
SPARSE SUBSPACE CLUSTERING FOR EVOLVING DATA STREAMS

Jinping Sui 1,2, Zhen Liu 1, Li Liu 3,4, Alexander Jung 2, Tianpeng Liu 1, Bo Peng 1, Xiang Li 1

1College of Electronic Science, National University of Defense Technology, Changsha, China 410073
2Department of Computer Science, Aalto University, Espoo, Finland 02150

3College of System Engineering, National University of Defense Technology, Changsha, China 410073
4Center of Machine Vision and Signal Analysis, University of Oulu, Finland

ABSTRACT

The data streams arising in many applications can be mod-
eled as a union of low-dimensional subspaces known as
multi-subspace data streams (MSDSs). Clustering MSDSs
according to their underlying low-dimensional subspaces is
a challenging problem which has not been resolved satisfac-
torily by existing data stream clustering (DSC) algorithms.
In this paper, we propose a sparse-based DSC algorithm,
which we refer to as dynamic sparse subspace clustering (D-
SSC). This algorithm recovers the low-dimensional subspaces
(structures) of high-dimensional data streams and finds an ex-
plicit assignment of points to subspaces in an online manner.
Moreover, as an online algorithm, D-SSC is able to cope with
the time-varying structure of MSDSs. The effectiveness of
D-SSC is evaluated using numerical experiments.

Index Terms— Data stream clustering, high-dimensional
data stream, subspace clustering, online clustering

1. INTRODUCTION

In recent years, high-dimensional data streams have been con-
tinuously generated at an unprecedented rate in various fields
such as media, communication, finance, meteorology, etc. [1,
2, 3, 4]. These data streams often feature high dimensional-
ity, no labeling, massiveness, and evolving, presenting huge
challenges to data stream clustering (DSC) algorithms. On
one hand, as the dimensionality increases, most existing DSC
algorithms perform poorly, commonly known as curse of di-
mensionality [5]. On the other hand, the constant evolution of
the data stream easily results in previously effective models
no longer being applicable [6, 7]. Therefore, how to deal with
high dimensional data streams especially the ones with evolv-
ing property is a major problem that plagues the development
of the field.

It has been realized that most high-dimensional data
streams actually lie in a union of low-dimensional subspaces
rather than uniformly distribute in the whole ambient space
[1, 2, 8]. These data streams are referred to as multi-subspace
data streams (MSDSs) in this paper. A classical example of
MSDSs in real life is the collection of front face images. It

has been observed that the front face images of a subject with
a fixed facial expression and varying illumination lie close
to a linear subspace of dimension 9 under the Lambertian
assumption [2], which implies the collection of face images
of multi-subjects lies close to a union of 9D subspaces [1].
Therefore, finding the latent multi-subspace and clustering
the high-dimensional data streams according to their original
subspaces provides us a possible way to reduce the computa-
tional complexity and storage resource consumption.

Prior Art. Although MSDS has been generated in var-
ious fields in practice, research on its processing is still in
an immature stage. One of the main reasons is that in the
high-dimensional space all pairs of points tend to be almost
equidistant from one another [9]. Therefore, most partition-
ing based DSC methods such as CluStream [10], STRAP
[11] cannot keep their good performance any more when
processing high-dimensional data streams. Yet only a few
approaches have been proposed so far to tackle high dimen-
sional data stream clustering problem. They can be largely
divided into two categories: density-based DSC algorithms
and projection-based DSC algorithms. Density-based al-
gorithms, such as DenStream [12], CEDAS [13], has been
verified on real MSDSs. However, it should be noted that
these density-based algorithms are full dimensional process-
ing methods. As the data dimension increases further, their
accuracy and computational complexity will be severely ad-
versely affected. Projection-based DSC algorithms, such as
HPStream [9], HDDStream [14], can search clusters from
subspaces. However, these methods rely much on prior in-
formation about the subspaces, which is not easy to know
in advance [3, 14]. Moreover, the evolving property of data
streams is not considered enough by these mentioned meth-
ods. Generally, they only focus on detecting the new sub-
spaces (clusters) while ignoring the subspace disappearance
or recurrence.

