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Abstract—We consider a single cell downlink (DL) massive
multiple-input multiple-output (MIMO) set up with user cluster-
ing based on statistical information. The problem is to design a
fully digital two stage beamforming consisting of slow varying
channel statistics based outer beamformer (OBF) and an inner
beamformer (IBF) accounting for fast channel variations aiming
to reduce the complexity involved in the conventional MIMO
processing. Two different methods are considered to design the
OBF matrix, so as to reduce the size of the effective channel
used for IBF design. A group specific two-stage optimization
problem with weighted sum rate maximization (WSRM) objective
is formulated to find the IBF for fixed OBF. We begin by
proposing centralized IBF design were the optimization is carried
out for all sub group jointly with user specific inter-group inter-
ference constraints. In order to further reduce the complexity,
we propose an iterative solution for group-specific beamformer
design via the Karush-Kuhn-Tucker (KKT) conditions for fixed
inter group interference (IGI) values with per group transmit
power constraint. A low complexity heuristic iterative method
is also proposed for managing the inter-group interference. In
spite of incurring a small loss in performance, the computational
complexity can be saved to a large extent with the group specific
processing. The sum rate behavior of various proposed schemes
are illustrated using numerical simulations.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is consid-
ered to be the future enabling technology for 5G cellular
communication standards [1]–[3]. This system can support
increased data rate, reliability, diversity due to increased de-
grees of freedom (DoF) and beamforming gain. However, it
possess increased computational complexity while performing
conventional MIMO processing involves higher dimensional
matrix operations. Hence, complexity reduction has gained lot
of attention among researchers [4]–[6]. This is done in both
hybrid beamforming [5] and fully digital beamforming [6].

The most noticed fully digital two stage beamforming is
joint spatial division and multiplexing (JSDM) [6]. The main
idea of JSDM lies in grouping users based on similar transmit
correlation matrices to design outer beamformer (OBF). In [6],
the outer beamformers were designed by choosing discrete
fourier transform (DFT) columns corresponding to the angular
position of user groups, which provides almost the same
sum rate as that of full channel state information (CSI) at
the transmitter. In [7]–[9] JSDM was studied extensively for
user grouping, whereas in [10] both the OBF and the inner
beamformer (IBF) were used to control the inter and intra-
cell interference, respectively. In [11], two-stage precoding was

explored for various heuristic OBF vectors and the sum rate
was analyzed as a function of number of statistical pre-beams.

In practice, the cellular users tend to be collocated geograph-
ically, leading to a user grouping that can be considered by the
base station (BS) while designing the transmission strategy. To
further reduce the complexity [11], we focus on group specific
two-stage beamformer design. For this design, the OBF is
based on long term channel statistics and these beams are used
to effectively reduce the dimensions of equivalent channels
(product between the antenna specific channels and OBF). The
main advantage is that it varies over long time scales compared
to the IBF that requires more frequent updates. The IBF in turn
is applied for spatial multiplexing on the equivalent channel
and helps to manage both intra- and inter group interference
(IGI) similarly to handling inter-cell interference in a multi-
cell scenario [12]. Weighted sum rate maximization (WSRM)
problem is formulated to optimize the IBF for a fixed OBF.

We propose a group specific optimization based IBF design
wherein the optimization is carried out for all sub-groups
jointly. The inter-group interference is managed by introducing
user specific IGI constraints. To further reduce the complexity,
we also considered a group specific IBF design by fixing the
IGI to a fixed predetermined value or by completely ignoring
them from the IBF problem formulation. Furthermore, to come
up with a reduced complexity iterative method amenable for
practical implementation, we propose an iterative solution via
the Karush-Kuhn-Tucker (KKT) expressions to obtain the IBF
precoder for a fixed IGI value with per group transmit power
constraint. The KKT expressions are obtained by associating
the coupling variables across the respective groups. We also
propose a heuristic iterative method by fixing the dual variable
corresponding to the IGI terms to a constant. By doing so,
the complexity is comparable to that of isolated beamformer
design method wherein IGI value is ignored from the IBF
formulation. All the proposed methods provides insight into
the trade-off between dimensionality reduction and sum rate
performance.

