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Abstract—Promoted by sensor, big data and mobile 
computing technologies, the number of Internet of Things (IoT) 
applications and services is increasing rapidly. The massive 
amounts of heterogeneous data produced by a large variety of 
IoT devices require us to re-think its influence on the network. In 
this paper, we study the characteristics of IoT data traffic in the 
context of smart city. We generate data traffic according to the 
characteristics of different IoT applications. We propose a 
Gamma modulated wavelet method for statistical 
characterization of both IoT data and the aggregated traffic, 
aiming at analyzing the influence of IoT data traffic on the access 
and core network. By using Gamma function to modulate the 
coefficients of the wavelet, both the long range and short range 
dependency of the IoT data traffic can be described through 
fewer parameters. The Gamma modulation also reduces the 
independency of the coefficients and improves the accuracy of the 
Wavelet model. 
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I.  INTRODUCTION 

Internet of Things (IoT) connects devices producing 
massive amounts of heterogeneous data. IoT applications and 
services have been developed and introduced to our daily life 
in domains like healthcare, goods tracking and industrial 
process monitoring. With the increase of the number of 
applications and devices, large amounts of IoT data traffic will 
be generated and delivered to the access and core networks, 
which will influence other applications and services currently 
supported by the networks, such as voice and data services. 
Moreover, the data traffic produced by IoT applications varies 
greatly, from several bits generated by simple sensors to high 
quality video clips of several hundred megabytes generated by 
video cameras. Also, the pattern of data generation varies from 
periodic to sporadic and the same application can produce 
different amounts of data traffic on different platforms. Thus, it 
is difficult to predict the influence that IoT data traffic has on 
the public networks and infrastructure facilities.  

Deep understanding of the characteristics of IoT 
applications and their data traffic is crucial to accurately 
analyze and estimate the performance of the network and the 
applications. Network operators can utilize such knowledge to 
optimize their network infrastructure, components, services, 
and costs. Traffic engineering and management tasks can be 
enhanced as well.  

Traffic modelling is an efficient approach for describing the 
characteristics of network applications [1-3]. However, the 
current traffic models are based on Internet applications. 
Traffic modelling for IoT applications presents considerable 
challenges not targeted in the previous research. First, contrast 
to the traditional network applications that interact with 
humans, IoT applications use large numbers of devices 
providing data in heterogeneous and complex environment and 
situations. Second, different data analysis and processing 
techniques, such as semantic analysis and data mining, results 
in different types of data, from raw data to aggregated objects, 
semantic information, and actionable knowledge. This leads to 
more complex characteristics of data traffic. Moreover, the 
future IoT will need support from cloud computing and big 
data analysis technologies. These technologies will also 
influence heavily data traffic. Third, it is becoming a consensus 
that future IoT will have horizontal architecture [4], integrating 
various open systems, environments and platforms. How these 
environments and platforms will influence the traffic is still 
unclear.   

In this paper, we analyze and summarize the features of IoT 
data and the traffic resulting from transferring this data. We 
have collected IoT data from a simulated environment which 
produces IoT data according to some existing research results. 
We present the analysis of the statistical characteristics of this 
data. Based on the analysis, we propose a Gamma modulated 
wavelet method to model the characteristics of the data. We 
also analyze the relationship between data traffic and the 
parameters of the Gamma model. The rest of the paper is 
organized as follows. We discuss related work in Section II, 
and summarize traffic characteristics of IoT applications in 
Section III. We elaborate the Gamma-modulated wavelet 
model for IoT traffic in Section IV, and then conclude the 
paper with discussing future research work in Section V. 

II. FROM MODELLING INTERNET TRAFFIC TO MODELLING 

IOT TRAFFIC 

A. Models of Internet Traffic   

The large amount and varieties of services and applications 
in IP networks and their performance requirements on the 
network have made IP traffic modelling an active research 
topic. Some studies have exhibited that IP traffic has the 
characteristics of self-similarity and long-range dependence 
(LRD) [1-3], and peculiar behaviours have a significant impact 



on network performance. Real network traffic is different from 
that predicted by traditional and Markovian models. The 
multifractal property of network traffic is shown in [5-6]. 
Based on this finding, L-system models [7] and random 
cascades [8] have been proposed to describe the scaling 
behaviour of IP traffic. Furthermore, several ingenious and 
analytically simple procedures have been developed based on 
Markovian model that consider the peculiar behaviours [9-11], 
and hence can be used for calculating network performance 
and predicting future network traffic. For example, work in [11] 
has modelled collected M2M traffic with multi-state Markov 
Modulated Poisson Process (MMPP-n). The authors introduced 
an MMPP traffic model with hierarchical structure to 
approximate accurately the LRD of Internet traffic traces.   

