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Abstract—Scheduling fast uplink grant transmissions for ma-
chine type communications (MTCs) is one of the main challenges
of future wireless systems. In this paper, a novel fast uplink grant
scheduling method based on the theory of multi-armed bandits
(MABs) is proposed. First, a single quality-of-service metric is
defined as a combination of the value of data packets, maximum
tolerable access delay, and data rate. Since full knowledge of these
metrics for all machine type devices (MTDs) cannot be known
in advance at the base station (BS) and the set of active MTDs
changes over time, the problem is modeled as a sleeping MAB
with stochastic availability and a stochastic reward function.
In particular, given that at each time step, the knowledge on
the set of active MTDs is probabilistic, a novel probabilistic
sleeping MAB algorithm is proposed to maximize the defined
metric. Numerical results show that the proposed algorithm
has logarithmic regret, and hence is optimal. The results also
show that the proposed framework yields a three-fold reduction
in latency compared to a random scheduling policy since it
prioritizes the scheduling of MTDs that have stricter latency
requirements. Moreover, by properly balancing the exploration
versus exploitation tradeoff, the proposed algorithm is able to
provide system fairness by allowing the most important MTDs to
be scheduled more often while also allowing the less important
MTDs to be selected enough times to ensure the accuracy of
estimation of their importance.

I. INTRODUCTION

The fifth generation of cellular communication networks
(5G) is expected to support Internet of Things (IoT) [1]
services and applications such as virtual reality, autonomous
vehicles, and unmanned areal vehicles [2]. To enable such
emerging IoT applications, 5G systems must have native
support for machine type communications (MTCs). In contrast
to enhanced mobile broadband (eMBB) services that require
high data rates for large data packets, in MTC, a large number
of machine-type-devices (MTDs) must communicate small
data packets [3]. Due to the heterogeneous nature of IoT
applications, MTC data packets have fundamentally novel
requirements in terms of latency, reliability, and security [4].
These requirements bring forward new challenges to cellular
communication systems that include random access channel
congestion, signaling overhead management, and need for
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satisfying various quality-of-service (QoS) requirements for
different IoT applications [5].

MTC can be categorized into two groups based on whether
scheduling requests are sent by MTDs or not. The first MTC
group is coordinated transmission, in which MTDs perform
a random access process and the base station (BS) schedules
MTDs, similar to conventional cellular systems. In the second
method, known as uncoordinated transmission, to reduce the
signaling overhead, MTDs pick a random uplink radio re-
source and transmit their data without sending any scheduling
request. Both approaches can suffer from severe collisions
among transmissions due to the fact that the number of MTDs
is often much larger than the number of available resources.
In a coordinated transmission, collisions can occur during
random access while in the uncoordinated method, they occur
during packet transmission. In a massive MTC [6] scenario,
such problems become even more challenging to address.
The authors in [7] and [8] provide an extensive overview of
several proposed solutions for such problems. One possible
solution is known as access class barring (ACB) [9] where
different access classes are assigned to MTDs and in massive
access scenario, MTDs with lower class are barred from a
transmission. For uncoordinated transmission, [10] presents a
resource allocation approach for a massive number of devices
with reliability and latency guarantees. Even though these
prior solutions can improve the performance of MTCs, coor-
dinated access still suffer from heavy signaling overheard and
collisions. Moreover, uncoordinated transmissions still also
experience non-negligible collisions, particularly in massive
access scenarios. The main drawback of this prior art is that it
relies solely on random access whose performance is optimal
only when the number of competing devices is equal to the
number of available resources. This clearly does not hold in
massive MTC cases since the number of radio resources are
limited, and hence, novel solutions are needed.

To address the challenges of random access congestion,
collisions and high signaling overhead, a middle ground be-
tween fully scheduled and uncoordinated transmission can be
achieved by using the so-called fast uplink grant [11], [12].
In the fast uplink grant, a BS sends an uplink grant to MTDs
without MTDs sending scheduling requests. If the MTDs have
data to transmit, they proceed with the transmission, otherwise,



the radio resource is wasted [12]. However, the fast uplink
grant has two main challenges. First, the set of the MTDs
that have data to transmit should be known to the BS which is
known as source traffic prediction. To address this problem, in
[13], the use of directed information for event-driven source
traffic prediction is presented. Second, when the number of
active MTDs is larger than the number of fast uplink grants
that can be allocated, an optimal allocation policy must be
developed. An overview of challenges and opportunities of
the fast uplink grant is provided in [14] where some solutions
are proposed for both of the problems associated with the fast
uplink grant.

