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Abstract—This paper studies the fairness of achievable energy
efficiency (EE) in a multicell multiuser multiple-input single-
output downlink. The objective is to maximize the minimum
EE among all base stations (BSs) subject to per-BS power
constraints. The resulting optimization problem is a max-min
fractional program, and, thus, difficult to solve in general. Our
goal is to develop a decentralized algorithm for the max-min
EE problem which solves the problem locally. The idea behind
the proposed method is to combine the framework of successive
convex approximation (SCA) and alternative direction method of
multipliers (ADMM). We transform the convex program obtained
at each step of the SCA procedure into a form that lends itself
to the ADMM. The resulting formulation is solved optimally
by allowing the BSs to exchange the required information until
the ADMM converges. In addition to further reduce backhaul
overhead, the proposed algorithm is modified to enhance the con-
vergence speed. Numerical results are provided to demonstrate
the effectiveness of the proposed algorithms.

I. INTRODUCTION

Multiple-antenna techniques can offer impressive improve-

ments on the achievable capacity of wireless communications

systems. Currently, a dominant objective in network design

is to maximize the spectral efficiency (SE) to satisfy the

increasing demand on data traffic of cellular networks. While

SE maximization still remains important, we also need to

consider the total energy spent by wireless systems, especially

due to recent explosive growth of wireless devices and traffic.

Therefore, energy-efficient transmission has got increasing

attention recently [1].

Energy efficiency (EE), also known as bit-per-Joule capac-

ity, is defined as the ratio of throughput and the total power

consumption of the network. The problem of EE maximization

under individual quality-of-service constraints and/or transmit

power constraints has been of particular interest [2]–[4]. To

maintain fairness of the individual users, maximizing the

minimum of EEs of users has been considered [5]–[7] This

is basically a max-min fractional program. This optimization

problem is nonconvex and generally difficult to solve globally

optimally.

For nonconvex problems in general and the max-min EE

problem in particular, a classical goal is to find a stationary

solution, i.e., a solution that satisfies the Karush-Kuhn-Tucker

(KKT) conditions. This was done in [5] by combining the

Dinkelbach’s approach and alternating optimization. More

explicitly, the parameterized problem attained from the Dinkel-

bach’s method is solved by alternately optimizing the beam-

formers, receivers and other auxiliary variables. We also pro-

posed a more computationally efficient beamforming design

for the max-min EE problem, using an inner approximation

framework which is now better known as successive convex

approximation (SCA) [8]. Briefly, novel transformations were

introduced to expose the hidden convexity of the considered

problem, and the remaining nonconvexity is iteratively re-

placed by convex approximants. For single-input single-output

(SISO) systems, the SCA principle was also used in [7] to

derive power control policies for the max-min EE problem.

The existing beamforming designs or power control policies

for EE fairness are centralized algorithms, which need a central

node to collect all the system information (i.e., channel state

information (CSI) and power parameters) and then solving the

EE problem. This may not be appealing from a practical im-

plementation perspective, especially when the amount of CSI

needs to be shared is large and/or a central node is difficult to

build. In [6], a distributed energy-efficient power optimization

for SISO interference channels was studied. Although the main

computational efforts can be done distributedly at each BS,

some information still needs to be collected and processed at

a central node.

In this paper, we consider multicell multiuser multiple-

input single-output (MISO) downlink channels and propose a

decentralized solution for the problem of achieving fairness EE

among BSs, each of which is limited by a total power budget.

The proposed algorithm are based on applying the SCA

method to obtain convex approximations of the nonconvex

max-min EE problem and applying the alternative direction

method of multipliers (ADMM) to solve the arrived convex

programs. However, this cannot be accomplished by a direct

application of the ADMM. To make it possible we introduce

the local and global versions of the so-called interference tem-

perature, and decompose the SCA problem into subproblems

that can be solved independently at each BS. The proposed

distributed method follows strictly the ADMM where we allow

the BSs to exchange the relevant information to the others

until the ADMM declares convergence. In other words, the

ADMM is run until a stationary solution to the SCA problem

is found. Once this has been done, all the BSs update the

relevant parameters to create a new SCA problem and enter the



next loop of the ADMM. In this way the proposed algorithm

can yield the same performance as the centralized method.

