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ABSTRACT

Joint user identification and channel estimation (JUICE) is a main
challenge in grant-free massive machine-type communications
(mMTC). The sparse pattern in users’ activity allows to solve the
JUICE as a compressed sensing problem in a multiple measure-
ment vector (MMV) setup. This paper addresses the JUICE under
the practical spatially correlated fading channel. We formulate the
JUICE as an iterative reweighted `2,1-norm optimization. We de-
velop a computationally efficient alternating direction method of
multipliers (ADMM) approach to solve it. In particular, by lever-
aging the second-order statistics of the channels, we reformulate
the JUICE problem to exploit the covariance information and we
derive its ADMM-based solution. The simulation results highlight
the significant improvements brought by the proposed approach in
terms of channel estimation and activity detection performances.

Index Terms— mMTC, ADMM, user identification, channel
estimation, spatially correlated channels.

1. INTRODUCTION

The demand for internet of things (IoT) applications drives the de-
ployment of massive machine-type communications (mMTC) as a
major use case in 5G wireless technologies. mMTC implies spo-
radic uplink communication from a massive number of IoT devices,
called user equipments (UEs). Therefore, communications with low
signalling overhead is needed. Therefore, grant-free access has been
identified as a key enabler for mMTC [1]. It requires joint identi-
fication of the active UEs and estimation of their channel state in-
formation (CSI), known as the joint user identification and channel
estimation (JUICE) problem.

The sparse user activity pattern along with the multi-antenna
base station (BS) setup motivates the formulation of JUICE as a
compressed sensing (CS) [2] problem in a multiple measurement
vector (MMV) setup. The optimal solution for sparse signal recovery
requires solving an NP-hard `0-norm minimization problem. There-
fore, several approaches have been proposed to overcome this limita-
tion, e.g., mixed norm minimization [3] (and the references therein),
iterative algorithms [4, 5], and sparse Bayesian learning (SBL) [6].

In the context of grant-free based JUICE, the existing works fo-
cus on techniques based on greedy algorithms [7, 8], approximate
message passing [9–12], SBL [13], and maximum likelihood estima-
tion [14]. Nevertheless, since the aforementioned works assume that
the channel components are independent, the performance of JUICE
may deteriorate as this assumption is not always practical [15].
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In this paper, we formulate the JUICE as an iterative reweighted
`2,1-norm minimization. While the `1-norm penalty follows from
the conventional approximation of `0-norm to relax the JUICE into
a tractable convex problem, the reweighting compensates for the key
difference between the `1 and `0-norms: the dependency on coeffi-
cients’ amplitude [16]. Moreover, differently from the assumption of
uncorrelated channels as in the aforementioned works [7–11,13,14],
this paper addresses the JUICE in the more practical spatially cor-
related multiple-input multiple-output (MIMO) channels. In such a
channel model, the channel spatial correlation varies slowly com-
pared to the channel realizations, hence, they can be estimated with
high accuracy in practice [17]. Thus, the spatial correlation informa-
tion can be exploited to enhance the JUICE performance.

The main contributions of this paper are summarized as fol-
lows. First, when the second-order statistics of the channels are not
available, we formulate the JUICE as an iterative reweighted `2,1-
norm minimization and we derive a computationally efficient solu-
tion based on alternating direction method of multipliers (ADMM)
by providing a closed-form expression to each sub-problem at each
iteration. Second, when the BS knows the channels’ second-order
statistics, we augment the optimization problem with a penalty term
on the deviation of the covariance matrices of the estimated chan-
nels from their respective true covariance matrices. Furthermore,
once the active UEs are identified, a minimum mean square error
(MMSE) estimator is deployed to improve channel estimation. The
proposed approaches are empirically shown to significantly improve
the JUICE performance.