The main contribution of this paper is to provide a novel
solution for the problem of allocating fast uplink grants to
MTDs. Since the BS has to take different QoS metrics into
account while scheduling, first, we define a compound QoS
metric that is a combination of three MTD-specific metrics:
a) the value of the data packets, b) maximum tolerable access
delay, and c) the data rate. Then, we propose a novel method
to model the delay by mapping it to a value in [0, 1] using
a sigmoid function. Finally, to find the optimal MTD for
scheduling at each time slot, a probabilistic sleeping multi-
armed bandit (MAB) algorithm is proposed. The proposed
MAB can effectively schedule MTDs with low signaling
overhead and no collision. Simulation results show that the
algorithm is optimal since it achieves logarithmic regret, and
it is able to find the best MTD to schedule. For example, the
proposed framework achieves up to three-fold improvement
in the access delay compared to a baseline random scheduling
policy.

The rest of the paper is organized as follows. Section II
presents the system model and problem formulation. In Section
III, we introduce the proposed probabilistic sleeping MAB
solution. Numerical results are presented in Section IV and
conclusions are drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider the uplink of a cellular system composed of one
BS and a set M of M MTDs that use a fast uplink grant.
Scheduling is done at the BS and a fast uplink grant is sent
to each scheduled MTD. We assume that the total available
bandwidth is divided into resource blocks, each of which is of
size W and duration τ . Without loss of generality, we consider
the problem of selecting one MTD for the fast uplink grant
at each time duration τ . Hereinafter, we use i for indexing
MTDs and t for time. Due to the heterogeneous nature of IoT
applications, packets have different QoS requirements. The
system model is presented in Fig. 1.

At time t, for each MTD i, we define the value of informa-
tion as the assessment of the utility of an information product
in a specific usage context [15]. Hence, each packet that arrives
at the queue of an MTD i will have an associated value vi(t).
According to [15], this value can be determined by relative
pairwise comparison of all IoT applications and the use of the
so-called analytic hierarchy process (AHP) to calculate the
importance weight for each packet. This normalized value is

Fig. 1: Illustration of system model.

derived in the form of a percentage of importance, and hence
we choose vi(t) ∈ [0, 1].

For each data packet of MTD i, we consider a maximum
tolerable access delay di(ts) defined as the total delay that
can be tolerated from the time instance ts at which the
data packet is ready to be transmitted at the MTD queue
until it is scheduled to be sent. Queuing, transmission and
propagation delays are assumed to be already subtracted from
the total latency requirements of each IoT application that has
generated the data packets. Such a maximum tolerable access
delay might change for each MTD over time since, at different
times, data packets might have had different queueing times, or
even different latency requirements due to various applications
that are generating the packets.

Once each signal is received at the BS, the throughput of
each link is:

Ci(t) =W log

(
1 +

qi(t)|hi(t)|2

WN0

)
. (1)

where hi(t) represent the channel between MTD node i and
the BS. N0 is the power spectral density of the noise, W is
the bandwidth of the transmission channel, and qi(t) is the
transmit power of MTD i.

A. Problem Formulation

We first normalize Ci(t) as well as the maximum tolerable
access delay to a value within the range [0, 1]. For the rate
Ci(t), we simply divide the achieved rate by the maximum rate
Cmax that can be achieved by the node having the best channel
to the BS. We fix Cmax for the entire period by using the
knowledge of the set of all the MTDs that are registered in the
network. Thus, we use a normalized rate Cn

i (t) = Ci(t)/Cmax.
To normalize the maximum tolerable access delay, we

use a mapping from maximum tolerable access delay to a
number in [0, 1] using a function f(di(t)). To do this, we use
Gompertz function [16] with slight modifications, which is an
asymmetric sigmoid function that is widely used in growth
modeling. The rationale behind using this function is that it
is possible to control the point at which the value of the
function starts to decrease as well as the steepness of the curve.
Gompertz function is given by [16]:

g(t) = ae−be
−ct

, (2)
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Fig. 2: Modified Gompertz function for modeling latency for
different values of the control parameters.

where parameter a defines the asymptote of the function, b sets
the displacement along the time axis, and c determines the
growth rate or the steepness of the function. The Gompertz
function is an increasing function in time. Moreover, since
smaller values of the maximum tolerable access delay mean
that the MTD has delay-sensitive data to transmit, and hence,
it should have a higher value in the utility function, we
modify the Gompertz function to create a new function that
is decreasing in time, as follows:

f(di(t)) = a− ae−be
−cdi(t)