We will numerically observe that the amount of exchanged

information is significant in some cases. Thus, the proposed

algorithm is modified to reduce the exchanged information

by enhancing the convergence speed. In particular, we limit

the maximum number iterations of the ADMM so that the

SCA parameters can be updated earlier, and, hence, the total

number of iterations is significant reduced. Numerical results

are provided to demonstrate the effectiveness of the proposed

decentralized algorithms.

Notation: The following notations are used throughout the

paper. Vectors are denoted by bold lowercase letters. Ca×b

represents the space of complex matrices of dimension given

as superscripts. (.)
T

and (.)
H

represent the transpose and

Hermitian transpose operator, respectively. |.| and ℜ(.) repre-

sent the absolute value and real part of a complex number,

respectively. ‖.‖2 represents the ℓ2 norm. The calligraphic

letters denote a set. {xb}b∈B refers to a vector xb whose

indices belong to the set B.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a MISO downlink system consisting of B base

stations (BS), each is equipped with N antennas. The set of

BSs is denoted by B = {1, . . . , B}. To lighten the notation we

assume each BS serves a different group of K users and refer

to the kth user served by BS b as bk for k = 1, 2, . . . ,K . Note

that the total number of users in the considered system model

is BK . Assuming a flat fading channel model, the received

signal at user bk is written as

ybk = hb,bkwbksbk +

K
∑

i=1,j 6=k

hb,bkwbjsbj

+

B
∑

i=1,i6=b

K
∑

j=1

hi,bkwijsij + nbk ,

(1)

where hi,bk ∈ C1×N is the channel vector from BS i to user

bk; wbk ∈ CN×1 and sbk are the beamforming vector and the

transmit data symbol from BS b to user bk, respectively; and

nbk ∼ CN (0, σ2
bk
) is the additive white Gaussian noise with

variance σ2
bk

. We treat the inter-user interference as Gaussian

noise and thus the SINR for user bk is given by

γbk(w) =
|hb,bkwbk |

2

Ibk (w) +Wσ2
bk

(2)

where W is the system bandwidth, w is the vector encompass-

ing the beamformers of all BK users, and Ibk(w) is defined

as

Ibk(w) ,
K
∑

j=1,j 6=k

|hb,bkwbj |
2 +

B
∑

i=1,i6=b

K
∑

j=1

|hi,bkwij |
2. (3)

Accordingly, the EE of BS b is expressed as

fb (w) =

∑K

k=1W log2
(

1 + γbk(w)
)

1
ǫ

∑K

k=1 ‖ wbk ‖22 +NPdp + Psp

(4)

where ǫ ∈ (0, 1) is the power amplifier efficiency, Pdp is

the dynamic power consumption corresponding to the power

radiation of all circuit blocks in each active radio frequency

chain, and Psp is the static power spent by the cooling system,

power supply, etc. We denote by P0 , NPdp + Psp the total

circuit power. The problem of max-min EE fairness among all

the BSs is mathematically stated as

max
w

min
1≤b≤B

fb (w) (5a)

subject to

K
∑

k=1

‖ wbk ‖22≤ Pb, ∀b ∈ B (5b)

where Pb is the transmit power budget of BS b.

We remark that existing solutions aim at finding a stationary

solution to (5), which is a classical goal for general nonconvex

problems [5], [7], [8]. However, these previous studies ended

up with centralized solutions, requiring a central node in their

implementation to collect the required information and carry

out all the computations. Among them, the one-layer iterative

method proposed in [8] based on the SCA framework, has

been shown to achieve lowest computational complexity. This

method will form a basis for the development of decentralized

algorithms to solve the max-min EE problem in this paper.

III. BEAMFORMING DESIGN FOR MAX-MIN EE FAIRNESS

A. Centralized Approach

In this subsection we briefly review the low-complexity

beamforming design for the max-min EE problem introduced

in our earlier work [8]. We start by introducing an equivalent

reformulation of (5) which more exposes the hidden convexity.