2. SYSTEM MODEL

Consider a single cell uplink communication scheme with a sin-
gle BS that is equipped with a uniform linear array (ULA) con-
taining M antennas surrounded by a set of N single-antenna UEs
N = {1, . . . , N}. We consider a block fading channel over each
coherence period Tc. The channel response hi ∈ CM between the
ith UE and the BS is modelled as

hi =
1
√
Pi

Pi∑
p=1

ωi,pa(ψi,p), ∀i ∈ N , (1)

where Pi is the number of physical signal paths, ωi,p ∈ C ac-
counts for the pth path gain and a(ψi,p) ∈ CM is the array re-
sponse of the ULA given as [a(ψi,p)]m = e−j(m−1)2π∆r cos(ψi,p),
m = 1, . . . ,M , where ∆r is the normalized space between each pair
of BS antennas, and ψi,p is the angle of arrival of the lth path [18].

At each coherence interval Tc, a new and independent channel
realization hi is observed in (1). The channels are considered to be
wide-sense stationary [17], i.e., the channel covariance matrix of the
ith UE, denoted as Ri = E[hih

H
i ] ∈ CM×M , varies in a slower

time-scale compared to the channel realizations and it remains fixed
for τs coherence intervals, where τs can be on the order of thousands



[15, 19]. We assume the common convention that the covariance
matrices {Ri}Ni=1 are known by the BS [17].

Due to the sporadic nature of mMTC, onlyK � N UEs are ac-
tive at each Tc. Therefore, for coherent data detection, the active UEs
have to be detected and their channels have to be estimated. To this
end, the BS assigns to each UE i ∈ N a unit-norm pilot sequence
φi ∈ Cτp . To mitigate the channel gain difference between the UEs,
a power control policy is deployed such that UE i transmits with a
power ρi that is inversely proportional to the average channel gain
[15]. We define the pilot matrix as Φ = [φ1, . . . ,φN ] ∈ Cτp×N

and the effective channel matrix as X = [x1, . . . ,xN ]T ∈ CN×M ,
where xi = γi

√
ρihi is the effective channel for ith UE and γi is an

activity indicator, defined as

γi =

{
1, i ∈ S
0, otherwise,

where S ⊆ N , |S| = K, denotes the set of active UEs.
During each Tc, the K active UEs transmit their pilot sequences

to the BS, and the received pilot signal Y ∈ Cτp×M is given by

Y = ΦX + W, (2)

where W ∈ Cτp×M is additive white Gaussian noise with indepen-
dent and identically distributed (i.i.d.) elements as CN (0, σ2),

3. PROPOSED SOLUTION VIA ITERATIVE APPROACH

3.1. JUICE via Reweighted `2,1-Norm Minimization

Since the rows of the effective channel matrix X in (2) correspond-
ing to the inactive UEs are zero, X has a row-sparse structure. Thus,
JUICE can be modeled as a joint sparse MMV reconstruction prob-
lem. The optimal sparse recovery requires solving a combinatorial
NP-hard `0-norm minimization problem. Thus, a convex relaxation
in the form of `2,1-norm is considered in practice to obtain a com-
putationally tractable problem, commonly formulated as

min
X

1

2
‖ΦX−Y‖2F + β1‖X‖2,1. (3)

However, unlike the democratic `0-norm where the non-zero coef-
ficients are penalized equally, `1-norm is biased toward larger mag-
nitudes, i.e., coefficients with large amplitude are penalized more
heavily than smaller ones [16]. Therefore, striving for a better re-
covery, we use the log-sum penalty to relax the `0-norm as

min
X,u

1

2
‖ΦX−Y‖2F + β1

N∑
i=1

log(ui + ε0)

s.t. ‖xi‖2 ≤ ui, ∀i ∈ N .
(4)

The log-sum penalty resembles most closely the `0-norm penalty
when ε0→ 0. However, a practical choice is to set ε0 to be slightly
less than the expected amplitude of the non-zero rows in X [16].

The optimization problem in (4) is a sum of a convex and a con-
cave function, thus, it is not convex in general. Therefore, we rely on
majorization-minimization (MM) approach and we approximate the
concave penalty by its first-order Taylor expansion. Subsequently,
we solve (4) as an iterative reweighted problem given as

X(l+1) = min
X

N∑
i=1

β1g
(l)
i ‖xi‖2 +

1

2

∥∥ΦX−Y
∥∥2

F
, (5)

where (l) denotes the MM iteration and g(l)
i = (ε0 + ‖x(l)

i ‖2)−1.
The problem in (5) is convex and can be solved optimally uti-

lizing standard convex optimization techniques. However, as the
mMTC system may grow large, the standard techniques may not

be computationally efficient. Thus, we propose the use of ADMM
to solve the optimization problem in (5) at each MM iteration (l).

