AUTO-FAS: SEARCHING LIGHTWEIGHT NETWORKS FOR FACE ANTI-SPOOFING
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ABSTRACT

With the development of mobile devices, it is hopeful and
pressing to deploy face recognition and face anti-spoofing
(FAS) model on cell phone or portable devices. Most of
existing face anti-spoofing methods focus on building com-
putational costly detector for better spoofing face detection
performance. However, these detectors are unfriendly to be
deployed on the mobile device for real-time FAS applica-
tions. In this paper, we propose a neural architecture search
(NAS) based method called Auto-FAS, intending to discover
well-suitable lightweight networks for mobile-level face anti-
spoofing. In Auto-FAS, a special search space is designed to
restrict the model’s size, and pixel-wise binary supervision
is used to improve the model’s performance. We demon-
strate both the effectiveness and efficiency of the proposed
approach on three public benchmark datasets, which shows
the potential real-time FAS application for mobile devices.

Index Terms— Face anti-spoofing, mobile, neural archi-
tecture search

1. INTRODUCTION

Nowadays, face recognition has been widely used in lots of
identity verification and payment applications. Face anti-
spoofing (FAS), intending to protect face recognition from
presentation attacks, has also developed rapidly. Traditional
face anti-spoofing methods [ 1, 2] usually extract hand-crafted
features from the facial images to capture the spoofing pat-
terns, which is efficient but limited performance for such face
security applications. Recently, deep learning based face anti-
spoofing methods [3, 4, 5, 6, 7] train expert-designed models
to detect the presentation attacks. These models usually have
huge parameters and are computational costly, so that they
are usually deployed in backend servers.

As mobile devices are widely used in daily lives, the de-
mand for deploying face recognition and the corresponding
face anti-spoofing on mobile devices arises. Deploying face
anti-spoofing on mobile devices has several advantages, e.g.,
convenient for customer to use, little network data transmis-
sion, efc.. However, considering the limited computational
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Fig. 1.  Our Auto-FAS learns to search for a well-suited archi-
tecture on a specific FAS dataset, and it is supervised by the deep
pixel-wise binary supervision during searching. Auto-FAS discov-
ers lightweight networks from a FAS search space, which consists
of a large number of candidate architectures. These candidates are
generated by combining basic operations, such as a 3x3 separate
convolutional layer and a 3 x3 max pooling operation.

performance and the storage of mobile devices, the mobile-
level model should be lightweight.

In order to obtain lightweight models, researchers tra-
ditionally utilize pruning [8], quantization [9] or distillation
[10] methods to compress heavy models. However, these
methods more or less damage the model’s performance in the
compressing procedure. In this paper, we propose a neural
architecture search (NAS) based method (Auto-FAS) to dis-
cover a well-performing lightweight model for mobile-level
face anti-spoofing.

NAS methods can be categorized into three directions: 1)
Gradient based [11, 12], 2) Evolution algorithm based [13],
and 3) Reinforcement learning based [14, 15]. Compared
with reinforcement learning and evolution based network
search methods, gradient based methods search the network
architecture more efficiently, mainly because they relaxes the
discrete operations decision process as weighted summation
of different operations. In this paper, we choose the gradient
based methods to search the lightweight face anti-spoofing



model in Auto-FAS for its fast convergence.

In previous NAS algorithms [ 1, 12], cross-entropy loss
is utilized as the supervision for both the searching and the
retraining stage. However, face anti-spoofing task differs
greatly from the generic object classification task. The FAS
task prefers to capture more detailed patch-based clues for
distinguishing spoofing faces from living faces, while the
generic object classification task focus more on semantic fea-
tures. Compared with cross-entropy, dense pixel-wise binary
cross-entropy[ | 6] has been proved to be more effective for
FAS task. Thus, in Auto-FAS, we adopt pixel-wise binary
supervision in both the searching and the retraining stage.

Our contributions are summarized as the follows:

e We propose a neural architecture search based method
(Auto-FAS) to search a lightweight face anti-spoofing
model which simultaneously satisfies the requiremet of
small parameters, low computational cost and high per-
formance. To the best of our knowledge, it is the first
work to introduce deep pixel-wise binary supervision
based NAS method to search mobile-level networks
specifically for face anti-spoofing task.

e We executed comprehensive experiments on OULU-
NPU[17], CASIA-MFSD [ 18] and Replay-Attack [19]
datasets for intra- and cross-testing. All experimen-
tal results show that the searched mobile-level model
(0.27M parameters) performs comparable with the
other state-of-the-art methods.

