
1

Gilsoo Lee†, Walid Saad†, and Mehdi Bennis‡
† Wireless@VT, Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, USA,

Emails: {gilsoolee,walids}@vt.edu.
‡ Centre for Wireless Communications, University of Oulu, Finland, Email: bennis@ee.oulu.fi.

Abstract—Fog computing is seen as a promising approach
to perform distributed, low-latency computation for supporting
Internet of Things applications. However, due to the unpre-
dictable arrival of available neighboring fog nodes, the dynamic
formation of a fog network can be challenging. In essence, a given
fog node must smartly select the set of neighboring fog nodes
that can provide low-latency computations. In this paper, this
problem of fog network formation and task distribution is studied
considering a hybrid cloud-fog architecture. The goal of the
proposed framework is to minimize the maximum computational
latency by enabling a given fog node to form a suitable fog
network, under uncertainty on the arrival process of neighboring
fog nodes. To solve this problem, a novel approach based on the
online secretary framework is proposed. To find the desired set
of neighboring fog nodes, an online algorithm is developed to
enable a task initiating fog node to decide on which other nodes
can be used as part of its fog network, to offload computational
tasks, without knowing any prior information on the future
arrivals of those other nodes. Simulation results show that the
proposed online algorithm can successfully select an optimal set
of neighboring fog nodes while achieving a latency that is as
small as the one resulting from an ideal, offline scheme that
has complete knowledge of the system. The results also show
how, using the proposed approach, the computational tasks can
be properly distributed between the fog network and a remote
cloud server.

I. INTRODUCTION

The Internet of Things (IoT) is expected to connect over 50

billion things worldwide, by 2020 [1]. To handle such massive

and diverse data traffic, there is a need for distributed compu-

tation which can be effectively handled using the so-called fog

computing paradigm [1]. Fog computing allows overcoming

the limitations of centralized cloud computation, by enabling

distributed, low-latency computation at the network edge,

for supporting IoT applications. The advantages of the fog

architecture comes from the transfer of the network functions

to the network edge. Indeed, significant amounts of data can

be stored, controlled, and computed over the fog networks that

are configured and managed by end-user nodes [2]. However,

to reap the benefits of fog networks many architectural and

operational challenges must be addressed [3]–[9].

To configure a fog network, the authors in [3] propose

the use of a device-to-device (D2D)-based network that can

efficiently support networking between a fog node and sen-

sors. When tasks must be computed in a distributed way,

there is a need for resource sharing between fog nodes. For

instance, the work in [4] proposes a task allocation approach

This research been supported by the U.S. National Science Foundation
under Grant CNS-1460333 and the Academy of Finland CARMA project.

that minimizes the overall task completion time by using

a multidimensional auction. Moreover, the authors in [5]

study the delay minimization problem in multilayer scenario

with both fog and cloud, in which each layer’s node has a

different delay. Also, the authors in [6] investigate the problem

of minimizing the aggregate cloud fronthaul and wireless

transmission latency. In [7], a task scheduling algorithm is

proposed to jointly optimize the radio and computing re-

sources with the goal of reducing the energy consumption

of users while satisfying the delay constraint. The problem

of optimizing power consumption is also considered in [8]

subject to the delay constraint using a queueing-theoretic

delay model at the cloud. Moreover, the work in [9] studies

the power consumption minimization problem in an online

scenario for which future arrivals of tasks is uncertain.

In all of these existing task distribution fog works [4]–[8], it

is generally assumed that information on the formation of the

fog network is completely known. However, in practice, the

fog network can be spontaneously initiated by a fog node

when other neighboring fog nodes start to dynamically join

and leave the network. Hence, the presence of a neighboring

fog node can be uncertain. Indeed, it is challenging for a fog

node to know when and where another fog node will arrive.

Thus, there exists an inherent uncertainty stemming from

the unknown locations and availability of fog nodes. Further,

most of the existing works [5]–[7] typically assume a simple

transmission or computational latency model for a fog node.

In contrast, the use of a queueing-theoretic model for both

transmission and computational latency is necessary to capture

the realistic latency. Consequently, unlike the existing litera-

ture [4]–[8] which assumes full information knowledge for

fog network formation and rely on simple delay models, our

goal is to design an online approach to enable an on-the-fly

information of the fog network, under uncertainty, while min-

imizing computational latency, given a realistic delay model.