Specifically, we introduce an auxiliary variable Z ∈ CM×N and
the dual variable Λ ∈ CM×N , hence, the augmented Lagrangian of
(5) is given by

min
X,Z

β1

N∑
i=1

g
(l)
i ‖xi‖2+

1

2
‖ΦZ−Y‖2F+

ρ

2
‖X−Z+

Λ

ρ
‖2F−

‖Λ‖2F
2ρ

, (6)

where ρ is a positive parameter. The ADMM solves the optimization
problem through sequential updates of (X,Z,Λ) as follows [20]:

Z(k+1) := min
Z

1

2
‖ΦZ−Y‖2F +

ρ

2
‖X(k) − Z +

1

ρ
Λ(k)‖2F (7)

X(k+1) := min
X

N∑
i=1

β1g
(l)
i ‖xi‖2 +

ρ

2
‖X− Z(k+1) +

1

ρ
Λ(k)‖2F (8)

Λ(k+1) := Λ(k) + ρ
(
X(k+1) − Z(k+1)

)
. (9)

where the superscript (k) denotes the ADMM iteration index. The
derivations of the ADMM steps (7) and (8) are detailed below.

The Z-update step in (7) solves a convex optimization problem.
Thus, Z(k+1) is obtained by setting the gradient of the objective
function in (7) with respect to Z to zero, resulting in

Z(k+1) =
(
ρX(k) + Λ(k) + YTΦ∗

)(
ΦTΦ∗ + ρIN

)−1
, (10)

where (·)∗ denotes the complex conjugate operator. Note that the
inversion

(
Φ∗ΦT + ρIN

)−1 can be computed once and stored to
expedite the Z-update step.

Next, the X-update in (8) can be decomposed into N sub-
problems as follows

x
(k+1)
i := min

xi

β1g
(l)
i

ρ
‖xi‖2 +

1

2
‖xi − c

(k)
i ‖

2
2, ∀i ∈ N , (11)

where c
(k)
i = z

(k+1)
i − 1

ρ
λ

(k)
i and λ

(k)
i is the ith column of Λ(k).

The problem in (11) admits the closed-form solution given by [21]

x
(k+1)
i =

max
{

0, ‖c(k)
i ‖2 −

β1g
(l)
i
ρ

}
‖c(k)
i ‖2

c
(k)
i , ∀i ∈ N . (12)

3.2. Covariance Aided JUICE

Although the sparsity of the matrix X is utilized in (4), the infor-
mation embedded in channel covariance matrices available at the BS
is neglected. On this account, we reformulate the problem in (4) so
that it exploits also the covariance information. The key idea is that
the sample covariance matrix xix

H
i for each active UE i ∈ S carries

similar information as the true scaled covariance matrix R̃i = ρiRi.
Based on the above arguments, we augment the optimization

problem in (4) with a regularization term that penalizes the devia-
tion of the sample covariance matrix xix

H
i from the true scaled co-

variance matrix R̃i. Thus, the covariance aided JUICE problem is
expressed as follows

min
X,u

1

2
‖ΦX−Y‖2F + β1

N∑
i=1

log(ui + ε0)

+β2

N∑
i=1

I(ui)‖xixH
i − R̃i‖2F s.t. ‖xi‖2 ≤ ui, ∀i ∈ N ,

(13)

where β2 controls the penalty on the covariance deviation term and
I(·) is an indicator function given by

I(ui) =

{
1, ui > 0

0, ui = 0.
(14)



Note that I(ui) ensures that only the estimated active UEs are
penalized with the covariance regularization term. The indicator
function is hard to handle due to its combinatorial nature. There-
fore, we relax (14) with a function f(·) that approximates the sign
step functions for positive values v, i.e., we define

f(v;κ) =
log
(
1 + κv

)
log(1 + κ)

, (15)

where κ is a positive parameter to adjust the steepness of the function
for small input values [22]. Subsequently, (13) is relaxed as

min
X,u

1

2
‖ΦX−Y‖2F + β1

N∑
i=1

log(ui + ε0)

+β2

N∑
i=1

f(ui;κ)‖xixH
i − R̃i‖2F s.t. ‖xi‖2 ≤ ui, ∀i ∈ N .

