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ABSTRACT

This paper considers joint user identification and channel estimation

(JUICE) in grant-free access with a clustered user activity pattern. In

particular, we address the JUICE in massive machine-type commu-

nications (mMTC) network under correlated Rayleigh fading chan-

nels with unknown channel covariance matrices. We formulate the

JUICE problem as a maximum a posteriori probability (MAP) prob-

lem with properly chosen priors to incorporate the partial knowledge

of the UEs’ clustered activity and the unknown covariance matrices.

We derive a computationally-efficient algorithm based on alternating

direction method of multipliers (ADMM) to solve the MAP problem

iteratively via a sequence of closed-form updates. Numerical results

highlight the significant improvements brought by the proposed ap-

proach in terms of channel estimation and activity detection perfor-

mances for clustered user activity patterns.

Index Terms— mMTC, user identification, channel estimation,

clustered activity, spatially correlated channels.

1. INTRODUCTION

Sparse signal recovery techniques have widely been applied in the

design of massive machine-type communications (mMTC) solutions

with grant-free access protocols. A major challenge in grant-free ac-

cess is the joint user identification and channel estimation (JUICE).

Subsequently, owing to the sporadic nature of activity pattern of the

mMTC devices, namely user equipments (UEs), the JUICE has been

widely addressed as a sparse recovery problem and solved using var-

ious algorithms such as approximate message passing (AMP), sparse

Bayesian learning (SBL), and mixed-norm minimization.

The vast majority of the works address the JUICE in an uncorre-

lated channel model [1, 2, 3, 4, 5, 6]. However, this assumption is not

practical as the multiple-input multiple-output (MIMO) channels are

usually spatially correlated [7]. Recently, few works have addressed

the JUICE in the correlated MIMO channels, thereby better reflect-

ing the reality, using AMP in [8, 9] and using mixed-norm minimiza-

tion in [10, 11, 12]. Nonetheless, these works assume that channel

distribution information (CDI) for all the UEs is available at the base

station (BS), which can be challenging to acquire in realistic environ-

ments. Furthermore, the prior work on the JUICE considers mMTC

networks with a random UE activity pattern. This could model, e.g.,

a scenario where UEs monitor independent random processes and

thus activate randomly based on certain application criteria.

This paper makes the following two distinctions from the prior

works: First, we address the JUICE in spatially correlated MIMO

channels with no prior knowledge of the exact CDI. Second, we
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consider an mMTC network where the UEs activity has a specific

structure, namely, a clustered form. For instance, this models a net-

work where the UEs form clusters based on their geographical loca-

tions and each cluster is associated with a monitoring task. Here, an

event could trigger a small subset of UEs belonging to a cluster to

activate concurrently, leading to clustered UE activity system-wise.

This paper adopts a Bayesian approach and formulates the

JUICE as a maximum a posteriori probability (MAP) estimation

problem that takes into consideration the different specific structures

of the system model. In particular, to accommodate the clustered

activity of the UEs, we propose a log-sum based prior function

composed of two different components to capture both the overall

sparsity and the clustered sparsity of the signal model. Furthermore,

in order to estimate the CDI as well, we utilize a prior function

that follows a Wishart distribution. Subsequently, we derive a

computationally-efficient iterative solution based on alternating di-

rection method of multipliers (ADMM) that solves an approximate

version of the MAP problem as a sequence of closed-form updates.

2. SYSTEM MODEL

We consider a single-cell uplink network consisting of N UEs served

by a single BS equipped with a uniform linear array (ULA) of M an-

tennas. The UEs are geographically distributed so that they form C

clusters, where each cluster contains L UEs1, such that N = LC .

A cluster containing a subset of UE indices is denoted by Cl ⊆
{1, 2, . . . , N}.

The propagation channel between the ith UE and the BS, de-

noted by hi, follows a local scattering model [13]. Thus, each hi

is modelled as a zero-mean complex Gaussian random variable, i.e.,

hi ∼ CN (0,Σ−1
i ), where Σi ∈ C

M×M denotes the channel preci-

sion matrix, i.e., the inverse covariance matrix Σ
−1
i = E[hih

H
i ]. We

consider UEs with low mobility, which is justified in mMTC, e.g.,

in applications like industrial monitoring. Hence, we adopt the com-

mon assumption that the channels are wide-sense stationary. Thus,

the set of channel precision matrices Σ = {Σi}Ni=1 vary in a slower

timescale compared to the channel realizations [7].