Contributions. In this paper, a novel DSC algorithm is
proposed, named D-SSC, which can cluster MSDSs in an
online manner. D-SSC has two stages. The first is online
clustering the arriving data according to the current D-SSC
summary. Different from most existing DSC techniques, D-



SSC is not based on the distance or density similarity while
taking advantage of a unique property of MSDSs called self-
expressiveness i.e., each data point in a union of subspaces
can be efficiently represented as linear (affine) combinations
of other points. Among these combinations, a sparse rep-
resentation corresponds to a combination of points from its
own subspace [1, 8]. This motivates us to find a subspace for
a data point by solving a global sparse optimization problem.
The second stage is D-SSC summary online updating. D-SSC
summary stores global information of the data stream and lo-
cal information of each discovered subspace up to the cur-
rent timestamp. Considering that most of the data streams in
practice have evolving characteristics, an evolution detection
strategy investigated under which the evolving cases, such as
emerging, disappearing, recurring of subspaces, can be de-
tected. This ensures that the proposed algorithm can more
effectively reflect the current pattern of the MSDSs.

2. PROBLEM FORMULATION

2.1. MSDS Clustering Problem and Self-expressiveness
Property

A MSDS is defined as a sequence of data points which lies in
a union of low-dimensional subspaces. Different from batch
multi-subspace datasets [15], a unique property of MSDSs is
we can only access its data points in an online manner. As-
sume that at each timestamp t, we receive the data point xt

and xt ∈ RD×1. We denote the t points which we have re-
ceived as Xt = [x1 . . .xt]D×t. Generally, the MSDS clus-
tering problem is to dynamically identify kt subspaces St =
{Stl }k

t

l=1 at timestamp t and find an appropriate subspace to
assign xt into. Each Stl is a dtl-dimensional subspace and con-
tains N t

l data points. It should be pointed out that N t
l > dtl

holds here for a MSDS [1].
In order to solve the MSDS subspace clustering problem,

a unique property for multi-subspace data points is utilized in
this work, that is, self-expressiveness property [1, 8, 16].

Self-expressiveness Property: ForN data points X from
multi-subspace, each data point xi can be represented as a
linear or affine combination of other points, that is,

xi = Xci, cii = 0, (1)
where ci , [ci1ci2 . . . ciN ]> and cii = 0 avoid an extreme
solution of expressing xi by itself. Obviously, ci is not unique
under the assumption of N t

l > dtl [1]. However, it has been
proved that there exists a sparse solution of ci whose nonzero
entries only corresponds to a few points from the same sub-
space as xi. Therefore, this sparse solution provides us a way
to find some points in the same subspace as xi.

For all data points X we have

X = XC, diag(C) = 0, (2)
where C, [c1c2 . . . cN ]∈RN×N is referred as subspace self-
representation matrix in this paper whose ith column corre-

sponds to the sparse representation of data point xi. diag(C)
is the vector of the diagonal elements of C.

2.2. Subspace Evolution

We have to consider the time-evolving property of the sub-
spaces of MSDSs due to the fact the points of MSDSs are ac-
cessed and processed dynamically. The time-evolving prop-
erty here refers to the case that the MSDSs data points evolve
over time in the distribution of subspaces, which is commonly
referred to as virtual concept drift in the field of DSC research
[17]. The MSDSs with subspace evolution is referred to as
evolving MSDSs in this paper. More precisely, we consider
the three most possible subspace evolution cases in this work,
i.e., subspace emergence, disappearance, and reoccurrence.
The definitions are given as follows.