Many studies on the features of network traffic have 
demonstrated that the network traffic shows obvious scaling 
characteristics in a real environment. Wavelet transformation 
has the inherent capability for scale analysis, and has therefore 
been used to model network traffic, such as the Wavelet-
domain Independent Gaussian (WIG) [12] and Multi-fractal 
Wavelet Model (MWM) [5]. For instance, MWM combines the 
power of multifractals with the efficiency of the wavelet 
transform in a flexible framework natural for characterizing 
and synthesizing positive LRD data. The authors use a simple 
multiplication to the coefficients to set a simple constraint, thus 
the positive process can be guaranteed. This makes MWM 
suitable for modelling positive, stationary, and LRD data, and 
hence suitable to the analysis and synthesis of network traffic.  

B. IoT Traffic Modelling: State of the Art 

Traffic modelling has been studied in the context of 
machine-to-machine (M2M) and ubiquitous sensor networks 
(USN). In [13], Poisson arrival process was assumed as the 
traffic model of each individual sensor node. The On/Off 
model for USN traffic models is analyzed in [14]. The authors 
proved that On period distribution and Off period distribution 
could be described by generalized Pareto distribution. In [15], 
the autocorrelation functions for electrocardiogram and body 
temperature monitoring traffic were studied (both non-
Poisson). The pseudo LRD traffic model was proposed in [16] 
for mobile sensor networks. [17] presents how the traffic 
flows for fixed and mixed fixed/mobile sensor nodes have the 
self-similar nature with middle level of self-similarity. The 
traffic flow for reconfiguration and signalling has self-similar 
nature with high level of self-similarity. 

Work in [18] compared M2M and smartphone traffic in 
several aspects including temporal traffic patterns, device 
mobility, application usage and network performance. By 
analysing a week long traffic trace collected from a cellular 
service provider’s core network, the authors show that M2M 
traffic typically exhibits different diurnal patterns, and M2M 
more likely generates synchronized traffic resulting in bursty 
aggregate traffic volumes compared to smartphones. Wavelet 
transformation was used to decompose device model and 
subscriber time series and therefore the time series were 
grouped into distinct clusters. However, only the similarity 
score between time series was analyzed and computed. 

In particular, in work [19], a framework for modelling 

M2M traffic model, Heterogeneous Chain Modulated Generic 
Process (HCMGP), is presented. The authors use wavelet 
scalograms to perform M2M traffic analysis, which described 
the signal energy on a time domain, in order to identify the 
features of different traffic. They decompose the traffic 
process through wavelet to obtain the wavelet coefficients to 
construct the wavelet scalograms. We share the same idea 
with this work in using wavelet transform. However, we 
decompose the probability density of various types of traffic 
and the aggregated traffic, and use the parameters of Gamma 
distribution to model the level of the similarity of IoT traffic.    

In general, the traffic model of a single application type 
has been considered in the context of M2M, such as telemetry 
[18], video surveillance [20], and YouTube [21]. To the best 
of our knowledge, we have not found any works discussing 
the model of aggregated IoT traffic, though this is important 
for network operators to optimize their network  

Due to the complexity introduced by IoT applications and 
their environments and platforms, the current data traffic 
modelling methods cannot be used directly for IoT applications 
in IoT environment. In this paper, we present a Gamma 
modulated Wavelet model with shape parameter m and scale 
parameter n (GMW-mn) to describe the characteristics of IoT 
traffic, which reflect also the level of similarity of the IoT 
traffic and the scale of the IoT network.  

III. TYPICAL IOT APPLICATIONS AND TRAFFIC 

CHARACTERISTICS  

A. Typical IoT Applications  

Many IoT applications have been developed for a wide 
range of domains. In general, the devices, such as various 
types of sensors, are connected to the Internet through sinks 
and gateways. Unlike traditional communication scenarios 
where human is in the centre of the information exchange, 
machines play an important role in IoT communications. 
Typical IoT applications form the following three categories: 

1) Machine-to-machine, where no human interaction is 
involved. For example, remote sensors send measurement 
results to a sink or a gateway; 

2) Human-to-machine, where an operator is involved in 
configuring, supervising and operating devices remotely;  

3) Machine-to-human, where devices collect data and send 
them to human users. For example, a vehicle initiates a call 
with an emergency service when an accident has occurred. 