Since the UE activation is sporadic in mMTC, only a small num-

ber of the N UEs are active at each coherence time Tc. To this end,

the UE activity indicator vector γ = [γ1, . . . , γN ]T is given as

γi =

{

1, ith UE is active

0, otherwise,
∀i = 1, . . . , N. (1)

Contrary to the majority of the literature on mMTC that consider

random UE activation, we consider that the UEs activate in a specific

clustered manner. More precisely, the active UEs belong to a small

(random) number of active clusters, where an active cluster refers

1For the simplicity of presentation, yet without loss of generality, we as-
sume that all clusters contain the same number of UEs.
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to any cluster with at least one active UE, while containing at most

Lc ≤ L active UEs. Such cluster sparsity imposes a special structure

on γ = [γ1, . . . , γL
︸ ︷︷ ︸

Cluster 1

, γL+1, . . . , γ2L
︸ ︷︷ ︸

Cluster 2

, . . . , γN−L+1, . . . ,γN
︸ ︷︷ ︸

Cluster C

] where

the elements belonging to a given cluster (γi, i ∈ Cl) are assumed to

be correlated. The correlation in the UE activity is imposed by the

priors presented in Section 3.3.

For data transmission, each UE i ∈ N is assigned a unique

unit-norm pilot sequence φi ∈ C
τp , as well as a transmit power

pi that is inversely proportional to its average channel gain [4, 14].

Accordingly, the received pilot signal Y ∈ C
τp×M is given by

Y =
N
∑

i=1

γi
√
piφih

T
i +W = ΦX

T +W, (2)

where X = [x1, . . . ,xN ] ∈ C
M×N denotes the effective channel

matrix with xi = γi
√
pihi, Φ = [φ1, . . . ,φN ] ∈ C

τp×N is the

pilot book, and W ∼ CN (0, σ2
IM ) ∈ C

τp×M represents additive

white Gaussian noise.

3. JUICE WITH CLUSTERED ACTIVITY AND

PARTIALLY KNOWN CDI

The signal model in (2) represents a linear measurement where the

(unknown) effective channel matrix X
T exhibits row sparsity. Thus,

detecting the active UEs and estimating their channel gives rise

to a sparse recovery problem from a multiple measurement vector

(MMV) setup, which can be solved via several CS algorithms. For

instance, the Bayesian AMP algorithm [15] can be utilized if the

statistics of a sparse signal are known a priori. However, when such

information is not available, mixed-norm minimization [16] using

deterministic sparsity regularization is often utilized. Clearly, the

additional prior information in AMP leads to superior performance

in general. However, attaining prior CDI is a nontrivial task and

requires network resources to perform a training phase.

In this paper, we aim to tackle the aforementioned issue related

to the acquisition of CDI by adopting a Bayesian framework which

aims at not only detecting the active UEs and estimate their chan-

nels, but also estimating their covariance matrices. More precisely,

by formulating the JUICE as an MAP estimation problem and using

the adequate prior functions, we develop a computationally-efficient

algorithm that solves a relaxed version of the MAP problem itera-

tively via a set of closed-form update rules, as we show next.

The MAP estimates {X̂, γ̂, Σ̂} with respect to the posterior den-

sity given the measurement matrix Y is given by

{X̂, γ̂, Σ̂}= max
X,γ,Σ

p(X, γ,Σ|Y)

= max
X,γ,Σ

p(γ,Σ)p(X|γ,Σ)p(Y|X, γ,Σ)

p(Y)
(a)
= max

X,γ,Σ
p(γ,Σ)p(X|γ,Σ)p(Y|X)

= min
X,γ,Σ

− log p(Y|X)− log p(X|γ,Σ)− log p(γ,Σ)

(b)
= min

X,γ,Σ

1

σ2
‖Y −ΦX

T‖2F − log p(X|γ,Σ)

− log p(Σ)− log p(γ)
(3)

where (a) follows from the Markov chain {γ,Σ} → X → Y and

because p(Y) does not affect the maximization and (b) follows from

the additive Gaussian noise model in (2) and independence of UE

activity and channels. Next, we elaborate the definition of the con-

ditional PDF p(X|γ) and the choice of the priors p(Σ) and p(γ).