Subspace Emergence. Subspace emergence refers to the
occurrence of a new subspace at timestamp t. In particular, a
subspace S emerges at timestamp t if S /∈ S1∪S2∪· · ·∪St−1
and S ∈ St.

Subspace Disappearance. Subspace disappearance is
defined as an existing subspace that is not visited by the re-
cently arrived data points. Formally, a subspace S disappears
if S ∈ St0 ∩St0+1∩· · ·∩St−1 and S /∈ St, where 1 ≤ t0 < t.

Subspace Reoccurrence. Subspace reoccurrence means
the situation where a previously disappeared subspace recurs
at timestamp t. Formally, a subspace S recurs at timestamp t
if S ∈ St1 ∩St1+1∩· · ·∩St2−1, S /∈ St2 ∪St2+1∪· · ·∪St−1,
and S ∈ St, where 1 ≤ t1 < t2 < t.

3. MULTI-SUBSPACE DATA STREAM CLUSTERING
ALGORITHM

In this section, we will give a specific demonstration about
D-SSC algorithm. The D-SSC summary structure and its ini-
tialization are given firstly. Then, we explain the online clus-
tering and evolution detection of D-SSC.

3.1. The D-SSC Summary Structure and Its Initialization

As an online subspace clustering algorithm, D-SSC is capa-
ble of finding the underlying low-dimensional subspaces and
assigning all received data points of MSDSs. The subspace
clustering result St = {St}kt

l=1 which we refer to as D-SSC
summary, is recorded and updated in an online manner. Each
Stl = {ntl ,Rt

l , tl, p
t
l , q

t} is a 5-tuple which summarizes the
information for the lth subspace, where

•ntl is the total number of data points assigned to subspace
l up to timestamp t;

•Rt
l is referred to as reserved data matrix of subspace

l which saved some selected points from subspace l up to
timestamp t;

•tl is the last timestamp when a point was assigned to sub-
space l;



•ptl is a counter whose initial value is set as 0;
•qt is the total number of outliers found in the MSDSs up

to timestamp t. It should be noted that for all subspaces, qt

holds equally.
D-SSC needs to be initialized firstly. Hence, the first batch

of M(M > D) arriving data points XM will be utilized to
find the subspaces underlying XM . Meanwhile, we expect
the most informative points of each subspace can be reserved
in the D-SSC summary for further processing due to the lim-
itation of storage space. Hence, the number of nonzero rows
of CM is also minimized when we take XM into (2) to solve
the subspace self-representation matrix CM . We use the term
‖CM‖r,0,

∑M
i=1 I(‖ci‖2) to characterize the number of non-

zero rows of matrix CM , where ci denotes the ith row of CM

and I(·) denotes the indicator function. Hence, an ideal CM

can be got by solving the following optimization problem,

min‖CM‖0+λ‖CM‖r,0 s.t.XM =XMCM ,diag(CM )=0,
(3)

where λ > 0 is a parameter to adjust the balance between
the sparsity and the number of nonzero row of the solution.
However, (3) is a NP-hard problem. Hence, we consider a
convex relaxation of (3).

min‖CM‖1+λ‖CM‖r,1 s.t.XM =XMCM ,diag(CM )=0,
(4)

where ‖CM‖r,1,
∑M

i=1‖ci‖2. It has been verified under inde-
pendent subspaces assumption, the solution of (4), denoted as
ĈM , perfectly contains informative points from each under-
lying subspaces [18]. Now assume that ĈM has bM nonzero
rows which correspond to the informative points. Moreover,
ĈM can be further used to infer the clustering of X by spec-
tral clustering methods, which is not the focus of this work.
We just assume that the clustering result, i.e., the assignment
for M points into lM subspaces has been gained. Thereby,
we can record the nMl and tl information for each subspace.
The bM informative points are reserved in the D-SSC sum-
mary for further processing which will explained in Section
3.2. It should be pointed out that bM is generally less than
M . Therefore, in order to build an over complete data matrix
for further processing, we need to guarantee the number of
points reserved, expressed as M0, greater than D if we want
to utilize the self-expressiveness property. Thus, we then ran-
domly select aMl points from those non-informative points in
each subspace,

aMl = d((M0 − bM )
nMl
M

)e, (5)

where d·e is the ceiling function. Thus we also save these
points in corresponding RM

l .