2. METHODOLOGY

Instead of manually designing a lightweight model for mobile-
level face anti-spoofing problem, we search such a model
automatically. In this paper, inspired by recent developed
gradient based NAS methods, we propose a novel neural
architecture search based method (Auto-FAS) to discover
lightweight networks for face anti-spoofing task. Here, we
will detail our Auto-FAS method, including the search space,
the search strategy and the supervision.

2.1. Auto-FAS

In Auto-FAS, the searched network is a cascade of several
cells, and each cell is a directed acyclic graph (DAG) con-
taining N nodes. Each node of the graph is formed using a
feature 2(*). The edge which connects node z(*) and z() is
denoted as (4, j), and on this edge, z(® passes forward to node
x9) through operation f(*/). Node 2/) is a summation of all
the forward results of pre-nodes. Therefore, node ) can be

presented as
zy = [0 (@), (M
i

where 0 < i < j < N — 1. The operation f(*7) is a com-
position of several candidates (e.g., convolution, pooling, and
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of two previous cells as inputs, as illustrated in the middle.

A Block with 3 Normal Cells

etc.). So the operation f(*7) can be represented as
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where O is the set of candidate operations, and o(x;) is the
output of operation o with node z; as the input. ﬂ((f’]) is the
weight of the operation o in (/) (z;), and when 5" getting

larger and larger, f(*7) is more and more determined by the

operation o. albd)

late B(() ) Wwith the softmax function. As a summary, all the

trainable a((,i’j ) determines the networks architecture. So, the

task of searching the network architecture turns to optimizing
(4,4) s

if a trainable variable that is used to calcu-

all oy, ?’ in the network.

2.1.1. Search Space

To ensure both the efficiency and effectiveness of the searched
architectures, Auto-FAS holds a search space specially de-
signed for mobile-level face anti-spoofing task, which is il-
lustrated in Fig.2.

Network level. Unlike the state-of-the-art method [6]
using 256x256x6 facial image (RGB and HSV color space)
as input, our Auto-FAS only takes 108x108x3 facial image
(RGB) as input and predict the 14x14 binary map, which is
more suitable for mobile-level application. We search for two
kinds of cells in networks, i.e., a normal cell and a reduction
cell. For the normal cell, each operator function has the stride
of 1 while the first operator function has the stride of 2 for the
reduction cell. The input nodes of each cell are propagated
from the output nodes of two previous cells.

Cell level. Each cell contains 7 nodes, including two in-
put nodes, four intermediate nodes and one output node. The
edge connections to the intermediate nodes denote summa-
tion operation while the output node concatenates all results
from intermediate nodes.

Operator level. There are six operator candidates in
Auto-FAS, i.e., ’none’, 'max_pool_3x3’, ’avg_pool_3x3’,
’skip_connect’, ’sep_conv_3x3’ and ’sep_conv_5x5’. The
reason for only considering separate convolutions is that
such operator is proved to be more efficient in mobile-

level networks. As a result, the total searching space is
2 x 6(2F3H4+5) = 2 x 614,



2.1.2. Search Strategy

Following the similar bi-level optimization strategy [
denote o = {oz((,” )} as the set of all o\ ), and o presents the
network architecture. Then the prediction of the network can

be formulated as

1, we

§=F(x;0,0), 3

where 6 is the network’s weight. Weight 6 and architecture «
are optimized alternatively on the train and validation set. On
the train set, the optimizing of 6 can be formulated as

9(0{) = 9 - ’YI'VGLtrain(97 O[), (4)

where 6(«) is the update result of 6 conditioned by current
architecture .. y; and Ly, are the learning rate and loss on
the train set, respectively. On the validation set, the optimiz-
ing of « can be formulated as

a=a—v2VaoLlya(0(a), a) )
=0 — VQ'V(XLval (9 -7 'VGLtrm'n(aa Oé), a)a

where 5 and L,,; are the learning rate and the loss on the
validation set, respectively. By alternatively optimizing 6
and « with Eq.(4) and Eq.(5), the searching stage converges
gradually. After convergence,the operations with the largest
Weight MarocO,o#none 65727”
two largest mazroco,otnone 889 are adopted to form the
final discrete architecture.