3.1. Conditional PDF p(X|γ,Σ)

Since the user activity is controlled by γ, the conditional PDF

p(xi|γi,Σi) is defined as follows:

p(xi|γi,Σi) = CN (xi;0, piΣ
−1
i )γi I(xi = 0)1−γi , (4)

where I(a) is an indicator function that takes the value 1 if a 6= 0,

and 0 otherwise. p(xi|γi,Σi) implies that conditioned on γi = 0,

xi is equal to 0 with probability one, and conditioned on γi = 1, xi

follows a complex Gaussian distribution with zero mean and preci-

sion matrix Σ
−1
i . Furthermore, since xi depends only on γi and Σi,

− log p(X|γ,Σ) =
∑N

i=1 − log p(xi|γi,Σi) is given as

− log p(X|γ,Σ) ∝
N
∑

i=1

−γipMi log |Σi|+
γi

pi
x

H
i Σixi. (5)

3.2. Prior on Precision Matrix

A common and physically grounded prior for an unknown preci-

sion matrix Σi of the Gaussian random variable xi is given by the

Wishart distribution [17], defined as

p(Σi) ∼ W(Σi|Bi, v) = f(Bi, v)|Σi|d exp
(

−Tr(B−1
i Σi)

)

(6)

where f(Bi, v) is a normalization constant given by [17, eq (B.79)],

d = v −M + 1 > 0 where v controls the degrees of freedom of the

distribution, and Bi ∈ C
M×M is a symmetric, positive definite ma-

trix that represents the prior guess for the precision matrix Σi. Sub-

sequently, we write

− log p(Σ) =
N
∑

i=1

− log p(Σi) ∝
N
∑

i=1

−d log |Σi|+ Tr(B−1
i Σi), (7)

where − log(f(B, v)) was dropped as it does not depend on Σi.

3.3. Sparsity-promoting Prior p(γ)

For a sparse signal recovery problem, utilizing prior functions that

promote sparsity while incorporating the possible specific structures

of the sparse signal is the key to achieve accurate solutions. We dis-

cuss two different prior functions that capture the different structural

features of our underlying sparse signal below.

1) Separable prior: Since the UEs have a sparse activity pat-

tern, the optimal sparsity-inducing prior is the ℓ0-norm penalty on

γ, i.e.,
∑N

i=1 I(γi). However, the ℓ0-norm penalty is intractable for

large N . Thus, many surrogate functions have been proposed to

relax it, for instance, log-sum penalty
∑N

i=1 log(γi + ǫ), which is

used herein. This resembles most closely the ℓ0-norm penalty when

ǫ0 → 0. Subsequently, we define a sparsity prior function as

Js(γ) ∝
N
∑

i=1

log(γi + ǫ0). (8)

2) Cluster-sparsity-promoting prior: Although the prior (8) is

an appropriate choice as it: 1) promotes sparsity, 2) is separable

across the UEs, it ignores the considered clustered structure of the

UEs’ activity pattern. To account for this correlated activity, we pro-

pose a cluster-sparsity-promoting prior that captures the relations be-

tween the UE activity indicators belonging to the same cluster, i.e.,

γi, i ∈ Cl. More precisely, we propose the following prior function:

Jc(γ) ∝
C
∑

l=1

log
(

∑

i∈Cl

γi + ǫ0

)

. (9)



While Js(γ) is blind to the cluster sparsity structure, Jc(γ) pro-

motes quite stringently solutions that have clustered sparsity as it has

the tendency to enforce all UEs within each cluster to be detected ac-

tive even if only one UE is active, being thereby susceptible to high

false alarm error rate. Therefore, Jc(γ) would face robustness is-

sues in the instances where the UEs activity pattern does not exhibit

a clustered structure.

4. PROPOSED SOLUTION VIA ADMM

For deriving the proposed solution, we make two technical choices:

1) Inspired by the argument raised in [18], aiming to estimate all

N precision matrices Σi with the available data at the BS may lead

to overfitting. Thus, we restrict the estimation of the N precision

matrices Σi to L precision matrices Σl. More precisely, we assume

that all propagation channels of the UEs within a single cluster share

the same CDI, i.e., hi ∼ CN (0,Σ−1
l ), ∀i ∈ Cl, ∀l = 1, . . . , C.

2) The binary nature of γ renders the MAP estimation problem

intractable for large N . To overcome this challenge, we note that

finding the index set {i | γi 6= 0, i ∈ N} is equivalent to finding

the index set {i | ‖xi‖ > 0, i ∈ N}. Thus, we can eliminate the

variable γ from the optimization problem by approximating each γi
by ‖xi‖ and by relaxing p(γ) by an equivalent prior function p(X)
that depends on ‖xi‖, ∀i ∈ N , as we will show in the next section.