(16)
Since both the log-sum penalty and f(ui;κ) are concave func-

tions, we rely on the MM approach and we approximate the problem
in (16) by its first-order Taylor expansion at u(l). Subsequently, with
the use of some simple manipulations, we can solve (16) as the fol-
lowing iterative reweighted problem given at lth MM iteration by

X(l+1) = min
X

N∑
i=1

β1g
(l)
i ‖xi‖2 +

1

2

∥∥ΦX−Y
∥∥2

F

+β2

N∑
i=1

q
(l)
i ‖xi‖2

∥∥xixH
i − R̃i

∥∥2

F

(17)

with q(l)
i =

κ

log(1 + κ)

1

1 + κ‖x(l)
i ‖2

, ∀i ∈ N .

The objective function in (17) is non-convex due to the covari-
ance deviation penalty term. Therefore, in order to overcome the
non-convexity, we introduce the splitting variables Z and V and we
rewrite the objective function in (17) as

min
X

N∑
i=1

β1g
(l)
i ‖xi‖2 +

1

2

∥∥ΦZ−Y
∥∥2

F
+

β2

N∑
i=1

q
(l)
i ‖xi‖2

∥∥zivH
i − R̃i

∥∥2

F

s.t. xi = zi, xi = vi, ∀i ∈ S

(18)

The optimization problem in (18) is block multi-convex, thus, we
utilize ADMM to solve it efficiently. Accordingly, the augmented
Lagrangian associated with (18) is given by

min
Z,V,X

1

2
‖ΦZ−Y‖2F + β2

N∑
i=1

q
(l)
i ‖xi‖2‖ziv

H
i − R̃i‖2F

+
N∑
i=1

β1g
(l)
i ‖xi‖2 +

ρ

2
‖X− Z +

Λz

ρ
‖2F +

ρ

2
‖X−V +

Λv

ρ
‖2F

−
‖Λv‖2F

2ρ
−
‖Λz‖2F

2ρ
,

(19)
where Λz = [λz1 , . . . ,λzN ] and Λv = [λv1 , . . . ,λvN ] are the
ADMM dual variables. Similarly to (7)–(9), ADMM updates se-
quentially the primal variables Z,V and X then the dual variables
Λz and Λv.

First, the Z-subproblem, i.e., minimizing (19) with respect to Z,
is given by

Z(k+1) := min
Z

1

2
‖ΦZ−Y‖2F + β2q

(l)
i

N∑
i=1

‖x(k)
i ‖2‖ziv

(k)H
i − R̃i‖2F

+
ρ

2
‖X(k) − Z +

Λ
(k)
z

ρ
‖2F.

(20)

The objective function in (20) is convex and the solution is obtained
by setting the gradient with respect to Z to zero, resulting in

Z(k+1) =
(
YTΦ∗ + B(k)

)(
ΦTΦ∗ + D(k)

)−1
. (21)

where b
(k)
i = 2β2q

(l)
i ‖x

(k)
i ‖2R̃iv

(k)
i + ρx

(k)
i + λ

(k)
zi is the ith

column of matrix B(k) and the matrix D(k) is a diagonal matrix
with entries d(k)

i = 2β2q
(l)
i ‖x

(k)
i ‖2‖v

(k)
i ‖

2
2 + ρ.

Second, the V-update solves the minimization problem given by

min
V

β2

N∑
i=1

q
(l)
i ‖x

(k)
i ‖2‖z

(k+1)
i vH

i − R̃i‖2F +
ρ

2
‖X(k)−V +

Λ
(k)
v

ρ
‖2F.

