithm does not try to parallelize existing
MMSE detection problem, instead it develops the parallel
implementation of the detection problem based on a unique
formulation of the maximum likelihood optimization problem
combined with the application of PJADMM technique. In the
end, our objective is to reach the exact MMSE performance but
with a faster processing time. Simulation results demonstrate
the efficacy of the proposed algorithm in the multi-user uplink
massive MIMO setting.

The remainder of this paper is organized as follows. In
Section II, the system model and problem formulation are
described. Section III contains the proposed algorithm, and
section IV presents simulation results, and finally the paper
is concluded with a short summary.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider the uplink data detection in a multi-user massive
MIMO system with Nr BS antennas and Nt users each with
a single antenna. The vector x̃ = (x1, x2, . . . , xNt)

T 2 CNt⇥1

represents the complex transmitted signal, where xk is the
transmitted symbol for user k with E|xi|2 = 1, 8i. Each user
transmits symbols over a flat fading channels and the signals
are demodulated and sampled at the receiver. The vector ỹ =
(y1, y2, . . . , yNr )

T 2 CNr⇥1 represents the complex received
signal. The channel matrix H̃ 2 CNr⇥Nt can be represented
as (h1, h2, . . . , hNt), where hi = (h1,i, h2,i, ..., hNr,i)

T 2
CNr⇥1, and hm,n is the complex flat fading channel gain
from transmit antenna n to the receive antenna m, with
hm,n ⇠ CN (0, 1). The system can be modeled as:

ỹ = H̃x̃ + ṽ (1)

where ṽ = (v1, v2, , vNr )
T 2 CNr⇥Nt is the complex additive

white Gaussian noise (AWGN) vector whose elements are
mutually independent with zero mean and variance �

2
v . The

corresponding real-valued system model is y = Hx + v [19].

The equivalent ML detection problem of the real model can
be written in the form bx = argmin

x2�2Nt

k y � Hx k22, where

� = 1
�{�

p
M + 1, ..,�1, 1, ...,

p
M � 1}, M is the QAM

constellation size, and 1
� the normalization factor.

B. Problem Formulation

First, we decompose the received vector y into a linear
combination of vectors so that y =

P2Nt

i=1 yi, where yi
represents the contribution of the i-th transmitted symbol in
the received vector. The element wise representation of the
decomposed received vector is:
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The k-th element of y can be represented as y(k) =
P2Nt

i=1 y
(k)
i ,

k = 1, . . . , 2Nr. Let hi the i

th column of the real channel
matrix H. Now, we relax the non-convexity constraint on the
feasible set �, and approximate the ML problem based on the
above decomposition as follows:

min
xi,yi

2NtX

i=1

k yi � hixi k22 (2)

subject to
2NtX

i=1

yi
(k) = y

(k)
, 8k = 1, · · · , 2Nr (3)

�l  xi  l, 8i = 1, · · · , 2Nt (4)

where l = 1
� (

p
M � 1). The objective function in (2) is a sum

of separable terms, each of which is a function of only one
symbol and its contribution in the received vector. In the next
section, we use AltMin to solve the proposed formulation.

C. K.K.T Conditions

The problem in (2)-(4) is a convex optimization problem
with linear constraints, so the K.K.T. conditions are sufficient
and necessary for the optimal solution.The Lagrangian function
for (2)-(4) is defined as follows:

L =
2NtX

i=1

k yi � hixi k22 +
2NrX

k=1

�

k(y(k) �
2NtX

i=1

yi
(k))

+
2NtX

i=1

�
µ

(i)
1 (l � xi) + µ

(i)
2 (l + xi)

�
(5)

Then, the following K.K.T. conditions, which are sufficient
and necessary for the optimal solution to the convex opti-
mization problem in (2)-(4), are obtained from the Lagrangian
function:
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(i)
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µ

(i)
2 (l + xi) = 0, 8i (10)

In order to solve K.K.T. conditions to find the optimal
solution in a closed form expression, high complexity com-
putations are required. Therefore, in the next section, we
develop our iterative algorithm based on the PJADMM in
which all variables are updated in a closed form expression
per iteration. That is, transmitted symbols of different users
and their corresponding contributions to the received vector
are updated in parallel.

III. PROPOSED ALGORITHM BASED ON PROXIMAL
JACOBIAN ADMM

In Proximal Jacobian ADMM all blocks of the variables are
updated in parallel. Proximal Jacobian ADMM was shown to
enjoy a global convergence with convergence rate of o(1/t)
[17]. One difference of Proximal Jacobian compared to Gauss
Seidel ADMM is that the term ⌧

2

P2Nt

i=1 (xi � xi
(t�1))2 + ⌧

2 k
yi � yi(t�1) k22 is added in the augmented Lagrangian. Hence,
at every iteration, the primal variables, yi, xi 8i, are updated
as follows:

xi, yi = argmin
xi,yi

L⇢,⌧

�
xi, yi, (x

(t�1)
j , y(t�1)

j )8j 6= i,�

(t�1)
�

(11)
In order to update x, the following optimization problem is
solved.