Category 2 typically generates much downlink traffic that is 
similar to the current Internet traffic. Category 3 typically 
generates much uplink traffic. Due to the data processing, 
including mining and reasoning functions in the networks, the 
uplink and downlink data traffic created by this type of 
applications is similar to the traffic in the current Internet 
networks. Therefore, in this paper we concentrate on analysing 
the data traffic generated by the machine to machine 
applications (Category 1).  

B. Characteristics of  IoT Traffic 

The most important characteristics of IoT traffic is that it is 



independent from human behaviour. In particular, the timing 
of the information exchange is no longer defined by humans. 
In general, the IoT traffic may include the following data in 
smart city use case: 

 Heart beat, carrying information about the status of the 
node itself. Heart beat is normally triggered by the devices 
in order to stay connected with the infrastructure. 
Therefore, this type of data traffic has regular traffic 
pattern, and has a constant size of data. 

 Event trigger, normally initiated by the server side to 
trigger an action of an M2M device, for example, to report 
the humidity of a room to the network. The trigger process 
is irregularly generated by the servers.  

 Payload data, used to exchange payload between devices 
and servers in the networks. Data traffic is variable and can 
either be of constant size like in telemetry, or of variable 
size like images in video surveillance. 

 Node update, used to maintain the normal operation of 
devices, for example, a server in the network may push 
configurations or firmware to devices, and the nodes will 
reboot running the update from the servers.  

Due to the above mentioned IoT data traffic, few short 
packets may be transmitted per device, and may be at low duty 
cycle.  The traffic pattern created by a single device may have 
small variations, however, there are massive number of 
devices in the IoT network. Generally, the IoT traffic has the 
following characteristics: 

 The traffic varies heavily with the application scenarios. In 
the same application scenario, the traffic varies also with 
IoT platforms and the number of IoT devices.  

 The traffic model for a single scenario might be simple. 
However, when multiple scenarios are integrated together 
the traffic model becomes complicated. This results in an 
unknown influence on the carrier networks.     

 New applications and scenarios may emerge frequently 
with maturing IoT related technologies. This may change 
the total IoT traffic in an unexpected way. 

Hence, IoT traffic can no longer be modelled and predicted 
by traditional approaches and a new modelling paradigm needs 
to be developed. 

IV. AN WAVELET MODEL BASED ON GAMMA 

DISTRIBUTION  

A. Traffic Simulation and Collected Results 

In order to characterize the aggregated IoT traffic from 
different scenarios, we have generated a large set of IoT traffic 
by simulating different scenarios in the network simulator NS-
3 [22]. Fig. 1 illustrates the network configuration we used, 
which is based on the smart city scenario [23], where different 
applications with different data traffic patterns are involved. To 
be able to obtain the aggregated traffic at different levels, we 
designed eight subnetworks, each with gateway (we call a 
gateway at the subnetwork level as a sink). The traffic from 
each sink is aggregated at the gateways which connect to the 
Internet through another gateway. To produce as realistic IoT 

data as possible, we generate the data according to 
characteristics revealed by other researchers. 

Fig. 1. Network architecture for collecting data 

(a)  Logistics goods tracking [14] 

The logistics goods tracking follows the On-Off model, 
where the On-Off time follows Pareto distribution. Packet 
intervals follow the normal distribution with parameters of 
(0.2, 1) during the On time (Table I). Data from 800 goods 
tracking are collected, with random On and Off time.   

TABLE I. DATA PATTERN OF LOGISTICS GOODS TRACKING 

 Pareto distribution Packet size Packet intervals 
On  time (0.60, 19.654,4.99) 50 bytes Normal distr.(0.2, 1) 
Off time (0.009,10.026,0.001) N.A. N.A. 

(b) University Campus [24] 

As shown in Table II, there are five types of sensors with 
different numbers serving for different purposes in universities. 
Three types of sensors, i.e., humidity detector, temperature 
sensor, and smoke detector, generate data packets periodically. 
The surveillance video camera generates packets every 15 
seconds, and the packet lengths follow the logarithmic 
distribution. The packet length of each e-card check-in service 
is 205 bytes. However, the interval of check-in services follows 
normal distribution. In addition, altogether data from 15 
universities are produced.  

TABLE II. IOT DEVICES AND TRAFFIC PATTERN OF EACH UNIVERSITY 

Device type Device 
number 

Packet size (byte) Period (s)/ 
Intervals 

Humidity detector 50 90 1800 
Temperature sensor 50 80 600 

Smoke detector 60 80 600 
Surveillance video 

(security) 
45 Lognormal 

distr.(5.9,1.2) 
15 

e-card check-in 1050 205 Normal distr. 