II. SYSTEM MODEL

We consider a downlink (DL) massive MIMO system as
shown in Fig. 1 consisting of single BS equipped with NT
transmit antennas in uniform linear array (ULA) pattern serv-
ing K single-antenna user terminal (UT). In this system,
NT > K, i.e, the users can be multiplexed in the spatial
dimension. Even though the users are distributed uniformly
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Fig. 1. System Model.

around the BS, they tend to be collocated geographically,
leading to a natural user clustering that can be considered by
the BS while designing the transmission strategy. Thus, the
users can be clustered into, say, G number of user clusters
with G = {1, 2, . . . , G} representing the set of user groups.
Let Ug be the set of all users assigned to user group g ∈ G
and U = ∪g∈G Ug be the set of all users served by the BS. The
channel seen between the BS and user k ∈ U is denoted by
hk ∈ CNT×1. To design channel based on user location in the
azimuthal direction, we model it using geometric ring model
[13] as

hk =
µk√
L

L∑
l=1

ej φk,l a(θk,l) (1)

where µk represents the path loss between the BS and user k,
L denotes the number of scatterers and φk,l corresponds to the
random phase introduced by each scatterer l. The scatterers
are assumed to be located uniformly around each user with
certain angular spread, say, σk and the steering vector a(θk,l)
corresponding to angle of departure (AoD) θk,l ∈ U(0, σk,l) is

given by a(θk,l) =
[
1, ej π cos(θk,l), . . . , ej π cos(θk,l)(NT−1)

]T
.

Unlike the traditional MIMO transmission techniques, we
adopt a two-stage precoder design consisting of OBF and IBF,
which together characterize the total precoder matrix used to
transmit respective data to all users in U . Moreover, due to
the clustering of users geographically, beamformers can be
designed efficiently with significantly reduced complexity.

Let Sg be the number of statistical beams that are oriented
towards each user group g ∈ G, leading to

∑
g∈G Sg =

S ≤ NT number of statistical beams in total. Similarly, let
Bg ∈ CNT×Sg contain all statistical beams corresponding
to the users in group g, such that B = [B1, . . . ,BG] and
wk ∈ CSg×1 corresponds to the IBF to the user k ∈ Ug .
The transmitted data symbol for user k is denoted by xk with
E[|xk|2] ≤ 1,∀k ∈ U and nk corresponds to the additive
white Gaussian noise with nk ∼ CN (0, N0). Thus, signal yk
received by user k ∈ Ug is

yk = hH
k Bgwkxk+

∑
i∈Ug\{k}

hH
k Bgwixi+

∑
j∈Uḡ,
ḡ∈G\{g}

hH
k Bḡwjxj+nk (2)

where the first term in (2) is the desired signal while the second
and third terms represent intra- and inter-group interference.

Hence, the signal-to-interference-plus-noise-ratio (SINR) for
user k ∈ Ug is given by

γk =
|hH
k Bgwk|2∑

i∈Ug\{k}

|hH
k Bgwi|2 +

∑
j∈Uḡ,ḡ∈G\{g}

|hH
k Bḡwj |2 +N0

(3)

where index g indicates the user group of user k.
We consider the problem of weighted sum rate maximization

(WSRM) objective for designing the transmit precoders, which
is given by

R =
∑
g∈G

∑
k∈Ug

αk log2(1 + γk)⇒
∑
k∈U

αk log2(1 + γk) (4)

where αk ≥ 0 is a user specific weight, which determines the
scheduling priority.

III. OUTER PRECODER DESIGN USING STATISTICAL
CHANNEL

Unlike the conventional MIMO, the two-stage beamformer
design involves both the inner and the outer beamformers so
as to reduce the computational complexity. The OBF plays
a major role in determining the overall performance as it is
common to all the users in the group. Designing both outer
and inner beamformers is a challenging task as they are inter-
dependent. Thus, we adopt a sub-optimal strategy wherein
the OBF is designed based on long-term channel statistics
followed by the IBF design with fixed outer beamforming
vectors. We present two well known heuristic methods to find
outer beamformers, namely, Eigen and greedy DFT beams.
We assume that the users are grouped based on their channel
statistics, hence we design group specific OBF matrix.