The main contribution of this paper is a novel framework for

online fog network formation and task distribution in a hybrid

fog-cloud network. This framework allows any given fog

node to dynamically construct a fog network by selecting the

most suitable set of neighboring fog nodes in the presence of

uncertainty on the arrival order of neighboring fog nodes. This

fog node can jointly use its fog network as well as a distant

cloud server to compute a number of tasks. We formulate an

online optimization problem whose objective is to minimize

the maximum computational latency of all fog nodes by

An Online Secretary Framework for Fog Network
Formation with Minimal Latency

2

Fig. 1: System model of the fog networking architecture with cloud.

properly selecting the set of fog nodes to which computations

will be offloaded while also properly distributing the tasks

among those fog nodes and the cloud. To solve this problem

without any prior information on the future arrivals of fog

nodes and their performance, we propose a new approach

based on the exploration and exploitation structures from the

online k-secretary framework [10]. By using the algorithm,

a given fog node can observe the unknown environment in

the exploration stage. Then, in the exploitation stage, the fog

node can determine how to offload its computational tasks

between other, local fog nodes and a cloud server. Simulation

results show that the proposed online algorithm can minimize

the maximum latency by suitably distributing tasks across fog

nodes and a cloud server while achieving a performance that

is near-optimal compared to an offline solution that has full

information on all neighboring fog node arrivals.

The rest of this paper is organized as follows. In Section II,

the system model is presented. In Section III, we formulate the

proposed online problem. Section IV presents our proposed

online solution. Simulation results are analyzed in Section V

while conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider a fog network consisting of a sensor layer, a fog

layer, and a cloud layer as shown in Fig. 1. In this system,

the sensor layer includes smart and small-sized IoT sensors

that do not have enough computational capability. Thus, these

sensors offload their task data to the fog and cloud layers for

remote distributed computing purposes. We assume that the

various kinds of sensors send their task data to a fog node i,
and the size of this data will be xi packets per second. Here,

fog node i assumes the roles of collecting, storing, controlling,

and processing the task data from the sensor layer, as is typical

in practical fog networking scenarios [2].

In our architecture, fog node i must cooperate with other

neighboring fog nodes and the cloud data center. It is assumed

that there is a set N of N fog nodes. For a given fog node i,
we focus on the fog computing case in which fog node i builds

a network with a set J ⊂ N of J neighboring fog nodes.

Also, since the cloud is typically located at a remote location,

fog node i must access the cloud via wireless communication

links using a cellular base station c.

When fog node i receives xi tasks, each node on a fog-cloud

network will locally compute a fraction of xi that is received

from the initial fog node i. The fraction of tasks locally

computed by fog node i will be given by λi = αixi. Then,

the number of tasks offloaded from fog node i to fog node

j ∈ J will be λij = αijxi. Therefore, the number of tasks

processed at the fog layer will be λf = (αi +
∑

j∈J αij)xi.

The number of remaining tasks that are offloaded to the cloud

will be λc = αcxi. When fog node i makes a decision on the

distribution of all input tasks xi, the task distribution variables

can be represented as vector α = [αi, αc, αi1,· · ·, αij ,· · ·, αiJ]
with

∑
j∈Jαij+αi+αc=1where αi, αij , αc∈ [0, 1]. Naturally,

the total number of tasks that arrive at fog node i is equal to

the number of tasks assigned to computation nodes in the fog

and cloud layers. Since xi is the sum of packets from various

sensors, it is assumed that xi follows a Poisson arrival process

[8]. When the tasks are distributed according to αi, αc, and

αij , j ∈ J , the tasks offloaded to each node λi, λc, and

λij , j ∈J , will also follow a Poisson process while the task

are scheduled in a round robin fashion [11].

When the tasks arrive from the sensors to fog node i,
they are first saved in fog node i’s storage. Thus, there is

a waiting delay before tasks are transmitted and distributed to

another node. The delays related to the transmission from i to

c or j can be modeled using a transmission queue. Moreover,

when the tasks arrive at the destination, the latency required

to perform the actual computations will be captured by a

computation queue. In Fig. 1, we show examples of both type

of queues. For instance, for transmission queues, fog node i
has transmission queues for each fog node j and the cloud

c. For computation, each fog node has a computation queue.