By using the aforementioned arguments and substituting (5) and

(7) into (3), the MAP estimation problem can be rewritten as

{X̂, Σ̂}=min
X,Σ

1

2
‖Y −ΦX

T‖2F − β1 log p(X) + β2

C
∑

l=1

∑

i∈Cl

xH
i Σlxi

pi

−β2

C
∑

l=1

log |Σl|
∑

i∈Cl

pMi ‖xi‖−β3L

C
∑

l=1

(

d log |Σl|+tr(B−1
l

Σl)
)

,

(10)

where regularization weights β1, β2, and β3 control the emphasis on

the priors with respect to the measurement fidelity term.

In the following, we propose an iterative solution by alternating

p(X) over Jc(·) and Js(·). The central idea is to develop an iterative

two-level algorithm, whose outer loop aims at detecting the active

clusters, and the inner loop aims at detecting the active UEs in each

of the estimated active cluster. More precisely, in the outer loop, the

algorithm enforces the detection of active clusters via the cluster-

sparsity-promoting prior Jc in (9). Subsequently, the algorithm runs

an inner loop over the just-estimated active clusters to detect the indi-

vidual active UEs belonging to them by using the sparsity-promoting

prior Js in (8). The algorithm details are presented next.

4.1. Outer Loop

The outer loop aims to detect the set of the active clusters, hence,

we enforce p(X) to promote the cluster-sparsity by − log p(X) =
∑C

l=1 log(
∑

i∈Cl
‖xi‖+ ǫ0). Since − log p(X) is concave, we ap-

ply a majorization-minimization (MM) approximation to linearize

− log p(X) ≈ ∑N

i=1 q
(kc)
i ‖xi‖, where q

(kc)
i =

(∑

i∈Cl
‖x(kc)

i ‖+
ǫ0
)−1

and kc is the MM iteration index for the outer loop. Thus, the

relaxed version of the problem (10) can be solved iteratively as

{X̂(kc+1),Σ(kc+1)} = min
X,Σ

1

2
‖Y −ΦX

T‖2F + β1

N
∑

i=1

q
(kc)
i ‖xi‖

+β2

C
∑

l=1

∑

i∈Cl

x
H
i Σlxi −

C
∑

l=1

µ(kc) log |Σl|+ β3L

C
∑

l=1

tr(B−1
l

Σl),

(11)

where µ(kc) =
(

β2

∑

i∈Cl

p
M
i q

(kc)
i ‖x(kc)

i ‖+ β3Ld
)

.

We develop a computationally efficient ADMM solution for (11)

through a set of sequential update rules, each computed in closed-

form. We introduce two splitting variables Z,V ∈ C
M×N and the

Lagrange dual variable matrices Λv,Λz and define the set of vari-

ables to be estimated as Θ = {X,Σ,Z,V,Λz,Λv}. Subsequently,

we write the augmented Lagrangian as

L(Θ) =
1

2
‖Y −ΦZ

T‖2F + β1

N
∑

i=1

q
(kc)
i ‖xi‖+ β2

N
∑

i=1

v
H
i Σivi

−
C
∑

l=1

(

µ(kc) log |Σl|+ β3Ltr(B
−1
l

Σl)
)

+
ρ

2
‖X−V +

1

ρ
Λv‖2F

+
ρ

2
‖X− Z+

1

ρ
Λz‖2F −

‖Λz‖2F
2ρ

− ‖Λv‖2F
2ρ

.

(12)

ADMM solves to the optimization problem (11) by minimizing

the augmented Lagrangian L(Θ) in (12) over the primal variables

(Z,V,X,Σ), followed by updating the dual variables (Λz,Λv)
[19]. Primal variable update is given by

Z
(kc+1) = min

Z

1

2
‖ΦZ

T −Y‖2F +
ρ

2
‖X(kc) − Z+

1

ρ
Λ

(kc)
z ‖2F (13)

V
(kc+1) = min

V

β2

N
∑

i=1

v
H
i Σ

(kc)
l

vi +
ρ

2
‖X(kc) −V +

Λ
(kc)
v

ρ
‖2F (14)

X
(kc+1) = min

X

N∑

i=1

α
(kc)
i ‖xi‖+ ρ

2
‖X −C

(kc+1)‖2F (15)

Σ
(kc+1)
l =min

Σl

β2

∑

i∈Cl

v
(kc+1)H

i Σlv
(kc+1)
i −µ

(kc+1)log |Σl|

+β3Ltr(B
−1
l Σl), l = 1, . . . , C,

(16)

where C(kc) =
1

2

(

Z(kc+1) +V(kc+1) − Λ
(kc)
z +Λ

(kc)
v

ρ

)

and

α
(kc)
i =

(
β1q

(kc)
i − β2 log |Σ(kc)

l |q(kc)
i

)
.