A. Eigen Beam Selection

The channel statistics of all users are assumed to remain
relatively constant for a period of time. In such cases, the
Eigenvectors of the channel covariance matrix can be used
to form the outer precoding matrix via Eigenvalue decompo-
sition (EVD) [6], [11]. Let Hg = [hUg(1)

, . . . ,hUg(|Ug|)] be
the stacked channel matrix of all users in group g and let
Rg = E

[
HgH

H
g

]
be the corresponding channel covariance

matrix averaged over significant channel realizations / coher-
ence times. Now, by decomposing Rg using EVD, we obtain
Rg = UgΛgU

H
g , where the column vectors of Ug ∈ CNT×Sg

correspond to the Eigenvectors and the respective Eigenvalues
are stacked diagonally in Λg ∈ CSg×Sg . Now, by choosing Sg
columns of Ug , which is denoted by Ug(Sg), corresponding
to the Sg largest Eigenvalues in diag(Λg), we obtain the outer
precoding matrix Bg = Ug(Sg) ∈ CNT×Sg containing Sg
predominant spatial signatures.

B. Greedy Beam Selection

As the number of users in the system increases, the proba-
bility of finding a user in the azimuthal direction follows the
uniform distribution, i.e., θk ∈ [−π, π]. Thus, in the limiting
case, the column vectors of U ∈ CNT×NT corresponding to
the channel covariance R,∀k ∈ U can be approximated to the
columns of DFT matrix D = [d1, . . . ,dS ] ∈ CNT×S with
DDH = INT

, where the kth column vector of D is given
by dk = 1√

NT

[
1, ej2πk/NT , . . . , ej2πk(NT−1)/NT

]H
. The OBF

matrix based on DFT columns aids in multiplexing data into
multiple high directional (high gain) beams [6]. Thus, the
problem reduces to finding a subset of column vectors from



the unitary DFT matrix. To do so, we select Sg DFT column
vectors that maximizes the following metric for each group g
by initializing D = {1, 2, . . . , NT } and Bg = ∅ as

k = argmax
i

(dH
i Rg di), ∀i ∈ D

Bg = Bg ∪ {k}, D = D\Bg. (5)
Upon finding subset Bg , the group specific OBF is given by
Bg = [dB(1), . . . ,dB(|B|)]. Thus, the resulting OBF matrix Bg

consisting of orthogonal DFT beams include strongest effective
number of group specific beams Sg signal paths of each group.

IV. GROUP-SPECIFIC INNER BEAMFORMER DESIGN

Unlike the two-stage beamforming with single user group
as in [11], we consider a group specific OBF matrices to
reduce the computational complexity further by restricting
the effective number of group specific beams Sg . The main
objective of inner beamformers is to maximize the received
signal power at the intended user terminal in a given group
while minimizing the interference caused to the other terminals
in the same group and the ones in other groups. Having, a finite
number of transmit antennas NT causes significant leakage
to adjacent groups due to the side lobes from the statistical
beams. Therefore, to handle this inter-group interference and to
improve the system sum rate, we first introduce a group inter-
ference optimization design where the inter-group interference
is handled via IGI constraints/variables. An iterative solution
via KKT expressions is also presented for the centralized
design, which is then followed by an iterative low complexity
heuristic solution.

A. Group Interference Optimization

In order to design beamformers for each group with reduced
dimensions, the interference term in the denominator of the
SINR constraint in (3) is expressed for each user k ∈ Ug as∑

i∈Ug\{k} |h
H
k Bgwi|2 +

∑
m∈G\{g} ζm,k +N0 ≤ βk (6a)∑

j∈Uḡ |h
H
k Bḡwj |2 ≤ ζḡ,k, ∀ḡ ∈ G\{g} (6b)

where ζḡ,k limits the interference caused by the neighboring
group ḡ ∈ G\{g} to user k ∈ Ug . By introducing new variable
ζḡ,k, the inner beamformer can be designed for each group
independently by coordinating only the group specific inter-
ference ζḡ,k threshold across the groups. Thus, the problem of
inner beamformer design is given by

maximize
γk,βk,wk,ζg

∑
g∈G

∑
k∈Ug

αk log(1 + γk)

subject to
|hH
k Bgwk|2

βk
≥ γk, ∀k ∈ U (7a)∑

g∈G

∑
k∈Ug

‖Bgwk‖2 ≤ Ptot (7b)

(6a), and (6b) (7c)
where ζḡ,k,∀ḡ ∈ G\{g} are the inter-group interference terms,
which couples the IBF design problem.