3.2. Online Clustering and Evolution Detection

Depending on whether the subspaces can effectively represent
the current pattern of MSDSs, D-SSC divides the subspaces
into two states, i.e., active and inactive, at each timestamp.

Inactive state means the corresponding subspaces have been
expired. Both states can be converted to each other over time.
D-SSC does not directly delete inactive subspaces but stores
them to another reservoir Dt = {Dt

i}h
t

i=1 which we refer to
as remove reservoir. Here we assume that at timestamp t,
there are ht inactive subspaces in D. Due to the active and
inactive can be converted to each other, the inactive subspace
can be denoted as Dt

i = [ñti, R̃
t
i, t̃i, p̃

t
i , q̃

t]. Meanwhile, we
define Zt = [Rt

1 · · ·Rt
kt R̃t

1 · · · R̃t
ht ] here. Zt is made up by

all reserved data matrix of active and inactive subspaces at
timestamp t.

For a new arriving data point xt(t > M), we firstly get
its representative coefficients under Zt−1, that is,

min‖ct ‖0 s.t. xt = Zt−1ct. (6)

We can also use `1-norm to relax (6) to get the solution ĉ t.
According to the self-expressiveness property, we know that
ĉ t has block sparsity property if xt is from a found subspace
(we call such xt a normal point). That is, non-zero elements
of ĉ t are concentrated in a certain part (this part corresponds
to the reserved matrix of its own subspace). Hence, we calcu-
late the sparsity concentration index (SCI) [8] of ĉ t by

SCI(ĉ t),
(kt−1 + ht−1) ·max

j
(‖δj(ĉ t)‖1/‖ ĉ t ‖1)− 1

(kt−1 + ht−1)− 1
,

(7)
where δj(ĉ t) is a function that selects the coefficients asso-
ciated with the jth (j ∈ [1, kt−1 + ht−1]) subspace in ĉ t.
SCI(ĉ t)∈[0, 1] and a higher SCI(ĉ t) means the coefficients of
ĉ t is more likely to concentrate on a single subspace. Hence,
we introduce a threshold τ and accept xt as a normal point if

SCI(ĉ t) > τ, (8)

and otherwise reject as an outlier. The outlier will be saved
in an outlier reservoir, denoted as Ot. For a normal point, we
update ntl , tl in its corresponding Sl if it corresponds to an ac-
tive subspace, or update ñti, t̃i, p̃

t
i , and otherwise we update qt

in the D-SSC summary. It should be mentioned the updating
rule for p̃ t

i is p̃ t
i= p̃ t−1

i + 1.
D-SSC can deal with evolving MSDSs by detecting three

possible subspace evolution, i.e., subspace emergence, disap-
pearance and reocurrence. When new subspace(s) emerges,
its points will be rejected by D-SSC as outliers. Hence, at
each timestamp, D-SSC checks if qt exceeds an emergence
detection threshold α(α > N). If qt > α, (3)-(5) will be
applied to the data matrix of all points in Ot to find the new
subspaces and their summaries. For each active subspace l we
calculate the time interval between the last timestamp when it
was visited and the current timestamp, i.e.,

∆tl = t− tl. (9)
Then, ∆tl is compared with a threshold β to judge the state
of subspace l at timestamp t. The subspace will be rejected
as active subspace when ∆tl > β. A common feature that
most practical MSDSs share is some inactive subspaces will



recur after a long time interval. For an inactive subspaces, p̃ t
i

will be compared with a threshold γ at each timestamp. An
incative subspace will be accepted as an active subspace if
p̃ t
i > γ.