To model the transmission queue, we assume that tasks are

transmitted to fog node j over a wireless channel. Then, if a

task has a size of K bits, the service rate can be defined by

μij =
1

K
Blog2

(
1 +

gijPtx,i

BN0

)
, (1)

where gij = β1d
−β2

ij is the channel gain between fog nodes i
andjwith dij being the distance between them. β1 and β2 are,

respectively, the path loss exponent and path loss constant.

Ptx,i is the transmission power of fog node i, B is the band-

width of the channel, andN0 is the noise power spectral den-

sity. Since the tasks arrive according to a Poisson process, and

the transmission time in (1) is deterministic, the latency of the

transmission queue can be modeled as an M/D/1 system [11]:

Tj(αij) =
λij

2μij(μij − λij)
+

1

μij
, (2)

where the first term is the waiting time in the queue at fog

node i, and the second term is the transmission delay between

fog nodes i and j. Similarly, when the tasks are offloaded to

the cloud, the transmission queue delay will be:

Tc(αc) =
λc

2μc(μc − λc)
+

1

μc
, (3)

where the service rate μc between fog node i and cloud c is

given by (1) where fog node j is replaced with cloud c.

3

Next, we define the computation queue. When a fog node

needs to compute a task, this task will experience a waiting

time in the computation queue of this fog node due to a

previous task that is being currently processed. Since a fog

node j receives tasks from not only fog node i but also

other fog nodes and sensors, the task arrival process can be

reasonably approximated by a Poisson process by applying

the Kleinrock approximation [11]. Therefore, the computation

queue can be modeled as an M/D/1 and the corresponding

latency of the fog node j’s computation can be given by

Sj(αij) =
λij

2μj(μj − λij)
+

1

μj
+ dj , (4)

where the first term is the waiting delay in the computation

queue, and the second term is the delay for fetching the proper

application that is needed to compute the task. The delay

of this fetching procedure depends on the performance of

the node’s hardware which is a deterministic constant that

determines the service time of the computation queue. In

the first and second terms, μj is a parameter related to the

overall hardware performance of fog node j. dj = cjλij is

the actual computation time of the task where cj is a constant

time incurred to compute a task. For example, 1/cj can be

proportional to the CPU clock frequency of fog node j. Then,

when fog node i locally computes its assigned tasks λi, the

latency can will be:

Si(αi) =
λi

2μi(μi − λi)
+

1

μi
+ di, (5)

where μi is the hardware performance of fog node i and di =
ciλi is fog node i’s computing time.To model the computation

time at the cloud, since the cloud has superior hardware

performance compared to the fog node’s hardware, the waiting

time at the computation queue can be ignored. This implies

that the cloud initiates the computation for the received tasks

without having queueing delay; thus, we only account for the

actual computing delay. Thus, when tasks are computed by

the cloud, the computing delay at the cloud can be defined by

Sc(αc) = dc, (6)
where dc = ccλc.

In essence, if a task is routed to cloud c, the latency will be

Dc(αc) = Tc(αc) + Sc(αc). (7)

Also, if a task is offloaded to fog node j, then the latency can

be presented by the sum of the transmission and computation

queueing delays:

Dj(αij) = Tj(αij) + Sj(αij). (8)

Furthermore, when fog node i computes the tasks locally, the

latency is given by
Di(αi) = Si(αi), (9)

since no transmission queue is necessary for local computing.

III. PROBLEM FORMULATION

Given the defined system model, our goal is to form

a fog network and to effectively distribute tasks. To form

a fog network and offload its tasks, a fog node i must

opportunistically find neighboring fog nodes. In practice, such

neighbors will dynamically arrive and leave the system. As

a result, the initial fog node i will be unable to know a

priori whether an adjacent fog node will be available to assist

with its computation. Moreover, since the total number of

neighboring fog nodes as well as their locations are unknown

and highly unpredictable, optimizing the fog network forma-

tion and task distribution processes becomes a challenging

problem. Under such uncertainty, selecting neighboring fog

nodes must also account for potential arrival of new fog nodes

that can potentially provide a higher data rate and stronger

computational capabilities. To cope with the uncertainty of

the neighboring fog node arrivals while considering the data

rate and computing capability of current and future fog nodes,

we introduce an online optimization scheme that can handle

the problem of fog network formation and task distribution

under uncertainty.