In spite of relaxing the SINR expression in (3) using (7a)
and (6), (7) is still nonconvex due to the quadratic-over-linear

constraint (7a) [14]. Thus, to solve problem (7) efficiently, we
resort to the successive convex approximation (SCA) technique
wherein the nonconvex constraint is replaced by a sequence of
approximate convex subsets, which is then solved iteratively
until convergence [15]. We note that the LHS of (7) is convex,
therefore we resort to the first order Taylor approximation of
quadratic-over-linear function around some operating point,
say, {w(i)

k , β
(i)
k }, is given by

Fk(wk, βk; w
(i)
k , β

(i)
k ) , 2

w
(i)H
k BH

g hkh
H
k Bg

β
(i)
k

(
wk−w

(i)
k

)
+

|hH
k Bgw

(i)
k |2

β
(i)
k

(
1−

βk − β(i)
k

β
(i)
k

)
. (8)

where the first order approximation Fk(wk, βk; w
(i)
k , β

(i)
k ) is

an under-estimator for the LHS term in (8) is given by [12].
Now, by using the above approximation in (8), an approxi-

mate convex reformulation of (7) is given by

maximize
γk,βk,wk,ζg

∑
g∈G

∑
k∈Ug

αk log(1 + γk)

subject to Fk(wk, βk; w
(i)
k , β

(i)
k ) ≥ γk (9a)

(6a), (6b), and (7b). (9b)
The resulting problem (9) is solved iteratively until convergence
by updating the operating point with the solution obtained from
the previous iteration. Thus, upon convergence, the resulting
inner beamforming vectors wk ∈ CSg×1,∀k ∈ Ug determine
the linear combination of OBF column vectors of Bg that
maximizes the overall sum rate of all users.

Unlike the approach presented in (9), the beamformers can
also be designed independently by either fixing the inter-
group interference to a fixed value or by ignoring them from
the formulation. By doing so, the complexity involved in
the design of inner beamformers reduces significantly as the
number of optimization variables is limited.

Upon replacing Bg by B = [BG(1), . . . ,BG(|G|)] in (9), we
obtain two-stage beamformer design without user grouping,
i.e., wk ∈ CS×1, leading to a fully connected design (FC).
This is equivalent to [11] when G = 1 is used in (9). By doing
so, the inner beamformer finds a linear combination of all the
available outer beamforming vectors, i.e., S spatial beams to
serve any user in the system.

The problem in (9) can also be solved in a distributed man-
ner among the groups via primal / dual decomposition or alter-
nating directions method of multipliers (ADMM) technique as
outlined in [12], [16], [17]. However, the number of iterations
and the overhead involved in the signaling exchange among
user groups limits the practical viability of those algorithms.
In [18], unlike the centralized method the beamformers were
designed independently by fixing the IGI term ζḡ,k to a fixed
value or by ignoring them from the formulation. However, the
performance for a fixed IGI constraint in [18] was observed
to be fairly close to the group optimization problem. Hence,
instead of [18], we consider an iterative solution via the system
of KKT expressions for the fixed IGI value and propose to find
the corresponding dual variable iteratively.



B. Iterative Solution

A practical iterative solution for (9) can be obtained by
solving the system of KKT conditions [14]. To do so, we
express (9) along with the dual variables as follows

maximize
γk,βk,wk

∑
g∈G

∑
k∈Ug

αk log(1 + γk)

subject to

ak : Fk(wk, βk; w
(i)
k , β

(i)
k ) ≥ γk,∀k ∈ Ug (10a)

bk :
∑

i∈Ug\{k}

|hH
k Bgwi|2 +

∑
ḡ∈G\{g}

ζḡ,k +N0 ≤ βk,∀k ∈ Ug

(10b)

cg,i :
∑
k∈Ug

|hH
i Bgwk|2 ≤ ζg,i, ∀i ∈ U\Ug (10c)