Specifically, (5) can be rewritten as

max
w,η,z,t

η (6a)

subject to z2b/tb ≥ η, ∀b ∈ B (6b)

K
∑

k=1

log(1 +
|hb,bkwbk |

2

Ibk(w) +Wσ2
bk

) ≥ z2b , (6c)

1

ǫ

K
∑

k=1

‖ wbk ‖22 +P0 ≤ tb, ∀b ∈ B (6d)

K
∑

k=1

‖ wbk ‖22≤ Pb, ∀b ∈ B, (6e)

where η, z , [z1, . . . , zB]
T , t , [t1, . . . , tB]

T are newly

introduced slack variables. To deal with the nonconvexity of

(6c) we further introduce new auxillirary variables gbk ∈ g ,

{gb1 , . . . , gbK}b∈B and qbk ∈ q , {qbk , . . . , qbK}b∈B, and



rewrite (6) as

max
w,η,z,t,g,q

η (7a)

subject to z2b/tb ≥ η, ∀b ∈ B (7b)
∑K

k=1 log(1 + gbk) ≥ z2b , ∀b ∈ B (7c)

|hb,bkwbk |
2

qbk
≥ gbk , ∀b ∈ B, k ∈ Kb (7d)

qbk ≥ Ibk(w) +Wσ2
bk
, ∀b ∈ B, k ∈ Kb (7e)

(6d), (6e). (7f)

It is easy to see that the constraints from (7b) to (7f) must

hold with equality at the optimality. Thus, the equivalence

between (5) and (7) is guaranteed. We further note that all

the constraints in (7) are convex, excluding (7b) and (7d).

This implies that we need to find ways to deal with the

nonconvexity in (7b) and (7d). Based on the observation that

that (7b) and (7d) admit the same form, i.e., the left side is a

quadratic-over-affine function (which is convex) and the right

side is an affine function, we apply the application of the inner

approximation algorithm [9] to approximate the nonconvex

part of (7b) and (7d). More explicitly, we iteratively replace

(7b) and (7d) by

φ
(n)
b (zb, tb) ≥ η (8)

and

ψ
(n)
bk

(wbk , qbk) ≥ gbk (9)

respectively, where

φ
(n)
b (zb, tb) ,

2z
(n)
b

t
(n)
b

zb −
(z

(n)
b )2

(t
(n)
b )2

tb (10)

and

ψ
(n)
bk

(wbk , qbk) ,
2ℜ

(

h
(n)
b,bk

wbk

)

q
(n)
bk

−
|hb,bkw

(n)
bk

|2qbk

(q
(n)
bk

)2
(11)

are the first order of z2b/tb around the point (z
(n)
b , t

(n)
b ) and

|hb,bkwbk |
2/qbk around the point(w

(n)
bk
, q

(n)
bk

), respectively,

and h
(n)
b,bk

=
(

w
(n)
bk

)H
hH
b,bk

hb,bk . The superscript n in above

equations denotes the nth iteration of the iterative procedure.

In summary, the approximate convex program at iteration n+1
of the proposed iterative algorithm proposed in [8] is given by

max
w,η,z,t,g,q

η (12a)

subject to (6d), (6e), (7c), (7e), (8), (9). (12b)

B. Decentralized Approaches for the max-min EE

Our goal in this subsection is to propose a decentralized

solution to solve (7). Such solutions would be of practical

interest when a central processing station is not available, or

when sending the channel state information of all BSs to a

central node is overwhelming. To the best of our knowledge,

decentralized solutions for the max-min EE problem have not

been investigated previously in the related literature. The idea

is to propose a distributed approach for solving the convex

program obtained in each step of the iterative procedure. Thus

we base our decentralized algorithms on the formulation in

(12) to solve it optimally in the sequel.

A simple and more popular approach in the context of

distributed optimization is the dual decomposition method.