xi, yi = argmin
xi,yi

k yi � hixi k22 �
2NrX
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(y(k)i � y

(k)
i

(t�1)
)2 (12)

subject to
�l  xi  l (13)

To solve this problem, we first write the corresponding
Lagrangian function of (12)-(13) which is:

eq(12) + µ

(i)
1 (l � xi) + µ

(i)
2 (l + xi) (14)

Now, we take the derivative of (14) with respect to variables
xi, yi and set it to zero, for different combinations of µ(i)

1 and
µ

(i)
2 , we get:
• µ

(i)
1 = 0, and µ

(i)
2 = 0. Therefore,
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• µ

(i)
1 = 0, and µ

(i)
2 6= 0. Therefore,

xi = �l (16)

• µ

(i)
1 6= 0, and µ

(i)
2 = 0. Therefore,

xi = l (17)

There is still one more case in which µ

(i)
1 and µ

(i)
2 both are

not equal to zero, but it is void because xi cannot be equal to
1 and -1 at the same time. Next, the update of yi is as follows:

y
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) + ⌧y

(k)
i

(t�1)⌘
, 8k (18)

The ideal case is to choose xi based on the above combi-
nations of µ

(i)
1 and µ

(i)
2 such that it minimizes the objective

function (12). However, since we perform hard quantization
for detecting symbols, Eq(15) is enough. Finally, each dual
variable �

(k)8k is updated as follows:

�

(k)(t) = �

(k)(t�1)
+ ⇢(y(k)

(t)
�

2NtX

i=1

y

(k)
i

(t)
), 8k (19)

The PJADMM algorithm is outlined in Algorithm 1. It is
clear from (15)-(19) that at every iteration, t, the elment x(t)

i

depends on y(t)
i , x

(t�1)
i , x

(t�1)
j , 8j 6= i, y(t�1)

j , 8j 6= i and
�

(k)(t�1)8k. Therefore, it depends on the symbols’ values of
the previous iteration and their contribution to the received
vector, and not on the current iteration values. The same is
also true for the updates of yi, and �

(k). This facilitates the
implementation of the parallel processing at the receiver per
every iteration, as shown in Algorithm 1

Note that we do not discuss the optimality of the proposed
algorithm, in this paper, because the optimality of PJADMM
was proven in [17] when the objective function is a sum of
strictly convex separable functions, which is the case in our



Algorithm 1 Proximal Jacobian ADMM

1: Input: H, y, ⇢, ⌧
2: Output: xi, yi, 8i
3: Initilization: xi = 0, yi = 0, 8i,� k = 0, 8k
4: � = convergence tolerance
5: T = Maximum number of iterations
6: Proximal Jacobian ADMM:
7: repeat
8: t t+ 1
9: Parallel Processing

10: use (15) to update xi8i
11: use (18) to update yi8i
12: use (19) to update �

(k), 8k
13: V

(t) =
P2Nt

i=1 k yi � hixi k22
14: until |V (t) � V

(t�1)| < � OR t > T

objective function.

Complexity analysis of the proposed algorithm
We evaluate the computational complexity of the proposed

algorithm based on the number of multiplication operations
needed to detect the transmitted symbol vector. We adopt the
number of real-valued multiplications for the analysis of the
computational complexity as in [13], and [11]. The overall
computational complexity of the PJADMM based algorithm
consists of two parts: the first part, which is independent of
the number of iterations, is needed to be performed once
such as the multiplications operations of

P2Nr

k=1 h
(k)
i , and

the second part, which is iteration dependent, is need to be
repeated in every iteration, such as the multiplication operation
of

P2Nr

k=1 h
(k)
i y

(k)
i

(t�1)
. There is no computations required to

perform initialization as the initial values of xi and y can be
all zeros.

Based on (15)-(19), the iteration independent computations
requires 4Nr real-valued multiplications, and the iteration
dependent requires T (14Nr+2Nt) real-valued multiplications.
As it is shown in the next section, the number of iteration, T ,
depends on the number of uplink user antennas, Nt. Therefore,
based on the parallel implementation of PJ ADMM, the number
of time units required to process the detection of one element
x̂i is:

#of time units = 4Nr + T (14Nr + 2Nt) (20)

and since all elements of the received vector (xi, 8i ) are
processed in parallel, the total processing time for detecting
one received vector is the same as that needed for detecting
one element.

IV. NUMERICAL RESULTS

To evaluate the performance of the proposed algorithm we
implemented several simulation experiments for the uplink
massive MIMO system in a block flat fading channel. We
assume perfect knowledge of the channel state information
at the receiver and uncoded QPSK modulations for demon-
stration, however the proposed algorithm can be extended for
higher QAM modulations with coded cases. The aim of the
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Fig. 1: BER performance versus # of Iterations of the PJADMM
based Algorithm for different massive MIMO configurations at
SNR = 12 dB

simulation in this section is to show that the bit error rate
(BER) performance of the proposed algorithm can achieve
the performance of the exact MMSE technique (which is
the benchmark [20]) at various number of users with faster
processing time.