4. EXPERIMENTS RESULTS

In this section, the performance of the proposed algorithm is
tested on several real MSDSs. Three related and state of the
art algorithms, STRAP [11], CEDAS [13], SSC [1] are se-
lected of which results are compared with those of D-SSC. It
should be noted that SSC is designed only for batch datasets
subspace clustering. Here we feed the tested data stream as a
whole batch dataset into SSC to get its results. The four real-
istic MSDSs are generated from USPS [19] and MNIST [20]
datasets shown in Tabel 1. Note the datasets has been applied
RPCA algorithm [21] to remove the sparse outlying entries
of each subspace. We enhance the evolving property of the
MSDSs by rearranging the order of access of their points.

Table 1. MSDSs used for experiments.
features samples subspaces

USPS 256 9298 10
MNIST-10K 784 10000 10
MNIST-15K 784 15000 10
MNIST-20K 784 20000 10

We compare the results of each algorithm from three per-
spectives, namely the accuracy of the subspace clustering, the
number of subspaces that are actually found, and the number
of all subspaces generated. The number of all subspaces gen-
erated is the total number of clusters in the clustering results
while the number of subspaces found means how many dif-
ferent subspaces are found compared with the ground truth
when using the label information of data points. The results
recorded in Tabel 2. As demonstrated in Table 2, D-SSC
outperforms the other state of the art algorithms with much
higher subspace clustering accuracy and more efficient in
terms of finding the underlying subspaces, i.e., finding more
subspaces with less subspaces generating. For each MSDS,
CEDAS and STRAP can only find a few subspaces and split
one subspace into a lot of parts. The reason is that the tra-
ditional distance measurements lose their effectiveness in
the high-dimensional spaces, which resulting in points from
different subspaces are pretty near to each other. Hence,
they cannot distinguish the subspaces which are near in the
full feature space, thus some actually different subspaces are
regarded as the same one. Compared with D-SSC, SSC is
less effective in subspace clustering accuracy. This is mainly
because the performance of the SSC is greatly affected as
the number of data, dimensions, and number of subspaces
increase. As an online processing method, D-SSC can avoid
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Fig. 1. The results of D-SSC, CEDAS, and STRAP on
MNIST-15K MSDSs.

the negative impact of directly processing an large dataset.

Table 2. Subspace clustering accuracy (%), the number of
subspaces found (N1), and the number of subspaces generated
(N2). The corresponding results are demonstrated as ’N1/N2’
in the table.

D-SSC CEDAS STRAP SSC

USPS
59.32
10/10

32.38
7/13

38.85
6/156

47.85
10/10

MNIST-10K
55.19
10/10

32.73
5/68

37.00
6/122

43.77
10/10

MNIST-15K
53.95
10/10

30.55
10/106

35.72
10/136

40.38
10/10

MNIST-20K
52.15
10/10

27.76
3/76

33.59
6/82

37.91
10/10

In order to demonstrate the tracking performance of D-
SSC on subspace evolution, we further demonstrate the per-
formance of D-SSC in terms of tracking the subspace evolu-
tion in Fig. 1. We also calculate the number of subspaces
found at each timestamp of CEDAS and STRAP. From Fig.
1, we can find that D-SSC can track the three types of sub-
space evolution successfully. While CEDAS and STRAP can
track the subspace emergence as well, they always generate
hundreds of subspaces in reality.

5. CONCLUSIONS

In this paper, we propose an efficient data stream clustering
algorithm, named D-SSC, which can recover the underlying
subspaces of evolving MSDSs and find a unique assignment
of the points to subspaces. The typical evolution of sub-
spaces, such as subspace emergence, disappearance, and re-
occurrence can be detected and processed in real time which
ensures MSDSs is more practical and effective when process
MSDSs in real world. The effectiveness and superiority of
proposed algorithm have been verified by numerical experi-
ments.
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