dg :
∑
g∈G

∑
k∈Ug

‖Bgwk‖2 ≤
Ptot

G
,∀g ∈ G (10d)

where ak, bk, cg,i and dg are dual variables corresponding to
constraints (10a), (10b), (10c) and (10d). The dual variable dg
in (10) is associated with the total power constraint of each
group, whereas the dual variables ak, bk are associated with
each user in the system. The dual variable cg,i belongs to
the constraint (10c) ensuring inter-group interference within a
fixed ζg,i value. Thus the Lagrangian is given by
maximize
ak,bk,cg,i,dg

minimize
γk,βk,wk

L(γk, βk,wk, ak, bk, cg,i, dg) (11)

where the objective is reversed in the Lagrangian expression
due to the negative operator before the actual sum rate objec-
tive in (11). The solution is obtained by differentiating (11)
with respect to each of the associated optimization variable

∇γk :
−1

1 + γk
+ ak = 0 (12a)

∇βk
:
|hH
k Bgw

(i)
k |2

β
(i)2
k

ak − bk = 0 (12b)

∇wk
: wH

k

{ ∑
i∈Ug\k

biB
H
g hih

H
i Bg +

∑
j∈Uḡ

cg,jB
H
g hjh

H
j Bg

+ dgB
H
g Bg

}
=
akw

(i)H
k BH

g hkh
H
k Bg

β
(i)
k

(12c)

In addition to (12) and primal and dual feasibility constraints,
KKT conditions also include the complementary slackness
conditions as
ak

{
γk −Fk(wk, βk; w

(i)
k , β

(i)
k )
}

= 0 (13a)

bk

{ ∑
i∈Ug\{k}

|hH
k Bgwi|2 +

∑
ḡ∈G\{g}

ζ̄ḡ,k +N0 − βk

}
= 0 (13b)

cg,i

( ∑
k∈Ug

|hH
i Bgwk|2 − ζ̄g,i

)
= 0 (13c)

dg

(∑
g∈G

∑
k∈Ug

‖Bgwk‖2 −
Ptot

G

)
= 0. (13d)

By fixing ak > 0 and bk > 0, we obtain a tractable solution for
γk and βk, respectively, by using the complementary slackness

conditions in (13). However, to meet IGI constraints, dual
variable cg,i must be found using an iterative sub-gradient up-
date, which is similar to guaranteeing the inter-cell interference
constraints in [12], [16], [19].

C. Heuristic Solution

Instead of iteratively finding the exact value for dual variable
cg,i that ensures the equality of IGI constraints, fixed cg,i
values are used to heuristically control the amount of inter-
ference caused from one group to another. By doing so, the
beamformer expression wk contains both inter- and intra-group
interference channel components weighted by their respective
dual variables. By fixing cg,i, the optimal interference level
cannot be guaranteed, leading to a slightly reduced sum rate
performance. However, the complexity is greatly reduced as
the sub-gradient search to meet the IGI constraints is avoided.
Therefore, by solving the KKT expressions using (12), (13),
and by setting cg,i to a fixed value, we obtain the system
of update equations to design transmit precoders with fixed
operating point

a
(i)
k =

αk

1 + γ
(i−1)
k

, b
(i)
k =

|hH
k Bgw

(i−1)
k |2

(β
(i−1)
k )2

a
(i)
k (14a)

w
(i)H
k =

a
(i)
k w

(i−1)H
k BH

g hkh
H
k Bg

β
(i−1)
k

{ ∑
i∈Ug\k

b
(i)
i BH

g hih
H
i Bg

+
∑
j∈Uḡ

c
(i)
g,jB

H
g hjh

H
j Bg + dgB

H
g Bg

}−1

(14b)

ζ
(i)
g,i =

∑
k∈Ug

|hH
i Bgw

(i)
k |

2 (14c)

β
(i)
k =

∑
i∈Ug\{k}

|hH
k Bgw

(i)
i |

2 +
∑

ḡ∈G\{g}

ζ
(i)
ḡ,k +N0 (14d)

γ
(i)
k =

|hH
k Bgw

(i)
k |2

β
(i)
k

. (14e)

Since the dual variable a
(i)
k depends on γ

(i−1)
k , the initial

operating point γ(i−1)
k is fixed by using some fixed feasible

transmit precoder w
(i−1)
k . It follows from the fact that γ(i−1)

k

and β
(i−1)
k can be obtained for a fixed w

(i−1)
k . Upon fixing

the w
(i−1)
k , γ(i−1)

k and β(i−1)
k rest of the variables are updated

as outlined in (14). The dual variable dg is found by bisection
search for each group, such that the total power constraint Ptot

G
is satisfied by the transmit precoder wk.