4.2. Inner Loop

After running the outer loop for some pre-defined Kc iterations, we

detect the set of the estimated active clusters Ŝ =
⋃

j∈J Cj , where

l ∈ J if there exists i ∈ Cl such that ‖xi‖ > ǫ, where ǫ > 0 is

a small predefined parameter. In the inner loop, the proposed algo-

rithm aims to detect the active UEs belonging to Ŝ by using the sepa-

rable sparsity-promoting prior − log p(X) ∝ ∑

i∈Ŝ log(‖xi‖+ ǫ0).
Furthermore, we apply the MM approximation to linearize the con-

cave − log p(X) ≈ ∑

i∈Ŝ g
(kc)
i ‖xi‖, where ku is inner loop it-

eration index and g
(ku)
i =

(
‖x(ku)

i ‖+ ǫ0
)−1

. The optimization

problem for the inner loop is given by

{X̂(ku+1)

Ŝ
,Σ(ku+1)} = min

X
Ŝ
,Σ

1

2
‖Y −Φ

Ŝ
X

T
Ŝ
‖2F + β1

∑

i∈Ŝ

g
(ku)
i ‖xi‖

+β2

∑

l∈J

∑

i∈Ŝl

x
H
i Σlxi − β2

∑

l∈J

log |Σl|
(

∑

i∈Cl

g
(ku)
i ‖xi‖+ β3Ld

)

+β3L
∑

l∈J

tr(B−1
l

Σl),

(17)

where ΦŜ and XŜ denote the matrices Φ and X, respectively, re-

stricted to the set of the estimated active clusters, Ŝ.



Algorithm 1: The proposed JUICE algorithm

Input: Φ, {Bl}Cl=1, β1,β2, β3 ,ρ, ǫ0, ǫ, kumax , kcmax , Kc.

Initialization: X
(0),V(0),Z(0),Λ(0)

v ,Λ(0)
z , ku = 1, kc = 1.

1 BS receives Y, compute and store
(

Φ
T
Φ

∗ + ρIN
)−1

2 while kc < kcmax or ‖X(kc) −X(k−1)‖ < ǫ do

3 Z
(kc+1) = (ρX(kc) +Λ

(kc) +Y
T
Φ

∗)(ΦT
Φ

∗ + ρIN )

4 v
(kc+1)
i

=
(

β2Σ
(kc)
i

+ρIM
)−1(ρx

(k)
i

+λ
(kc)
vi ), i = 1, . . . , N

5 x
(kc+1)
i =

max
{

0,‖c
(kc)
i

‖−
α
(kc)
i
2ρ

}

c
(kc)
i

‖c
(kc)
i

‖
, i = 1, . . . , N

6 Σ
(kc)+1
l

=
(

β2

∑

i∈Cl
viv

H
i +β3LB

−1
l

)

µ(kc), l = 1, . . . , C

7 Λ
(kc+1)
z = Λ

(kc)
z + ρ

(

X
(kc+1)

− Z
(kc+1)

)

8 Λ
(kc+1)
v = Λ

(kc)
v + ρ

(

X
(kc+1)

− V
(kc+1)

)

9 if
(

kc mod Kc
)

= 0 then

10 Ŝ=
⋃

j∈J Cj , {l ∈ J : ∃i ∈ Cl|‖xi‖ > ǫ}
11 while ku < kumax do

12 Solve (17) using the similar update rules as (18), but

using g
(ku)
i =

(‖x(ku)
i + ǫ0‖

)−1

13 ku ← ku + 1

14 X
(kc)

Ŝ
=X

(ku)

Ŝ
, Z(kc)

Ŝ
=Z

(ku)

Ŝ
, V(kc)

Ŝ
=V

(ku)