However, this approach cannot be applied to solve the problem

(12) due to the lack of strict convexity of the objective (see

[10] for further details). A similar problem was also mentioned

in [11] , but in a different context. A remedy for this issue is to

combine the dual decomposition and augmented Lagrangian

method which results in the so-called ADMM [10], [11]. In

addition to the lack of strict convexity, the formulation in (12)

is not amendable to a direct application of ADMM since (7e) is

not decomposable due to the intercell interference (ICI) terms

contained in Ibk (w). To overcome these issues, we rewrite

(12) as

min
w,η,z,t,g,q,τ ,τ ′

−
B
∑

b=1

ηb (13a)

subject to ηb = η (13b)

τb,ij ≥
∑K

k=1|hb,ijwbk |
2 ∀i 6= b (13c)

qbk ≥
∑K

j=1,j 6=k|hb,bkwbj |
2

+
∑B

i=1,i6=bτ
′
bk,i

+Wσ2
bk

(13d)

τb,ij = µb,ij ∀i 6= b (13e)

τ ′bk,i
= µi,bk ∀i 6= b (13f)

(6d), (6e), (7c), (8), (9), (13g)

where ηb, τb,ij ∈ τ ,τ ′bk,i ∈ τ ′ are newly introduced slack

variables, representing the energy efficiency of BS b, the ICI

producing by BS b to user ij , and the ICI at user bk generated

by neighboring BS i (i 6= b), respectively. We remark that ηb,
τb,ij ,τ ′bk,i locally stored at BS b. On the other hand, η, µb,ij

and µi,bk are respectively the global copies of the interference

variables τb,ij ,τ ′bk,i to satisfy the equivalence between (13)

and (12). We will refer the interference (local or global)

variables as interference temperatures since their value varies

after every iteration. Next we include all the constraints that

can be handled locally at BS b in the set Sb which is defined

as

Sb = {sb | φ
(n)
b (zb, tb) ≥ ηb, τb,ij ≥

∑K

k=1|hb,ijwbk |
2,

ψ
(n)
bk

(wbk , qbk) ≥ gbk ,
∑K

k=1 log(1 + gbk) ≥ z2b ,

1

ǫ

K
∑

k=1

‖ wbk ‖22 +P0 ≤ tb,
K
∑

k=1

‖ wbk ‖22≤ Pb,

qbk ≥
K
∑

j=1,j 6=k

|hb,bkwbj |
2 +

B
∑

i6=b,i=1

τ ′bk,i +Wσ2
bk
}

(14)

where sb , {ηb, zb, tb,{gbk}
K
k=1,{wbk}

K
k=1,{qbk}

K
k=1,

{{τb,ij}
K
j=1}i∈Ib

,{{τ ′bk,i}
K
k=1}i∈Ib

} represents the set of

the local variables at BS b, and the set Ib is denoted as

Ib , B\{b}, i.e, Ib is the set including the indices of all other

BSs. For notation convenience, we denote two sets of variables



for each BS, i.e., θb ,

{

{{τb,ij}
K
j=1}i∈Ib

, {{τ ′bk,i}
K
k=1}i∈Ib

}

and νb ,
{

{{µb,ij}
K
j=1}i∈Ib

, {{µi,bk}
K
k=1}i∈Ib

}

rearranging

the local interference temperatures of BS b and the

corresponding global versions, respectively. We remark

that θb ∈ sb and further denote by s , {sb}b∈B and

ϑ = {η, {νb}b∈B} the set of local and global variables,

respectively. From the steps above, (13) can be equivalently

rewritten as

min
s,ϑ

−
B
∑

b=1

ηb (15a)

subject to sb ∈ Sb, ∀b ∈ B (15b)

ηb = η, ∀b ∈ B (15c)

θb = νb, ∀b ∈ B. (15d)

The reformulation (15) of (12) is now amendable for applying

ADMM to find a decentralized solution. In particular, we

derive the augmented Lagrangian function of (15) as

L(n+1)(s,ϑ, ζ, ξ) =

B
∑

b=1

[−ηb + ξb(ηb − η) + ζT
b (θb − νb)

+
c

2
((ηb − η)2 + ‖θb − νb‖

2
2)]