We note that (14b) is the only constraint that involves the
dual variable cg,i corresponding to inter-group interference
constraints. The transmit precoder w

(i)
k can be evaluated using

(14b), since the dual variable cg,i is fixed to a constant
value. Before proceeding with β(i)

k , we evaluate ζ(i)
g,i for each

group g using (14c) and exchange the real valued scalar IGI
values between groups to provide better rate approximation for
the iterative process. Upon, exchanging the ζ(i)

g,i between the
groups, we find β

(i)
k using (14d). Finally, solving γ

(i)
k using



(8) may not provide a suitable approximation due to fixed cg,i,
hence, we use the actual SINR expression in (14e) to find γ(i)

k .
This procedure is performed until convergence 1 in the same

sequence as outlined in (14). The algorithm for this procedure
is provided in Algorithm 1, and is repeated until the sum rate
between two successive iterations is below 10−3.

Algorithm 1: Heuristic Method
1: Input: αk,hk,∀k ∈ U .
2: Output: wk,∀k ∈ U
3: Initialize: i = 1, γ(0)

k , and β(0)
k using feasible IBF w

(0)
k

for fixed OBF Bg , ∀g ∈ G. Fix the inter-group dual
variable cg,i to some constant value.

4: repeat
5: Solve for a(i)

k with (14a) using fixed γ(i−1)
k

6: Solve for b(i)k using a(i)
k ,w

(i−1)
k and β(i−1)

k

7: Upon finding w
(i)
k using (14b) via bisection search

over dg , update ζ̄g,i, ∀i ∈ Uḡ , ∀g ∈ G using (14c)
8: Once ζ̄g,i is obtained, the inter-group interference

values are exchanged between groups in order to
provide better rate approximation

9: Upon exchanging the ζ̄g,i value, the total interference
β

(i)
k and SINR γ

(i)
k are found by solving (14d) and

(14e), respectively.
10: until perform (14) until convergence

V. COMPLEXITY ANALYSIS

In this section, we compare the computational complexity of
different IBF design methods. Since, the solutions are obtained
iteratively by solving a convex sub-problem in each iteration,
the complexity is proportional to the number of iterations
required. We ignore the complexity of the OBF design as it can
be computed off-line. However, we observe that as the number
of groups increases, then the number of OBF dimensions per
group Sg is reduced similarly.

It is worth noting that the fully connected (FC) design
can also be solved using KKT expressions without fixed IGI
constraints, which involves inversion of matrix sized S ≤ NT .
It requires roughly O(S3 ×K ×∆) complexity per iteration
with ∆ being the number of bisection search required to assign
transmit powers to satisfy power constraint. The complexity
involved in estimating other variables are noticeably less. On
the contrary, group specific heuristic design with fixed dual
variables cg,i, the complexity per group and per iteration is
dominated by the beamformer expression in (14b), which
is in the order of O(S3

g × K × ∆). As an example, when
Sg = 16, (G = 4) and S = 64, (G = 1) for per group and
FC design, respectively, the total computational complexity of
per group scheme is 4× 163

643 = 4−3 = 4× 2% fraction of FC
design without sacrificing much on the performance.