and two incoming edges with

2.2. Supervision

Traditionally, simple binary softmax loss function is used to
supervise the face anti-spoofing model to learn discrimination
between spoofing and living faces. Recently, some work show
that pixel-wised facial depth supervision [5] which provides
dense supervision for the training of face anti-spoofing model,
and leads the model learn better discrimination. However,
collecting facial depth label is somewhat costly. In this paper,
to take the advantage of pixel-wise supervision [16], and to
improve the network search efficiency, we use a pixel-wise
binary cross-entropy loss to supervise the search procedure.
It can be seen in Fig. 1 that the binary pixel-wise label is easy
to generate, which can be treated as expand of the patch-level
binary mask of spoofing attacks. The loss function can be
formulated as

L(z) = ﬁzz —yij-log(yiz) — (1 —yij)-log(1 — yij),
i=1j=1

(6)
where y is the binary pixel-wise label, and m and n are the
height and width of y, respectively. ¢ is the model’s prediction
of input « with the model’s weight 6 with respect to architec-
ture parameters «. y; ; is the value at the ¢-th row and j-th col
of y, so is ¥j;.

Table 1. Intra testing result on OULU-NPU.

Prot. Method APCER(%) | BPCER(%) | ACER(%)
DeepPixBiS [16] 0.83 0.0 0.42
HKBU [20] 9.6 18.3 14.0
1 NWPU [20] 8.8 21.7 15.2
Auxiliary [6] 1.6 1.6 1.6
Auto-FAS (Ours) 12.1 5.0 8.5
DeepPixBiS [16] 11.39 0.56 5.97
HKBU [20] 13.9 5.6 9.7
) NWPU [20] 12.5 26.7 19.6
Auxiliary [6] 2.7 2.7 2.7
Auto-FAS (Ours) 19.4 4.8 12.1
DeepPixBiS [16] 11.7+19.6 10.6+14.1 11.14£9.4
3 HKBU [20] 12.8+11.0 11.449.0 12.1+6.5
NWPU [20] 3.24+2.6 33.9+10.3 18.5+4.4
Auxiliary [6] 27413 | 3.1£17 | 29+15
Auto-FAS (Ours) 11.3+£7.3 9.245.2 10.2+3.3
DeepPixBiS [16] 36.74+29.7 13.3+14.1 | 25.0£12.7
4 HKBU [20] 33.3+37.9 27.5420.4 | 30.4420.8
NWPU [20] 30.8+7.4 4424233 37.5+9.4
Auxiliary [6] 9.3+5.6 10.4+6.0 9.5+6.0
Auto-FAS (Ours) 17.949.8 9.249.7 13.6+7.5

3. EXPERIMENT

In this section, we will show detail of our experiment, includ-
ing the experiment setting, results and analysis.

3.1. Database

In this paper, we evaluate the proposed Auto-FAS on three
popular face anti-spoofing databases. They are OULU-
NPU[17], CASIA-MFSD [ 18] and Replay-Attack [ 19]. OULU-
NPU contains 4950 high-resolution real and spoofing videos,
and four protocols to validate the generalization (e.g., un-
seen illumination and attack medium) of models. We strictly
obey these protocols in our experiment. CASIA-MFSD and
Replay-Attack contain lots of low-resolution real and spoof-
ing videos, and they are used for cross testing.

3.2. Metrics

Three metrics are used in the experiment on OULU-NPU.
They are: 1) Attack Presentation Classification Error Rate
(APCER); 2) Bona Fide Presentation Classification Error
Rate (BPCER); 3) ACER which calculates the mean of
APCER and BPCER as shown in Eq.(7). Metric Half Total
Error Rate (HTER) is used in the cross testing experiments.

ACER = (APCER + BPCER))2. 7

3.3. Implementation Details

The proposed Auto-FAS is implemented with Pytorch library.
8 NVIDIA GTX 1080Ti GPUs are used for searching, and the
total batch size is 256. Partial channel connections [12] are
adopted for accelerating search process. For optimizing net-
work weight 6, we use the momentum SGD optimizer with
initial learning rate of 0.05 following cosine schedule, and the



Table 2. Cross-dataset testing result on CASIA-MFSD and
Replay-Attack. HTER (%) is the metric here.