First, we formulate the following online fog network forma-

tion and task distribution problem whose goal is to minimize

the maximum latency when computing a task that arrives at

fog node i:
min
J ,α

max (Di(αi), Dc(αc), Dj∈J (αij)) + η(J + 1), (10)

s.t. αi + αc +
∑

j∈J αij = 1, (11)

αi ∈ [0, 1], αc ∈ [0, 1], (12)

αij ∈ [0, 1], ∀j ∈ J ⊂ N , (13)

where η is the time cost for creating and managing the

transmission queues for the various neighboring fog nodes

and the cloud. For example, when fog node i manages one

queue for the cloud and J queues for the fog nodes, η(J +1)
will capture the additional time cost at fog node i. In essence,

in problem (10), the objective function is the sum of the

maximum latency among different computation nodes and the

time cost that increases with the number of nodes in the fog

network. We determine the set of neighboring fog nodes J
when they arrive online and the task distribution vector α so

that the computing latency is minimized.

In (10), while the maximum number of neighboring fog

nodes can be pre-determined by fog node i, we assume that

fog nodes arrive in an online and arbitrary manner. This

implies that the information about each fog node is collected

sequentially. For example, a smartphone can choose to become

a fog node spontaneously if it wants to share its resources.

Such case shows how the initial fog node i that manages

the fog network and distributes tasks is unable to know any

information on future fog nodes. Therefore, in our problem,

the arrival order can be represented by an index n ∈ N . At

each arrival event, the arrival order n increases by one; thus,

index n can be seen as the time order of arrival. When fog

node n arrives, we know the information of only fog node n.

In our model, whenever fog node n appears in the network,

fog node i must decide whether to select n or not. If fog node

n is chosen, then it is indexed by j and included in the set J
which is a subset of N . Otherwise, fog node i will no longer

be able to select fog node n since the latter can join another

4

fog network or terminate its resource sharing offer to fog node

i. Under such incomplete information, finding the optimal

solution of (10) is challenging and, as such, one has to seek an

online, sub-optimal solution that is robust to uncertainty. Next,

we develop an online algorithm to solve (10) and optimize the

fog network formation and task distribution problems.

IV. ONLINE SECRETARY PROBLEM FOR

FOG NETWORK FORMATION
To solve (10), we need to find the set of neighboring fog

nodes J and the task distribution vector α that minimize the

maximum latency. The decision about J faces two primary

challenges: how many fog nodes are required in the fog

network and which fog nodes join the fog network. Finding

the optimal J in an online scenario can be challenging, so we

relax the complexity of the problem by fixing the maximum

number of neighboring fog nodes. Fog node i can at most

support a certain number of neighbors due to various resource

limiations, e.g., limited memory or storage size. Then, our

online algorithm can make a decision on which fog nodes

are chosen in J . Also, if set J is determined, optimizing the

task distribution vector α becomes an offline optimization;

thus, the problem can be minimized by using an effective

optimization method such as the interior-point algorithm.

We can first observe that the first term in the objective

function (10) decreases as the number of neighboring fog

nodes increases since distributed computing can reduce la-

tency. However, the value of (10) can increase if the wireless

latency increases. Also, (10) can increase if the number of fog

nodes becomes too large. For instance, the time cost required

to manage the fog networking can limit the number of fog

computing nodes. Thus, there is a tradeoff between the latency

of distributed computation and the time cost of managing

multiple queues when using more number of neighboring fog

nodes. By considering this tradeoff, we assume that a practical

size of distributed computing networks is predetermined and

given as parameter J in our algorithm.

We can first observe a property when the number of

neighboring fog nodes is given.