. (3)

Fig. 2 shows the plot of the modified Gompertz function
for some different values of the control parameters. Any
scheduling algorithm performs better in terms of delay if it
selects MTDs with smaller maximum tolerable access delay,
which is the one that maximizes function f(di(t)). We can
now define a utility function that combines all QoS metrics:

Ui(t) = αvi(t) + βCn
i (t) + γf(di(t)). (4)

In (4), α, β, and γ are weight parameters used to modify the
importance of each metric with α + β + γ = 1 . The best
performance at time t is achieved if an MTD k ∈ K ⊆M is
selected such that:

k =argmax
i∈K

Ui(t),

subject to Ci(t) ≥ ρ,
di ≥ t− ts,

(5)

where K is the set of MTDs with non-empty queue buffer
and ρ is rate threshold required for data transmission. If
vi(t), hi(t), di(t), and the set K of active MTDs, K are
available to the BS, solving (5) is straightforward. However,
in real-world networks, having such information at the BS
is impractical due to the following reasons. First, MTDs
should send a scheduling request to the BS using periodically
available random access slots. Sending scheduling requests

in MTC is not optimal since it: a) will most likely fail in
massive access scenario, b) requires large signaling overhead
compared to the small data packet size, and c) increases
the latency. This motivates the development of a predictive
resource allocation scheme, where the set of active MTDs
is predicted at the BS. Second, for optimal performance in
terms of the achieved throughput of the system, the BS must
know the channel state information (CSI) of the MTDs. since
the data packets are small having instantaneous CSI at the
BS requires signaling which is inefficient. Hence, having a
statistical knowledge of the channel at the BS is desirable.
Clearly, in practical MTD networks, the BS does not have
the knowledge on the parameters of the defined metric in (4)
and hence must learn the utility function over time. Therefore,
the problem in (5) must be solved using online methods with
limited or no information in the BS. In the next section, we
propose an online algorithm based on MAB to solve (5).

III. PROPOSED MULTI-ARMED BANDIT FRAMEWORK AND
ALGORITHM

In an MAB problem, a player (decision maker), pulls an
arm from a set of available arms (selects an action from a
set of available actions). Each arm generates a reward after
being played, based on a distribution that is not known to the
decision maker – the decision maker only observes the reward
of the selected arm. The aim of the player is to maximize
a cumulative reward or minimize a cumulative regret. Regret
is defined as the difference between the reward of the best
possible arm at each game instant, and the generated reward
of the arm that is played.

Let θk(t) be the reward of playing arm k at time t, and
θ∗(t) = max

i∈I
θi(t) to be the highest possible reward that could

be achieved at time t from the set of all arms i ∈ I. Regret
up to time T is defined as [17]:

R(T ) = E
[ T∑

t=1

θ∗(t)−
T∑

t=1

θk(t)

]
, (6)

where the expectation is taken over the random choices of
the algorithm and randomness in reward allocation. In our
problem, each MTD is seen as an arm in the MAB settings,
and the BS is the player that selects the best arm at each
time and after playing that arm, receives a reward that is
generated by the metric defined in (4). Hence, the reward that
is generated by each MTD is:

θi(t) = 1[di > t− ts]1[Ri(t) > ρ]Ui(t), (7)

where 1(.) is the indicator function that is equal to 1 when
the argument of the function holds and 0 otherwise. Indicator
functions are used to show that reward of the algorithm in time
step t for selecting MTD i is 0 under the following conditions:
• Ci(t) < ρ, i.e, the achieved falls below the defined thresh-

old and the packet cannot be transmitted successfully.
This often happens when channel quality between MTD
and BS is below a certain level.



• di(t) < ti− ts. Here, ti is the time that node i is selected
for transmission and ts is the time when node i had a
packet ready for transmission. Hence, t−ts is the number
of time steps that MTD i has waited to recieve the fast
uplinkt grant. Naturally, if di(t) < ti− ts, then the MTD
packets will be dropped and the reward at the BS for
selecting MTD i will be 0.