(16)

where c > 0 is the penalty parameter and

ξ , {ξb}b∈B, ζ , {ζb}b∈B (in which ζb =
{

{{ζb,ij}
K
j=1}i∈Ib

, {{ζbk,i}
K
k=1}i∈Ib

}

corresponding to

variables τb,ij and τ ′bk,i, respectively) are the Lagrange

multipliers. The general idea of the ADMM is to use the

Gauss-Seidel method to update the local variables (i.e. s),

the global variables (i.e. ϑ), and the Lagrange multipliers

(i.e. ζ and ξ). In other words, we fix the other variables

when updating the local variables, and the same manner is

alternatively applied for the global variables and Lagrange

multipliers, respectively. Particularly, the variables updating

procedure at the iteration l + 1 of the ADMM to solve (15)

is detailed as follows.

First, the set of local variables s is updated by solving the

convex problem

s(l+1) = arg min
s

L(n+1)(s,ϑ(l), ξ(l), ζ(l)). (17)

Interestingly, it is easily seen that the augmented Lagrangian

function in (16) is decomposable, thus, the optimization

problem (17) can be separately implemented at each BS.

Accordingly, B subproblems are solved in the parallel at each

BS, i.e., the subproblem at the BS b is given by

s
(l+1)
b = arg min

sb∈Sb

[−ηb + ξ
(l)
b (ηb − η(l)) + ζ

(l)T
b (θb − ν

(l)
b )

+
c

2
((ηb − η(l))2 + ‖θb − ν

(l)
b ‖22)]. (18)

We remark that since all the constraints listed in (14) are

convex and SOC representable (when the conic approximation

for (6c) is applied [8]), then (18) can be efficiently solved by

the modern SOCP solvers.

Next, the update of global variables is carried out by using

the exchanged information ηb and interference temperature θb

of each BS. Similarly, the separable form of the augmented

Lagrangian function (16) turns this step to the distributed

fashion where η and νb are independently updated by

η(l+1) = arg min
η

B
∑

b=1

[

−ξ
(l)
b η +

c

2
(η

(l+1)
b − η)2

]

(19)

and

ν
(l+1)
b = arg min

νb

− ζ
(l)T
b νb +

c

2
‖θ

(l+1)
b − νb‖

2
2. (20)

As can be seen, the equations (19) and (20) are unconstrained

quadratic programming w. r. t. the involved variables. Thus,

the solutions admit closed-forms, i.e,

η(l+1) =
1

B

B
∑

b=1

[

η
(l+1)
b +

1

c
ξ
(l)
b

]

(21)

and

µ
(l+1)
b,ij

=
τ
(l+1)
b,ij

+ τ
′(l+1)
ij ,b

2
+
ζ
(l)
b,ij

+ ζ
(l)
ij ,b

2c
(22)

where ζb,ij and ζij ,b are the dual variables associated to the

primal variables τb,ij of BS b and τ ′ij ,b of BS i (i 6= b),

respectively. To compute η(l+1) in (21), all BSs can run an

average consensus algorithm [10], [12]. We note that µ
(l+1)
b,ij

is computed after gathering τ
′(l+1)
ij ,b

and ζ
(l)
ij ,b

from BS i 6= b
The last step of the ADMM is to update the Lagrangian

multipliers as

ξ
(l+1)
b = ξ

(l)
b + c

(

η
(l+1)
b − η(l+1)

)

(23)

ζ
(l+1)
b = ζ

(l)
b + c

(

θ
(l+1)
b − ν

(l+1)
b

)

. (24)

Because the obligated information for calculating (23) and

(24) is available at all BSs after updating global variables, the

multipliers update can be implemented at each BS without

extra gathered information.

After the ADMM procedure converges i.e, the residual

εADMM below a threshold, we update the involved SCA pa-

rameter (w(n+1), q(n+1), z(n), t(n)) as in the centralized

algorithm until satisfying the stopping criteria. To summarize,

Algorithm 1 outlines the proposed decentralized algorithm for

max-min EE beamforming design problem based on ADMM

leveraging SCA.