Proposition 1. For a given J , if there exists α such that D =
Di(αi) = Dc(αc) = Dj(αij), ∀j ∈ J where D is a constant,
task distribution α is the optimal solution of problem (10).
Proof. Let call α as the initial distribution, and assume that

any other task distribution α′ different from α is the optimal

distribution. When α′ is considered, we can find a certain

node denoted by A satisfying α′
A < αA where α′

A ∈ α′

and αA ∈ α. This then yields DA(α
′
A) < DA(αA). Due

to the constraint (11), there exists another node B such that

B �= A, α′
B > αB , and DB(α

′
B) > DB(αB) where α′

B ∈ α′

and αB ∈ α. Since DB(α
′
B) > DB(αB) = DA(αA) >

DA(α
′
A), we must decrease α′

B to minimize the maximum,

i.e., DB(α
′
B). Hence, we can clearly see that α′ is not

optimal, and, thus, initial distribution α is optimal.

Since the optimal task distribution results in an equal latency

at different nodes, if the maximum number of neighboring fog

Algorithm 1 Online Fog Network Formation Algorithm

1 : Input: τ , J , and μi.
2 : Measure μc.

Exploration
3 : while |T | < τ
4 : Wait arrival of fog node n.
5 : Measure μin and μn.
6 : T ← T ∪ {μin + μn}.
7 : end while

Exploitation
8 : while |J | < J
9 : Wait arrival of fog node n.
10: Measure μin and μn. Find t∗ = max T .
11: if μij + μj > t∗
12: J ← J + {n}.
13: T ← T \ t∗.
14: Solve (14) to find distribution α
15: end if
16: end while

nodes J is determined, the problem can be reduced to choos-

ing the neighboring fog node j that can minimize latency Dj .

Due to the fact that Dj in (8) can decrease when μij and μj

increase, the problem of selecting the best fog nodes can then

be written as:
max
J

∑
j∈J

(μij + μj) . (14)

This problem implies that our proposed solution must select

the J fog nodes whose data rate and computational capability

are larger than those of the N − J fog nodes when the

information about the neighboring fog nodes are known to

fog node i in an online way. To find J , we propose an online

algorithm that builds on the so-called k-secretary problem that

is introduced in [10]. In this problem, when there are k job

positions, a company interviews N candidates sequentially

in a random order. Right after finishing the interview, the

company has to make a decision whether to accept the

candidate or not, given that the company will not be able to

recall a candidate later once this candidate has been rejected.

Clearly, there is a direct analogy between our problem and

the secretary problem as we seek to find J neighboring

fog devices which corresponds to filling k job positions.

Therefore, by modifying this online secretary framework, we

propose Algorithm 1 to find J and α.

Algorithm 1 sequentially optimizes the network formation

problem by determining J and minimize the latency by

determining the task distribution vector α when the size

of fog networking is given by J . The parameter J can be

determined by trial and error. For example, we can set an

upper and lower bounds of J and use a bisection method to

choose J such that the total cost is close to optimal and the

latency is minimized. Then, Algorithm 1 learns the uncertain

environment of the online setting and determines J during

exploration and exploitation stages, respectively. Once the fog

network is determined, the distribution α of the tasks can be

found in an offline manner using the interior point method.

In Algorithm 1, we need parameter τ that indicates the

number of observations needed to learn the environment. First,

we observe τ fog nodes that arrive sequentially, using which

5

μ

μ

μ

μ

Fig. 2: The value of the objective function for different data rate of
neighboring fog nodes in an offline setting.

it is possible to build an observation set T that consists of the

observed values of μin + μn. This observation procedure is

called the exploration stage, and it provides the thresholds that

can be used to make a decision in the subsequent exploitation

stage. Therefore, through the exploration stage, we can have

information on the uncertain neighboring fog nodes.

After constructing set T with τ samples, we make a

decision in an online manner during the exploitation stage.

When fog node n arrives online, we can know μin and μn.

Then, we can compare this information about n to the largest

sample in set T . If the arriving fog node’s performance is

better than the largest sample t∗, then we immediately include

fog node n in J . When a new fog node joins the network, the

task distribution problem for a given J is an offline problem,

so α can be optimized by using a solver. By repeating this

procedure and updating J , the set of neighboring fog nodes

can be determined. Consequently, the proposed algorithm will

find a set J having high μij and μj ; thus, Algorithm 1 ends

by allowing fog node i to form a latency-minimal fog network

and distribute the tasks across fog and cloud layers.