VI. NUMERICAL RESULTS

Similar to [11], we consider a single cell DL massive
MIMO BS equipped with NT = 64 ULA antenna elements

1Formal convergence proof is omitted, since it is shown in [12], [17].
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Fig. 2. Sum rate vs. Dual variable cg,i for Sg = 4, 8, 16.

serving a total of K = 16 single-antenna users. The users are
naturally partitioned into 4 segments each with 45◦, and with 4
users randomly placed in each segment. The angular spread for
each user is considered to be 15◦ degree with 20 independent
paths per user. The groups are distributed uniformly within
[−π2 , π2 ]. The user specific weights in the WSRM objective
are fixed to αk = 1 ∀k ∈ U . The plots are obtained by
varying the number of statistical beams employed at the BS.
If G > 1, then the number of statistical beams are divided
equally among the user groups, i.e., Sg = S

G while using (9).
The results are averaged over 200 channel realizations and the
noise variance is assumed to be unity. The transmit power is
set to Ptot = 20dB with respect to noise variance.

Before proceeding further, we define the legends used in
figures. The OBF is defined explicitly followed by the type
of IBF design. The FC system is obtained via solving (9)
by setting Bg = B,∀g ∈ G, thus all the outer beams are
utilized by the IBF for serving a user in any group. The
group interference optimization (GIO) figures are obtained by
solving (9) with optimal IGI, thus only the group specific
outer beamformers are utilized by the IBF while serving
group specific users. By setting ζg,i = 0 and ignoring the
constraint in (6b), we obtain the isolated design as in [6],
referred as ζ = ignore in figures. Finally, by solving the set
of KKT expressions in Algorithm 1 with a fixed dual variable
cg,i = c, ∀g ∈ G, i ∈ U\Ug , we obtain the heuristic solution,
referred to as Alg. 1 in figures.

Fig. 2 illustrates the sum rate performance for the two
different group specific OBF methods with G = 4 as a function
of dual variables cg,i = c,∀g, i. This dual variable corresponds
to the IGI constraint in (10c). It is worth noticing that the best
sum rate performance is obtained when cg,i = 1 considering
both OBF scenarios. However, for lower number of statistical
beams, say Sg = 4, the sum rate falls down to zero when
cg,i ≥ 10, this is due to the fact that there is not enough DoF
to null IGI in each group. Therefore, we fix the dual variable
with the best value cg,i = 1 to solve the KKT expressions as
in Algorithm 1. Furthermore, we can observe that the heuristic
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Fig. 3. Sum rate vs. total statistical beams for greedy OBF design.

Algorithm 1 provides almost the same sum rate as compared
to the optimized IGI levels when proper dual variables cg,i
are used. Since greedy maximization achieves better sum rate
performance over Eigen selection, we ignore Eigen selection
based OBF plots in Fig. 3 for clarity.

Fig. 3 demonstrates the sum rate performance of all the
proposed schemes with Ptot = 20dB. The FC design is
identical to the method proposed in [11], which is nothing but
(9) with G = 1. On the contrary, the number of user group is
fixed as G = 4 in all group specific techniques. It is also worth
noting that setting ζ = 10−3 design performs almost similar
to that of (9). However, upon, ignoring the IGI term altogether
from the optimization problem, the achievable sum rate is
noticeably inferior. This is due to the fact that the OBF beams
have considerable sidelobes, hence, the leakage to neighboring
groups users that are located at the boundaries suffer from
severe IGI as it is left uncompensated while designing the
inner beamformers. Finally, by fixing the dual variable cg,i = 1
from Fig. 2, to solve the KKT expressions, we observe that
the performance is very close to the methods with optimized
IGI levels. Moreover, the complexity is comparable to that
of isolated design, since, there is no need to update the dual
variable corresponding to the IGI constraint.

VII. CONCLUSION

In this paper, we proposed a fully digital two-stage beam-
forming for a single cell downlink massive multiple-input
multiple-output system with user grouping based on geograph-
ical location. This beamformer design consists of OBF and
IBF. We also considered two different approaches to form
the OBF matrix namely, Eigen selection and greedy energy
maximization so as to reduce the effective channel dimensions.
Upon fixing the outer beamformer, the inner beamformers were
designed by considering group specific interference constraint
using weighted sum rate maximization objective. In order
to further reduce the complexity, a computationally efficient
iterative solution was proposed via solving the Karush-Kuhn-
Tucker optimality conditions. A heuristic iterative approach

was also presented by fixing the dual variable corresponding
to the inter-group interference constraint to a constant value. It
is shown that the computational complexity can be reduced to
a large extent as compared to the single group beamforming
while preserving most of the sum rate performance with a
minor loss.
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