Method Train Test Train Test

CASIA- | Repaly- | Repaly- | CASIA-

MFESD Attack | Attack MESD
Motion-Mag [21] 50.1 47.0
Spectral cubes [22] 344 50.0
FaceDs [23] 28.5 41.1
Auxiliary [6] 27.6 28.4
Auto-FAS (Ours) 15.6 40.7

Table 3. Performance of searched networks with different
supervision on OULU-NPU Protocol-1.

Supervision APCER(%) | BPCER(%) | ACER(%)
Binary cross-entropy 12.5 16.0 14.2
Pixel-wise binary cross-entropy 12.1 5.0 8.5

momentum is set to 0.9, and weight decay to le-4. For archi-
tecture parameters o, we use the Adam optimizer with fixed
learning rate of 6e-3, and set the momentum to {0.5,0.999}
and weight decay to le-3. We search the network for 40
epochs on the Protocol-1 of OULU-NPU. Fig. 3 visualizes
the searched network architecture.

3.4. Experiment on OULU-NPU

The experimental result of Auto-FAS on OULU-NPU dataset
is shown in Tab.1. We can see that on all protocols of OULU-
NPU, Auto-FAS outperforms HKBU [20] and NWPU [20]
with clear margin, which indicates that the searched model is
robust to all protocols. Another phenomenon is that the more
challenging the protocol is, the smaller the margin between
Auto-FAS and Auxiliary becomes (protocol 3 and 4 are more
challenging than protocol 1 and 2). Specifically, compared
with DeepPixBiS [16] which is supervised by pixel-wise bi-
nary loss, Auto-FAS decreases the ACER by 8.1% and 45.6%
on protocol 3 and 4, respectively. This experimental result
reveals that the proposed Auto-FAS performs satisfactorily.

3.5. Cross Testing Experiment

The cross testing experiment is conducted on the dataset
CASIA-MFSD and Replay-Attack. There are two proto-
cols. One is training the model on CASIA-MFSD and then
testing it on Replay-Attack. Another is training on Replay-
Attack and testing on CASIA-MFSD. The experiment result
is shown in Tab.2. We can see that our Auto-FAS achieves
the state-of-the-art performance on the first protocol. Com-
pared with the Auxiliary model, it decreases the ACER by
43.5%. And on the second protocol, Auto-FAS also achieves
comparable performance. The cross testing result indicates
that Auto-FAS generalizes well across different databases.

3.6. Impacts of Different Supervision

In this experiment, we search two networks on OULU-NPU
Protocol-1 with two different supervisions, respectively. The
two supervisions are traditional binary cross-entropy and
deep pixel-wise binary cross-entropy. It can be seen from
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Fig. 3. Neural architecture searched by Auto-FAS.

Table 4. The efficiency and performance comparison on

OULU-NPU Protocol-1.
Method Params (Mb) | GFLOPS | ACER (%)
ResNet-18 11.69 0.48 11.91
Auxiliary (Depth) [6] 2.20 8.50 7.90
Auto-FAS (Ours) 0.27 0.53 8.50

Tab.3 that the searched network supervised by pixel-wise bi-
nary loss achieves 8.5% ACER, outperforming the network
searched with binary loss with a large margin.

3.7. Efficiency Analysis

A model deployed in mobile devices should has small size
and low FLOPS to save storage and computational cost, re-
spectively. We analyse the model parameters, and FLOPS
of Auto-FAS and other popular models in face anti-spoofing
task, and show the results in Tab.4. The Auxiliary (Depth)
model is the Auxiliary model trained only with facial depth la-
bel. For fair comparison, the Auxiliary (Depth) model is also
trained on 108x108x3 RGB facial image, so is the ResNet-
18 model. It can be seen in Tab.4 that the Auto-FAS is the
most efficient model as it has only 0.27Mb parameters and
0.53 GFLOPS. In contrast, ResNet-18 has much more param-
eters and performs worse than Auto-FAS. Auxiliary (Depth)
outperforms Auto-FAS slightly, however it needs more pa-
rameters and computational cost. All the results show that
Auto-FAS is promising and reliable to be applied to practical
mobile-level face anti-spoofing.

4. CONCLUSION

In this paper, we search a lightweight face anti-spoofing
model (Auto-FAS) for mobile-level applications. Auto-FAS
takes advantage of pixel-wised binary supervision to search
well-performing tiny model for face anti-spoofing. The ex-
perimental results show that Auto-FAS makes a good trade-
off between efficiency and accuracy, indicating the searched
lightweight model is suitable to be applied on mobile devices.
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