V. SIMULATION RESULTS

For our simulations, we consider an initial fog node that

can connect to neighboring fog nodes that are uniformly dis-

tributed within a 50 m×50 m square area. The arrival sequence

of the neighboring fog nodes follows a uniform distribution.

Each fog node can use a subcarrier of bandwidth 15 kHz.

The power spectral density of the noise is -174 dBm/Hz and

Ptx,i = 20 dBm. The channel gain is set to β1 = 10−3 and

β2=4 with a channel gain of −30 dB at the reference distance

of 1 m. The packet size K is set to 1500 bytes. The distance

between fog node i and the base station used to connect to the

cloud is 600 m. All statistical results are averaged over a large

number of simulation runs. We assume equal computation

resources for fog nodes such that, i.e., μi = μj = 8 packets

per second, ∀j ∈ J , and we set τ = 3, ci = cj = 0.05
and cc = 0.025. For comparison, we use the offline, optimal

algorithm that has complete knowledge of the system.

In Fig. 2, we show the total cost defined in (10) and the

latency for different numbers of fog nodes with μc = 8.8 and

μij = 20 or 30, ∀j ∈ J . The simulation results in Fig. 2 are

carried out in an offline setting, and we exploit this observation

Fig. 3: The task distribution for fog node i, cloud c, and neighboring
fog nodes in an offline setting.

to determine a possible parameter J to run Algorithm 1. For

instance, we can first see that the computational latency de-

creases when the number of neighboring fog nodes increases.

At the same time, Fig. 2 shows that the total cost is minimized

by four neighboring fog nodes. From these observations, if

the cost of a certain number of neighboring fog nodes is

similar to the minimum, we may choose a greater number

of neighboring fog nodes to minimize latency. In that sense,

the range between 4 and 6 neighbor fog devices cloud be a

potential value of J . Note that the gap between the total cost

and latency characterizes the time cost required to manage

the fog network which naturally increases with the size of

the network. Also, we observe that the total cost and latency

decrease if the data rate of a fog node μij increases. For

instance, if μij increases from 20 to 30, then the total cost is

reduced to 3.7% for a network with 4 neighboring fog nodes.

Fig. 3 shows the task distribution for different numbers

of fog nodes with the same parameters used in Fig. 2 with

μij = 20. From Fig. 3, we can see that, when the number

of neighboring fog nodes increases, the number of tasks

computed by the fog layer increases, and the number of tasks

offloaded to the cloud decreases. For instance, the percentage

of tasks computed by the cloud is 60% when there is no

neighboring fog node, but it can decrease down to 32% if

six fog nodes join the fog computing.

Fig. 4 shows the total cost and latency for different numbers

of neighboring fog nodes with τ = 3 when the proposed,

online Algorithm 1 is used. For a given J , we compare the

performance of J found by the proposed algorithm to the

performance of the optimal set of neighboring fog nodes found

in the offline case. We first see that the results of the total cost

and latency in online and offline scenarios are very close. For

example, it can be observed that the total cost (10) can be

minimized with around 6 neighboring fog nodes. In this case,

the gap between the online and offline solutions, in terms

of total cost, is roughly 2.7%. A similar small gap is also

seen for the latency. This demonstrates the effectiveness of the

proposed algorithm under the online scenario. Also, Figs. 4

shows that, due to the time cost for queue management, the

total cost increases when the number of neighboring fog nodes

increases from 6 to 7 while the latency is still decreasing.

6

Fig. 4: The total cost achieved by using Algorithm 1 compared with
the optimal, offline solutions for different numbers of fog nodes.

Fig. 5: The CDF of the empirical competitive ratio for the online
solution of problem (14).

Fig. 5 shows the empirical competitive ratio for prob-

lem (14). The competitive ratio is defined as the ratio of

the cost from the algorithm used in an online setting and

the optimal cost found in the offline setting where the cost

is defined by (14). Thus, a competitive ratio can measure

how close the proposed algorithm can achieve the solution

compared to the offline solution. We can first see that 16.2%
of iterations achieve a competitive ratio of 1 which means

that the result of online algorithm coincides with the offline

optimal solution of problem (14). Fig. 5 also shows that in

50% of the iterations, the online algorithm can achieve at

least 94.2% of the optimal value of (14). Finally, over 50, 000
iterations, the empirical competitive ratio in the worst case is

shown to be 0.59. Thus, the results from Fig. 5 shows that

Algorithm 1 can effectively form a fog network, in an online

manner, while minimizing latency and costs.