The goal of the BS is to maximize cumulative reward
over time. To solve such a problem, the natural solution is
to find the best possible arm and play it all the time. This
requires playing all the available arms for many times to find
their expected value. However, randomly selecting arms in
the process of learning is highly suboptimal. Hence, an MAB
algorithm finds the arms with higher rewards and chooses them
more often, which is known as exploitation of those arms.
At the same time, an MAB algorithm should explore all the
other arms enough times to find their expected value more
precisely. This is known as the exploration versus exploitation
dilemma. Several methods exist to solve the problem of
exploration/exploitation. One of the most recognized methods
for the MAB problem is to use the concept of upper-confidence
bound (UCB). In this method, the MAB algorithm at each time
t plays an arm k such that:

I(t) = argmax
k

1

nk

nk∑
i=1

Ri +

√
s ln t

nk
(8)

where nk is the number of the times that arm k was played
before and s is a parameter that provides a trade-off between
exploration and exploitation. Larger values of s lead to the
higher amount of exploration. We will next use the UCB
concept in our proposed probablistic sleeping MAB algorithm
to provide a tradeoff between exploration and exploitation.

A. Sleeping Bandits and Proposed Algorithm

In classical MAB problems, it is assumed that all of the arms
are available to be played at all time instants. However, for the
MTC fast uplink grant scheduling problem, this assumption is
not valid since MTDs will have a small number of packets
and usually, after each transmission, they are silent for some
time. Hence, we consider a scenario in which, the set of
available arms varies over time. This type of problems is called
sleeping MAB problems. In our problem, since the availability
of the MTDs follows the distribution of their traffic, and the
reward can be described by (7), we have sleeping bandits
with stochastic action availability and stochastic rewards.
The authors in [18] provide an algorithm named AUER for
such problems that achieve optimal regret. However, AUER
is suitable for sleeping MAB problems in which the set of
available arms is perfectly known to the decision maker in
advance. In our problem formulation, such an assumption will
not hold. Here, we consider that the BS has a prediction
algorithm to determine the set of active MTDs at each given
time. This algorithm provides the set of active MTDs with a
certain probability. That is, each MTD i has a probability Pi(t)
of being active at time t. In this problem, since the availability
of the MTDs are probabilistic, the selected MTD might not be

Algorithm 1 The Probabilistic Sleeping MAB Algorithm.

Initialize zi, ni for all i ∈ I, initialize t′

for t = 1 to T do
if ∃j ∈ Kt s.t. nj = 0 then

Play arm x(t) = j
else

Play arm

x(t) = argmaxi∈Kt
Pi(t)×

(
zi
ni

+
√

8 log t′

ni

)
end
if x(t) is an available arm (x(t) 6= 0) then
observe payoff rx(t)
zx(t) ← zx(t) + rx(t)
nx(t) ← nx(t) + 1
t′ ← t′ + 1
else
zx(t) ← zx(t)
nx(t) ← nx(t)
t′ ← t′

end
end

active, which will lead to 0 reward and a waste of resources.
Hence, to solve the optimization problem in (5) we propose
an algorithm that takes such a probability of being active into
account. In this algorithm, the BS at each time selects an MTD
x(t) such that:

x(t) = argmax
i∈Kt

Pi(t)×
(
zi
ni

+

√
8 log t′

ni

)
(9)

where zi is the sum of rewards of MTD i, ni is the number
of the times that MTD i was selected and was active, and t

′

is the total number of the times that the selected MTD was
active. Kt presents the set of active MTDs at time t. In contrast
to the original UCB method, we only count the number of
times that the selected MTD was active. This ensures that
the statistical average and the UCB values are calculated
correctly. Since the availability of the MTDs in set Kt have
associated probabilities, the error of the prediction at the BS
will propagate to the MAB. This means that the performance
of the sleeping MAB will suffer since some selected MTDs
for the fast uplink grant might not be active. Less error in the
prediction algorithm will lead to a better performance of the
probabilistic sleeping MAB. The proposed algorithm is shown
in Algorithm 1. This algorithm will select MTDs with higher
values of the utility function and higher probability of being
active while balancing the tradeoff between exploratoin and
exploitation.

IV. SIMULATION RESULTS

We consider a single circular cell with radius 500 meters
consisting of 100 MTDs with 10 MTDs being active at each
time. The probability of being active for each MTD is selected
randomly to be a number in [0.8, 1] and is assumed to be
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Fig. 3: Regret resulting from the proposed probabilistic sleep-
ing MAB compared to sleeping MAB with prediction, sleeping
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known to the BS at each time. The noise power is considered
to be −174 dBm/Hz and bandwidth is 360 kHz. Each MTD
has a reward distribution with expected value Ui ∈ [0, 1]. The
value of the reward function changes due to the following
reasons. First, the achieved rate at each time changes due to
changes in the channel quality. Second, the maximum tolerable
access delay might change at different times since the packet
in the MTD might face various queuing delays. Moreover,
each MTD can send packets from various applications with
different data values. In the utility function, values α = 0.2
β = 0.3, and γ = 0.5 are initially used. As needed, we change
the parameters of the modified Gompertz function from Fig.
2 based on the maximum access delay required in the system
to have an accurate modeling of the latency.