(22)
The optimization problem in (22) can be decoupled into N convex
sub-problems, with a unique solution given by:

v
(k+1)
i =

2β2q
(l)
i ‖x

(k)
i ‖2R̃iz

(k+1)
i + ρx

(k)
i + λ

(k)
vi

2β2q
(l)
i ‖x

(k)
i ‖2‖z

(k+1)
i ‖22 + ρ

, ∀i ∈ N . (23)

Next, with some manipulations, the X-update solves the follow-
ing convex optimization problem

X(k+1) := min
X

N∑
i=1

α
(k)
i ‖xi‖2 + ρ‖X− S(k)‖2F, (24)

where S(k) =
1

2

(
Z(k+1) + V(k+1) − Λ

(k)
z + Λ

(k)
v

ρ

)
and α(k)

i =

β1g
(l)
i + β2q

(l)
i ‖z

(k+1)
i v

(k+1)H
i − R̃i‖2F. The optimal solution to

(24) has a closed-form expression given by

x
(k+1)
i =

max {0, ‖s(k)
i ‖2 −

α
(k)
i
2ρ
}

‖s(k)
i ‖2

s
(k)
i , ∀i ∈ N . (25)

The details of the proposed covariance aided JUICE, termed
as cov-ADMM, are summarized in Algorithm 1. Note that if the
second-order channel statistics are not available, we set β2 = 0,
hence, Algorithm 1 presents the proposed iterative reweighted
ADMM (IRW-ADMM) in Section 3.1. Moreover, if β2 = 0 and
q

(l)
i = g

(l)
i = 1, for i ∈ N , l = 1, 2, . . ., Algorithm 1 presents the

ADMM solution, which we call ADMM, for the problem in (3).

Algorithm 1: Covariance aided JUICE

Input: {R̃i}Ni=1, β1, β2, ρ, ε0, ε, κ

Output: X̂

Initialization: X(0),V(0),Z(0),Λ
(0)
v ,Λ

(0)
z .

1 while l < lmax do
2 while k < kmax or ‖X(k) −X(k−1)‖ < ε do
3 Update Z(k+1) using equation (21)
4 Update V(k+1) using equation (23)
5 Update X(k+1) using equation (25)
6 Λ

(k+1)
z = Λ

(k)
z + ρ

(
X(k+1) − Z(k+1)

)
7 Λ

(k+1)
v = Λ

(k)
v + ρ

(
X(k+1) −V(k+1)

)
8 k ← k + 1

9 g
(l)
i = (ε0 + ‖x(l)

i ‖2)−1, i ∈ N

10 q
(l)
i =

κ

log(1 + κ)

1

1 + κ‖x(l)
i ‖2

, ∀i ∈ N

11 l← l + 1
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Fig. 1: Performance comparison for the different algorithms for N = 200, M = 20, K = 10, and τp = 20.

3.3. MMSE-Based Channel Estimation

The estimated effective channel matrix of the active UEs, X̂S , pro-
vided by the proposed approach can be used for coherent data detec-
tion. However, if the second-order channel statistics are known to
the BS, a more accurate channel estimate can be obtained by apply-
ing the MMSE estimator.

Let us define the vec(·) operation as the column-wise stacking
of a matrix. We define y = vec(YT) ∈ CτpM , w = vec(WT) ∈
CτpM and x = vec(XS) ∈ CKM . Accordingly, (2) can be rewrit-
ten as1:

y = Θx + w, (26)

where Θ = ΦS⊗IM ∈ CMτp×KM , and the operator⊗ denotes the
Kronecker product. The vectorization in (26) transforms the matrix
estimation into a classical form of vector estimation which enables
the use of the linear MMSE estimator given by [23, Eq. (12.26)]

xJ−MMSE = vec(XJ−MMSE) = x̄ + RdiagΘHQ
(
y −Θx̄

)
, (27)

where Q = (ΘRdiagΘH + σ2IτpM )−1, x̄ denotes the mean of x,
and Rdiag denotes the covariance matrix of x given as a block di-
agonal matrix with the main-diagonal blocks are given by the scaled
covariance matrices R̃i corresponding to the active UEs i ∈ S.