In Fig. 6, we show the percentage of tasks computed by

the cloud for different distances from 200 m to 600 m using

Algorithm 1 with J =2. The result shows that the number

of tasks computed at the cloud decreases as the distance

increases. This is due to the fact that a longer distance

decreases μc, thus yielding an increasing of the computation

delay of the cloud. For example, Fig. 6 shows that increasing

the distance from 200 m to 600 m can result in 28.8% fewer

tasks that are offloaded to the cloud for μi = 8. Also, we can

see that fewer tasks are offloaded to the cloud when the fog

nodes are equipped with better computational capabilities. For

example, if μi or μj increases from 8 to 10, then the tasks at

μ μ

μ μ

Fig. 6: The average percentage of the cloud’s tasks for different
distances between i and c, in an online setting.

the cloud can decrease by up to 11.3%.

VI. CONCLUSION
In this paper, we have proposed a novel framework to

optimize the formation of fog networks and distribution of

computational tasks in a hybrid fog-cloud system. We have

formulated the problem as an online secretary problem which

enables the neighboring fog node to join the fog networking

effectively in the presence of uncertainty about fog node

arrivals. We have shown that by using the online algorithm, the

neighboring fog nodes are suitably selected without knowing

any prior information on future fog node arrivals. Simula-

tion results have shown that the proposed online algorithm

achieves a near-optimal latency while effectively offloading

computational tasks across fog and cloud layers.

REFERENCES

[1] Cisco, “Fog computing and the Internet of Things: Extend the cloud to
where the things are,” Cisco white paper, 2015.

[2] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet of Things Journal, vol. PP, no. 99, pp.
1–1, June 2016.

[3] C. Vallati, A. Virdis, E. Mingozzi, and G. Stea, “Exploiting LTE D2D
communications in M2M fog platforms: Deployment and practical
issues,” in Proc. IEEE 2nd World Forum on IoT, Milan, Italy, Dec.
2015, pp. 585–590.

[4] M. Khaledi, M. Khaledi, and S. K. Kasera, “Profitable task allocation
in mobile cloud computing,” in Proc. 12th Int. Symposium on QoS and
Security for Wireless and Mobile Networks, Malta, Nov. 2016.

[5] V. B. C. Souza, W. Ramrez, X. Masip-Bruin, E. Marn-Tordera, G. Ren,
and G. Tashakor, “Handling service allocation in combined fog-cloud
scenarios,” in Proc. IEEE Int. Conf. on Commun. (ICC), Kuala Lumpur,
Malaysia, May 2016, pp. 1–5.

[6] S.-H. Park, O. Simeone, and S. Shamai, “Joint cloud and edge process-
ing for latency minimization in fog radio access networks,” in Proc.
IEEE 17th Int. Wksh. on Signal Process. Adv. in Wireless Commun.,
Edinburgh, UK, July 2016, pp. 1–5.

[7] Y. Yu, J. Zhang, and K. B. Letaief, “Joint subcarrier and CPU time
allocation for mobile edge computing,” in Proc. of IEEE Global
Commun. Conf. (GLOBECOM), Washington DC, USA, Dec. 2016.

[8] R. Deng, R. Lu, C. Lai, and T. H. Luan, “Towards power consumption-
delay tradeoff by workload allocation in cloud-fog computing,” in Proc.
IEEE Int. Conf. on Commun. (ICC), London, UK, June 2015.

[9] Y. Mao, J. Zhang, S. Song, and K. B. Letaief, “Power-delay tradeoff in
multi-user mobile-edge computing systems,” in Proc. of IEEE Global
Commun. Conf. (GLOBECOM), Washington DC, USA, Dec. 2016.

[10] R. Kleinberg, “A multiple-choice secretary algorithm with applications
to online auctions,” in Proc. the 16th Symposium on Discrete Algorithms
(SODA), Vancouver, Canada, Jan. 2005, pp. 630–631.

[11] D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data networks.
Prentice-Hall International New Jersey, 1992, vol. 2.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