We remark that the global variables update can be carried

out without the information of Lagrangian multipliers, i.e,

η(l+1) =
1

B

B
∑

b=1

η
(l+1)
b (25)

µ
(l+1)
b,ij

= (τ
(l+1)
b,ij

+ τ
′(l+1)
ij ,b

)/2. (26)

Indeed, we have
∑B

b=1 ξ
(l+1)
b =

∑B

b=1[ξ
(l)
b + c(η

(l+1)
b −

η(l+1))] = 0. Following the same manner, we can easily see

that
∑B

b=1 ζb = 0 and thereby obtaining ζ
(l)
b,ij

+ ζ
(l)
ij ,b

= 0.



Algorithm 1 Proposed decentralized beamformer ADMM-

based design for max-min EE in multicell MISO downlink

1: Initialization: Set n := 0, choose initial value for (w(n),

q(n), z(n), t(n)) such that these satisfy the feasible set of

each BS Sb, choose the initial value for ϑ(0), ξ(0), ζ(0).

2: repeat

3: l := 0.

4: while εADMM ≥ 10−5 do

5: for b ∈ B do

6: BS b updates s
(l+1)
b by (18).

7: BS b updates η(l+1) through an average consensus

algorithm [12].

8: BS b receives τ
′(l+1)
ij ,b

, then updates µ
(l+1)
b,ij

by (26).

9: Update Lagrange multipliers ξ
(l+1)
b and ζ

(l+1)
b by

(23) and (24), respectively.

10: end for

11: l := l + 1.

12: end while

13: Obtain the optimal value (w∗, q∗, z∗, t∗) .

14: Update the SCA parameters (w(n), q(n), z(n), t(n)) =
(w∗, q∗, z∗, t∗), and (ϑ(0),ξ(0), ζ(0)) =(ϑ∗, ξ∗, ζ∗).

15: n := n+ 1.

16: until the SCA converges

Thus, the actual obligated information required to exchange

among the BSs is only the local variables.

The convergence of Algorithm 1 includes the convergence

analysis of the ADMM and the SCA convergence. It is worth

noting that the convergence behavior both of the algorithms

has been well investigated in literature, and we skip it due to

the spaces. The interested reader can refer to the results in

[10] and [9].

Per-Base station Complexity Analysis: We remark that the

per-iteration complexity of Algorithm 1 is dominated by the

complexity of solving the subproblem (18) at each BS. To

reduce the complexity when solving (18) which is in fact the

general convex program due to the constraint
∑K

k=1 log(1 +
gbk) ≥ z2b , the SOC approximation of exponential cone as in

[8, (13)] is applied. Thus, the cost of solving the subproblem

(18) at each BS is O(N3K3 + (m+7)3K3), where m is the

conic approximation parameter of accuracy [13, Sect. 6.6].

Amount of Exchanged Information: The information of the

local ICI θb and EE ηb at each BS is required to broadcast to

the other BSs. The amount of exchanged information mainly

depends on the steps 7 and 8 of Algorithm 1, i.e., the average

consensus algorithm. This implies that BS b needs to send out

total numbers of (B−1)(K+1) real values to the other (B−1)
BSs. In cellular networks, e.g LTE Radio Access Network, this

could be done by deploying the X2 interface which connects

neighboring eNodeBs in point-to-point fashion.

Implementation issues: Waiting for the ADMM-based loop

to completely converge at each SCA iteration ensures the

global convergence of Algorithm 1 but generally slows down

its convergence rate. We now provide some modifications that

can be made to Algorithm 1 to improve its convergence rate

in practice. The idea is to allow the ADMM part to terminate

early in first SCA iterations. In particular, the ADMM loop

terminates after IADMM updates and this number can be varied

as the SCA outer loop evolves. In some first SCA iterations,

we numerically obverse that the increase in the cost function

between two consecutive iterations is large, and thus it usually

requires a large number of updates for the ADMM to converge.