4. NUMERICAL RESULTS

Let us consider a single cell that consists of one BS equipped withM
antennas serving a total of N = 200 uniformly distributed UEs, out
of which only K = 10 are active at each Tc. The channel between
the ith UE and the BS consists of Pi = 200 paths with uniformly
distributed angle of arrival ψi,p ∈ [π

3
, 2π

3
]. Each user i ∈ N is as-

signed a unique normalized quadratic phase-shift keying sequence
φi, with τp = 20, generated from an i.i.d. complex Bernoulli distri-
bution.

Channel estimation is quantified in terms of normalized mean

square error (NMSE) defined as
E[‖X−X̂S‖2F]

E[‖X‖2F]
,where the expectation

is computed via Monte-Carlo averaging over all sources of random-
ness. Thus, the NMSE is presented as the normalized average square
error (NASE). User activity detection is quantified in terms of suc-
cessful support recovery (SSR) rate defined as |S∩Ŝ|

|S−Ŝ|+K , where Ŝ
denotes the detected support.

We compare the performance of cov-ADMM, IRW-ADMM, and
ADMM, to two algorithms that solve the problem in (3), namely, fast
alternating direction methods (F-ADM) [24] and SPARROW [3].

1We assume perfect UEs identification, as the main goal is to show chan-
nel estimation quality improvement gained by using the MMSE estimator.

In addition, we use genie-aided least square (LS) and genie-aided
MMSE estimators that are provided “oracle” knowledge on the true
set of active UEs to establish an optimal performance benchmark.

Fig. 1(a) presents the channel estimation performance in terms
of NASE against SNR. First, in the case when the second-order
statistics of the channels are not available at the BS, the proposed
IRW-ADMM provides a significant improvement to the channel es-
timation quality compared to ADMM, ADM, and SPARROW. Fur-
thermore, IRW-ADMM achieves a similar performance compared
to oracle LS estimator. This result points out clearly the remarkable
gain obtained by the iterative reweighted `2,1-norm minimization ap-
proach. Second, if the BS is provided with the second-order statistics
of the channels, the proposed cov-ADMM improves considerably
the channel estimation. In fact, it provides the same performance
as IRW-ADMM while using 10 dB lower SNR. Moreover, using the
cov-ADMM with an MMSE estimator renders the same performance
as the oracle MMSE estimator starting at SNR = 10 dB.

Fig. 1(b) shows the user identification accuracy in terms of SSR
rate against SNR. The results show that cov-ADMM indisputably
provides the highest SSR rate amongst all the considered algorithms.
In fact, cov-ADMM identifies the set of true active users perfectly for
SNR ≥ 10 dB. In addition, the IRW-ADMM provides a significant
improvement compared to ADMM, F-ADM, and SPARROW and it
achieves an SSR rate > 0.95 around SNR = 8 dB.

Fig. 1(c) shows the typical convergence behavior of the pro-
posed algorithms at SNR = 16 dB. The results reveal that IRW-
ADMM requires approximately 50 iterations to convergence. We
note that the early iterations may find inaccurate signal estimates,
hence, the lower performance when the number of iterations is less
than 10. Furthermore, the proposed cov-ADMM convergence to its
optimal solution in about 25 iterations. The results presented in Fig.
1 highlight clearly the significant gains obtained by exploiting avail-
able prior channel covariance information at the BS, as it yields the
best performance in terms of channel estimation, user detection, and
convergence rate.

5. CONCLUSION

The paper investigated joint support and signal recovery from an
MMV model for the use case of user identification and channel esti-
mation in MIMO-based grant-free mMTC. The paper proposed the
formulation of JUICE based on an iterative reweighted `2,1-norm
minimization problem that exploits the second-order channel statis-
tics when they are available to the BS. An ADMM-based algorithm
was derived to provide a computationally efficient solution. The nu-
merical results show significant improvement in UEs activity detec-
tion accuracy, channel estimation quality, and convergence rate.
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