Ŝ
,

Λ
(kc)
z
Ŝ

=Λ
(ku)
z
Ŝ

, Λ(kc)
v
Ŝ

=Λ
(ku)
v
Ŝ

15 ku = 1,

16 kc ← kc + 1

4.3. ADMM Update Rules

Owing to the applied splitting techniques, all the sub-problems (13)–

(16) are convex, thus, can be solved analytically via closed-form

formulas. Further, the optimization over X, V, and Σ is separable

over the UEs and the clusters, allowing for parallel updates. Thus,

the outer loop update is given as



























Z(kc+1) =
(

ρX(kc) +Λ(kc) +YTΦ∗
)(

ΦTΦ∗ + ρIN
)−1

,

v
(kc+1)
i =

(

β2Σ
(kc)
i + ρIM

)−1
(ρx

(k)
i + λ

(kc)
vi ), ∀i ∈ N ,

x
(kc+1)
i = max

{

0, ‖c(kc)
i ‖ − α

(kc)
i
2ρ

}

‖c(kc)
i ‖c(k)i , ∀i ∈ N ,

Σ
(kc)+1
l

=
(

β2
∑

i∈Cl
v
(kc)
i v

(kc)
H

i + β3LB
−1
l

)

µ(kc), l = 1, . . . , C.

(18)

The update rules for the inner loop, i.e., the solution to (17) is similar

to (18) but with changing q
(kc)
i to g

(ku)
i . Algorithm 1 provides the

proposed ADMM solution to optimization problem (10).

5. NUMERICAL RESULTS

Consider a network with one BS equipped with M = 20 antennas

serving a N = 500 UEs distributed equally over C = 20 clusters,

where K = 16 UEs are active at each Tc. Each UE is assigned a

unique unit-norm pilot sequence that is generated from an i.i.d. com-

plex Bernoulli distribution. We set each Bl,∀l, as Bl = ζΨl+(1−
ζ) 1

L

∑

i∈Cl
Σi, where Ψl is a random semi-definite Hermitian ma-

trix to model the error in the prior knowledge on the true precision

matrix Σl, whereas the parameter ζ controls the level of average

mismatch between Σi and Bl, ∀i ∈ Cl, and it is set as ζ = 0.1.

Channel estimation is quantified in terms of normalized mean

square error (NMSE) defined as
E[‖X−X̂S‖2F]

E[‖X‖2
F]

, where the expecta-

tion is computed via Monte-Carlo averaging over all sources of ran-

domness. UEs activity detection is quantified in terms of support

recovery rate (SRR), defined as
|S∩Ŝ|

|S−Ŝ|+K
, where Ŝ denotes the de-
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Fig. 2: Performance evaluation with random activity pattern.

tected support by a given algorithm.

The performance of proposed Algorithm 1 is compared with:

1) iterative reweighted ℓ2,1 (IR-ℓ2,1) via ADMM [10], 2) MAP-

ADMM [11], and 3) T-SBL [18], where for MAP-ADMM and

T-SBL, both Σ and σ2 are known to the BS. For an optimal NMSE

benchmark, we consider the oracle minimum mean square error

(MMSE) estimator having prior knowledge on the true set of active

UEs and their covariance matrices.

We consider two cases for UEs’ activity pattern: 1) clustered:

with 2 active clusters, each with 8 active UEs, and 2) random, where

K = 16 active UEs are randomly distributed among the clusters.

Fig. 1(a) presents the SRR against the pilot length for the clus-

tered activity pattern. The result shows that Algorithm 1 provides

the highest SSR, which can be explained by the fact that Algorithm

1 effectively exploits the clustered structure of the activity pattern

using the proposed prior functions. Similarly, the proposed algo-

rithm moderately outperforms MAP-ADMM and T-SBL in terms of

NMSE (Fig. 1(b)). In summary, Fig. 1 clearly shows the utility of

the proposed algorithm in JUICE with clustered activity patterns.

Fig. 2(a) illustrates the SRR for the random activation scenario.

Algorithm 1 achieves performance similar to MAP-ADMM and T-

SBL while providing significant gains over IR-ℓ2,1. On the other

hand, Fig. 2(b) shows that while the proposed algorithm clearly out-

performs IR-ℓ2,1 in terms of channel estimation accuracy, it provides

just a slightly inferior NMSE performance compared to T-SBL and

MAP-ADMM. These results show the robustness of the proposed al-

gorithm to the structure of the activity pattern: the pattern can deviate

from the desired clustered form to fully random activity, rendering

the algorithm effective for a wide range of UE activity models.

6. CONCLUSION

We derived a Bayesian framework to address the JUICE with clus-

tered activity in mMTC under correlated MIMO channels without

prior knowledge of the exact CDI. To encourage solutions with clus-

ter sparsity, we proposed a cluster-sparsity-promoting function that

correlates the activity of the UEs belonging to the same cluster. We

developed an ADMM algorithm that provides a computationally-

efficient solution via a sequence of closed-form update rules. The

numerical results showed the improvement and robustness brought

by the proposed algorithm.
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