(c) Smart Hospital [25] 

The sensors and traffic patterns of equipments in a hospital 
is illustrated in Table III. There are 50 equipments in each 
hospital, and data from 10 hospitals are generated.   

TABLE III. SENSORS AND TRAFFIC PATTERN IN EACH HOSPITAL 
Device type Packet size (byte) Period (s) 
cardiograph 125 0.2 

Blood pressure 125 0.5 
Pulse 125 0.2 

Body temperature 27 5 

(d) Smart homes [26] 

The traffic patterns of each household is shown in Table IV. 
Altogether data from 100000 households are generated. 



TABLE IV. IOT DEVICES AND TRAFFIC PATTERN OF EACH HOUSEHOLD  
Device type Device number Packet size (byte) Period (s)  

Humidity detector 5 90 1800 
Temperature sensor 4 80 600 

Smoke detector 2 80 600 
Light switch 5 100 1800 

Sensor for security system 1 80 600 
Electric meter 1 90 600 

(e) Mobile Payment [27] 

As shown in Table V, the data packet among payments 
follows exponential distribution. 2050 payments are collected.   

TABLE V. TRAFFIC PATTERN OF EACH PAYMENT THROUGH MOBILE 
 Packet size (byte)          Packet intervals 
Data type 205 Exp. distribution (μ=2.5s) 

(f) Smart Shopping Centre [28] 

Devices and traffic data of each shopping centre is shown 
in Table VI. The data intervals of payment and retail system 
follows exponential and Pareto distribution respectively. Data 
of 8 shopping centres are produced.  

TABLE VI. DEVICES AND TRAFFIC PATTERN OF EACH SHOPPING CENTRE 
Device type Device 

number 
Packet size 

(byte)/distr. 
Period(s)/Interval 

Humidity detector 20 90 1800 
Temperature sensor 10 80 600 

Smoke detector 25 80 600 
Surveillance 
(security) 

20 Log normal 
distr.(5.9,1.2) 

15 

Payment 10 205 Exp. distr.  (μ=2.5 sec.) 
Retail system 10 72 Pareto distr.(1,10)  

(g) Intelligent Transport [29] 

The traffic data produced by each vehicle is illustrated in 
Table VII.  Each vehicle produces data at an interval following 
the normal distribution. Altogether 1000 vehicles producing 
data with different starting time are collected. 

TABLE VII.  TRAFFIC PATTERN OF EACH VEHICLE 
 Packet size (byte) Packet intervals 
Data type 149  Normal distribution (80,8) 

(h) Smart Grid [18] 

The data traffic caused by one voltage transformer follows 
On-Off model (Table VIII). Totally data from 600 
transformers are collected, with random On and Off times. 

TABLE VIII.  TRAFFIC PATTERN CAUSED BY ONE VOLTAGE TRANSFORMER 
 Time (min) packet size(byte) Packet intervals 
On  5 135 Exp. distr. (μ=60s) 
Off  15 N.A. N.A. 

Fig. 2 illustrates data collection at the corresponding Sink 
and Gateway 1-4 during a period of 6000 seconds.   

                                                       

              (a)   Goods trackings                           (b) University campus 

         
                                                                                       (c)  Smart hospitals                                (d) Smart homes 

            
(e)   Mobile payments                       (f) Smart shopping centres 

       
(g)   Intelligent transports                         (h) Smart grids 

  
(i)   Gateway 1                                        (j) Gateway 2 

 
(g)  Gateway 3                                        (h) Gateway 4 

Fig. 2.  Amount of data at sinks and gateway for 6000 seconds 

B. A Gamma Modulated Wavelet Model 

We start the analysis by estimating the Probability Density 
Function (PDF) of the traffic. We use ksdensity function 
(Kernel smoothing function estimate) [30] to estimate the 
probability density of the sampled data at the given time point 
of each sink, and at the gateway. Namely, let (x1, x2, …, xn) be 
an independent and identically distributed sample drawn from 
some distribution with an unknown density ƒ. Its kernel density 
estimator is:  
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where K(•) is the kernel, a non-negative function that 
integrates to one and has mean value of zero;  h >0 is 
a smoothing parameter.   

Second, we perform Discrete Wavelet Transform (DWT) 



[31] on the PDF of the sampled data. Wavelet bases have the 
desirable property of being able to approximate a large class 
of functions. Moreover, they are able to achieve good global 
approximation properties due to their locally compact nature. 
This allows us to model the PDF of IoT traffic that may 
contain bumps and/or abrupt variations. 