Regarding a comparison with other state of the art work, it
is important to note that, all previous works such as [10], [12],
[13], [16], assume the MMSE matrix (W = HHH + �

2INt )
is a diagonal dominant matrix. This can be an acceptable
assumption when the number of BS antennas is an order of
magnitude more than the number of users. Therefore, the
proposed algorithm in this paper is a versatile in the sense
that it can provide the same performance of the exact MMSE
performance at any number of users, in addition, to providing
fast processing time.

In the first simulation experiment, we studied the BER
performance of our algorithm compared to the MMSE at
various number of iterations and at fixed SNR value. The
number of iterations T changes with a step size 2. The BER of
various massive MIMO configurations are studied at SNR =
12 dB. Fig. 1 shows BER performance versus maximum
number of iterations for the following MIMO configurations
16⇥ 128, 32⇥ 128, 64⇥ 128. The MMSE performance is also
shown in the same figure to examine the number of iterations
required by the algorithm to reach MMSE performance. It can
be seen from the figure that the larger the ratio between Nr and
Nt the smaller the number of iterations required. The 16⇥128
configuration requires 12, while the 64 ⇥ 128 configuration
requires 40 iterations to reach MMSE performance.

Next, we use the number of iterations obtained in the
pervious simulation to study the BER performance of our
proposed algorithm compared to the exact MMSE performance
at various SNR values. Similar to the configuration above, the
number of BS antennas is kept at 128, while the number of
single antenna users can vary such that Nt  Nr, as depicted
in Fig. 2. It can be clearly observed that the performance
of our proposed algorithm matches that of the AltMin tech-
nique [14] and the exact MMSE. Note, although the AltMin
algorithm requires less iterations in each MIMO configuration,
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Fig. 2: BER performance of PJADMM based Algorithm at various
massive MIMO configurations

the proposed algorithm has the advantage of parallel detection
implementations, i.e. it can provide lower latency.

The next simulation experiment is used to emphasize the
processing time of the proposed algorithm with its parallel
implementation compared to the MMSE bench mark and also
compared to a previous iterative techniques such as [14]. The
comparison is made in terms of the number of time units
required to process a one received vector. We define the
number of time units as the number of computations required,
which is basically a function of the number of real-valued
multiplication operations and also the number of iterations.The
comparison is also based on the fact that all techniques have
the same BER performance. Note, the aim of this paper is not
to compare the performance of the proposed algorithm with
other techniques such as those in [11]-[13] because we prove
that it achieves the exact MMSE performance as depicted in
Fig. 2. However, we aim to provide a parallel implementation
of the detection process using PJADMM that was not done in
[11]-[13]. Table I, shows clearly how the proposed algorithm
requires much less processing time compared to both the
exact MMSE technique and the AltMin technique that has
a successive symbol detection implementation. At a smaller
number of users (i.e. the ratio between Nr and Nt is large) such
as 16, the PJADMM based algorithm can provide a processing
time that is two times faster than the exact MMSE and 10
times faster than AltMin. As Nt increases with fixed Nr, the
advantage of the proposed algorithm is of orders of magnitude
faster. For example, at Nt = 64, it performs 18 times faster
than AltMin and 28 times faster than exact MMSE.

TABLE I: The number of time units (⇥ 104) required to
process one received vector at SNR = 12 dB

Nt=16 Nt=32 Nt=64 Nt=128

MMSE 5.7 31.1 219.5 1697

AltMin[14] 20 40.9 140.9 281.8

PJADMM 2.24 3.39 7.73 10.3

V. CONCLUSION AND FUTURE WORK

This paper presented a novel reformulation for the ML
problem in such a way that it suits PJADMM optimization tool.
The PJADMM technique is used to solve the new formulated
problem in an iterative manner such that in every iteration
all variables are updated in parallel and in a closed form
expression, without a need for any matrix inversion. This
provides much faster processing time compared to the exact
MMSE and the other iterative-based techniques, especially
when the number of single antenna users is close to the number
of base station (BS) antennas.

REFERENCES

[1] F. Boccardi, R. W. Heath Jr, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five Disruptive Technology Directions for 5G,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 74–80, 2014.

[2] T. Van Chien and E. Björnson, “Massive mimo communications,” in 5G
Mobile Communications. Springer, 2017, pp. 77–116.

[3] M. Bennis, M. Debbah, and H. V. Poor, “Ultra-reliable and low-
latency wireless communication: Tail, risk and scale,” arXiv preprint
arXiv:1801.01270, 2018.

[4] Z. Li, M. A. Uusitalo, H. Shariatmadari, and B. Singh, “5g urllc: Design
challenges and system concepts,” in 2018 15th International Symposium
on Wireless Communication Systems (ISWCS). IEEE, 2018, pp. 1–6.

[5] A. Anand and G. de Veciana, “Resource allocation and harq op-
timization for urllc traffic in 5g wireless networks,” arXiv preprint
arXiv:1804.09201, 2018.

[6] A. Shapin, K. Kittichokechar, N. Andgart, M. Sundberg, and G. Wik-
ström, “Physical layer performance for low latency and high reliability in
5g,” in 2018 15th International Symposium on Wireless Communication
Systems (ISWCS). IEEE, 2018, pp. 1–6.
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