However, the solutions return by the ADMM part are still

a rough estimate of the solution of the considered problem

in the first SCA steps. Thus, it is unnecessary to let the

ADMM complete converge in these cases. Our rationale is

that the ADMM part can produce a good estimate after a

number of updates. On the other hand, when the SCA is

nearly convergent, we can set IADMM to be smaller. By adapting

IADMM we can enhance the convergence rate of Algorithm 1

significantly as shown in Section IV.

IV. NUMERICAL RESULTS

Table I
SIMULATION PARAMETERS

PARAMETERS VALUE

Pathloss and shadowing 38 log (d) + 34.5+N (0, 8) [dB]
Cell radius 500 [m]

Power budget Pb 35 [dBm]
Static power consumption Psp 33 [dBm]

Dynamic power consumption Pdp 40 [dBm]
Power amplifier efficiency ǫ 0.35

Number of BSs B 3
Number of per-BS users 2
Number of BS antennas 4

Signal bandwidth W 10 [kHz]
Power spectral density of noise -174 [dBm/Hz]

In this section, we demonstrate the effectiveness of the

proposed method by numerical experiments. The simulation

parameters are listed in Table I. All the convex problems

considered in this paper are solved using the MOSEK solver

in MATLAB environment. Specially, we apply the conic

approximation presented in [8] for the nonlinear logarithmic

constraints to improve the processing speed. The initial values

of Algorithm 1 are generated as follows. First, a set of

beamformers that satisfy (6e) is created at each BS. Then the

initial values of other variables (z
(0)
b , t

(0)
b , q

(0)
bk

) are obtained

by setting all the constrains in (14) to be equality. The initial

global values µ(0) and η(0) and the Lagrangian multipliers

ξ(0) and ζ(0) are set to zero. The iterations of the proposed

decentralized algorithms are terminated if the increase of the

value of η in two consecutive SCA iterations is less than 10−5.

The centralized algorithm compared to proposed approaches

uses the same setting as in [8]. We note that the proposed

algorithm using limited number of the ADMM iterations to

enhance the convergence rate is referred as ‘Algorithm 1

modified’.

Fig. 1 plots the convergence results of Algorithm 1 and its

modified version. We can see that the proposed algorithms

are able to obtain the same stationary point as the centralized
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Fig. 1. Convergence of the Algorithm 1 and its modified version with
IADMM = 40. The circles represent the iterations where the SCA parameters
are updated

approach. Since Algorithm 1 updates the SCA parameters after

the ADMM completely converging, it requires hundreds of

iterations to achieve the stationary solution. On the other hand,

the modified approach succeeds to speed up the convergence

rate. Fig. 1(a) shows an example of the bad choice of initial set.

As can be seen, the very first ADMM procedure in Algorithm

1 takes a large number of iterations to obtain the convergence

point at the first update of the SCA. The other example in Fig.

1(b) shows that lots of iterations are spent to obtain a very

slight gain in the achieved EE. Both scenarios result in a slow

convergence rate. By limiting the maximum iterations of the

ADMM, the SCA parameters are updated earlier and the total

number of required iterations are significantly reduced. This

task is equivalent to re-pick a better initial point for iterative

procedure (as shown in Fig. 1(a)), and eliminate the inefficient

iterations (as shown in Fig. 1(b)).

V. CONCLUSION

This paper has studied the problem of EE optimization for

multicell multiuser MISO downlink, which aims at maximiz-

ing the minimum EE among all BSs. We have proposed the

decentralized algorithm to distributedly solve the EE fairness

problem at each BS. The idea of combining the framework of

the SCA and the ADMM was carried out. In particular, the

proposed algorithm resorts the convex approximation achieved

at each iteration of the SCA method to apply the ADMM to

solve the problem in the distributed manner. The proposed

approach follows strictly the ADMM where we allow the

BSs to exchange the relevant information to the others until

the ADMM declares a convergence. The simulation results

demonstrate that the decentralized algorithm is able to achieve

the stationary solution as the centralized algorithm. We have

further numerically shown that the convergence rate of the

proposed method can be improved by limiting the maximum

number iterations of the ADMM.
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