Similar to the work in [32], we represent the density as a 
linear combination of wavelet bases, namely  
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where x , p(x) is the PDF of the sampled data. φ(x) and 
ψ(x) are the scaling and wavelet basis functions respectively, 

and U
0
j ,k and Wj,k are scaling and wavelet basis function 

coefficients.  
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      We assumeφ(x) and ψ(x) and their scaled and translated 
versions form orthogonal bases for their respective spaces. 
Therefore, given N samples, the above coefficient can be 
approximated as the sample average, namely 
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φ (x) can be found by numerically solving the dilation 
equation and ψ(x) can then be directly obtained by solving the 
wavelet equation. The dilation equation is given by: 
                     )2()(2)(

k

kxklx                                       (5) 

where l(k) are the low-pass filter coefficients associated 
with a particular scaling function family. This can be 
numerically solved using iterative procedures. After obtaining
φ (x), ψ(x) can be obtained by using the high pass filter 
coefficients h(k) and solving the wavelet equation: 
                    

k
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Third, based on many observations, we use the Gamma 
function [33] with different parameters to fit the scaling 

coefficient U
0
j ,k, and polynomial to fit the wavelet coefficient 

Wj,k of the probability density function p(x). This is also 
because Gamma distribution can offer more flexibility 
parameterization than other kinds of heavy-tailed density for 
wavelet empirical histograms characterization, namely the 
distribution f(x) can be given by (7) 
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       where m is the shape parameter and n is the scale 
parameter, Г(•) is the Gamma function.  

Fig. 3 illustrates the results of U
0
j ,k and Wj,k , and the 

corresponding results. Due to the space limitation, we show 
only the results at the Gateway 2 and 4. 

 
 

(a) Uj0,k and Wj,k at Gateway 2 

 
(b) Uj0,k and Wj,k at Gateway 4 (Total data) 

Fig. 3 Uj0,k and Wj,k of the wavelet transform of PDF at Gateway 2 and 4 and 
the corresponding fitting results. 

Note that as an approximating signal, U includes almost all 
the information of the original function, while W describes the 
details in each scale. Therefore, we select polynomial function 
to fit W to keep the model as simple as possible. 

C. Analysis 

To show our modelling results, we re-construct the PDF 
function based on the Gamma modulated wavelet scaling 
coefficient U and the polynomial fitted wavelet coefficient W. 
Fig.4 illustrates the results of the original and re-constructed 
PDF at each gateway. 

    
(a) PDF at Gateway 1                        (b) PDF at Gateway 2 

    
(c) PDF at Gateway 3                        (d) PDF at Gateway 4 

Fig. 4 Re-constructed PDF at each gateway. 

From the results we can see that our proposed model can 
well approximate the original data traffic.  

In order to estimate the self-similarity of the data set 
shown in Fig. 3, we use R/S method [34] to calculate the Hurst 
parameter. Table IX presents the results.  

TABLE IX.  HURST VALUE OF SERVICE DATA AND AGGREGATED DATA 
No Applications Hurst 

(H)  
m n Aggregated 

H, m, n 
LRD 

(a) Goods tracking 0.148 1.89481 194.308 H=0.169 
m=2.08128 
n=349.308 

very 
week (b) University 

Campus 
0.208 2.18369 335.008 

(c) Smart Hospital 0.558 2.46554 322.627 H=0.579 
m=2.89106 
n=689.894 

week 
(d) Smart homes 0.559 2.65739 398.524 
(e) Payment 0.560 2.87645 216.692 
(f) ShoppingCentre 0.600 2.93508 208.745 
(g) Transport 0.602 3.46554 426.382 
(h) Smart Grid 0.901 3.82789 188.644 H=0.901 strong 



 From Table IX we notice that the value of m in the 
Gamma distribution is related with the level of self-similarity 
of the traffic data. n is related with the number of the devices 
in the network, in other works, the total amount of the traffic 
data. In the PDF function, n decides the location of the peak 
value of the traffic data.  

V. CONCLUSIONS AND FUTURE WORK 

In this paper, we present the results of modelling IoT data 
traffic by performing wavelet transform on the probability 
density of the traffic, and using the Gamma function to 
modulate the coefficients of the wavelet. We found that the 
parameters of the Gamma function can reflect both the self-
similarity and the scales of the IoT data and network. By 
adjusting the parameters of the Gamma function, the 
probability density function of the IoT data traffic can be 
characterized. As future work, we model data generated by 
more complex network configurations, including the downlink 
configuration and software/firmware updating data, and 
collect data from real-world applications to verify our model. 
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