In Fig. 3, we set a = 1, b = 8, and c = 0.03, and we
present the regret resulting from the proposed sleeping MAB
algorithm. The result is compared to: a) a random scheduling
policy, b) the case when the availability of the MTDs is not
taken into account in the selection process of (9) and only UCB
values are used, and c) a scenario in which the prediction is
error free. Fig. 3 clearly shows that the random allocation
of radio resources has linear regret which is much worse
compared to the logarithmic regret achieved by the proposed
solution. The regret of the proposed algorithm is logarithmic
which is considered optimal for MAB problems. Fig. 3 also
shows that the slight modification to the algorithm by adding
the probability in (9) improves the performance compared to
using the sleeping MAB without modification. Moreover, Fig.
3 shows that perfect prediction has the best performance.

In Fig. 4, we consider α = β = 0 and γ = 1 to study
the performance in terms of latency. The maximum tolerable
access delay is considered to be a value in [1, 300] ms and
we set the parameters of the modified Gompertz function
to a = 1, b = 13, and c = 0.025 with the time horizon
T = 106 ms. For every value of the maximum tolerable
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Fig. 4: Average maximum tolerable access delay of the se-
lected MTDs.

access delay in the system, the average maximum tolerable
access delay of a random allocation policy is compared to the
sleeping MAB algorithm. From Fig. 4, we can see that the
random allocation of the fast uplink grant achieves a delay
that is equal to the average delay of the network. In contrast,
the proposed algorithm is able to select MTDs with stricter
latency requirements. The maximum tolerable access delay of
the MTD selected by the proposed algorithm is almost three-
fold less than that of the randomly selected MTD. Note that
this scheduling policy not only decreases the average latency
of the system but is also able to satisfy the individual latency
requirements of each MTD by prioritizing the scheduling of
MTDs with strict requirements.

The scatter plot of the latency of the selected MTD at
each time is presented in Fig. 5(a) for the proposed sleeping
MAB and in Fig. 5(b) for the random allocation. We set the
maximum tolerable access delay to 100 and the parameters
of the modified Gompertz function to a = 1, b = 7, and
c = 0.07. Each dot in these figures corresponds to the
maximum tolerable access delay of the selected MTD. Fig.
5(a) shows the capability of the sleeping MAB algorithm in
optimizing the latency while providing fairness in the system.
From Fig. 5(a), we can see that, in the beginning, the dots
are uniformly distributed for all values of delay requirements,
which means that the MTDs are randomly selected. However,
after the learning, the intensity of the dots for MTDs with
stricter latency requirements is much higher than that of the
MTDs with larger delay requirement, which means that delay
sensitive MTDs are scheduled more often. However, after
learning period, the algorithm still keeps scheduling MTDs
with larger latency requirements. This increases the accuracy
of the information at the BS about the latency requirements of
all MTDs and also provides fairness. Moreover, if the latency
requirements of an MTD has changed over time, the algorithm
can discover that and start scheduling that MTD accordingly.
Such a behavior shows that the algorithm is able to keep the
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Fig. 5: Required access delay of the selected MTD at each time during the entire learning period. This plot shows how the
sleeping MAB algorithm optimizes the system while providing fairness.

tradeoff between exploration and exploitation. From Fig. 5(b),
we can see that a random scheduling algorithm selects the
latency completely randomly all the time and the performance
of the system is much worse than the proposed sleeping MAB.

V. CONCLUSIONS

In this paper, we have introduced a novel sleeping MAB
framework for optimal scheduling of MTDs using the fast
uplink grant. First, we have devised a mixed metric based
on a combination of the value of the data, rate of the link, and
maximum tolerable access delay of each MTD. Second, we
have used that metric as the reward in a multi-armed bandit
framework. Finally, we have proposed a sleeping MAB frame-
work that achieves optimal regret for our problem formulation.
Simulation results have shown that the proposed algorithm
performs much better than a random allocation policy. To the
best of our knowledge, this is the first paper that addresses the
optimal allocation of the fast uplink grant for MTC.
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