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URLLC-eMBB Slicing to Support VR Multimodal
Perceptions over Wireless Cellular Systems

Jihong Park and Mehdi Bennis

Abstract—Virtual reality (VR) enables mobile wireless users
to experience multimodal perceptions in a virtual space. In this
paper we investigate the problem of concurrent support of visual
and haptic perceptions over wireless cellular networks, with
a focus on the downlink transmission phase. While the visual
perception requires moderate reliability and maximized rate, the
haptic perception requires fixed rate and high reliability. Hence,
the visuo-haptic VR traffic necessitates the use of two different
network slices: enhanced mobile broadband (eMBB) for visual
perception and ultra-reliable and low latency communication
(URLLC) for haptic perception. We investigate two methods by
which these two slices share the downlink resources orthogonally
and non-orthogonally, respectively. We compare these methods
in terms of the just-noticeable difference (JND), an established
measure in psychophysics, and show that non-orthogonal slicing
becomes preferable under a higher target integrated-perceptual
resolution and/or a higher target rate for haptic perceptions.

Index Terms—Virtual reality (VR) multimodal perception, VR
traffic slicing, URLLC-eMBB multiplexing, stochastic geometry.

I. INTRODUCTION

Virtual reality (VR) is often seen as one of the most impor-
tant applications in 5G cellular systems [1[[-[3]]. As in real life,
mobile VR users can interact in the virtual space immersively
with virtual objects that may stimulate their multiple sensory
organs. This multimodal VR perception happens, for example,
when a VR user measures the size of a virtual object through
visual and haptic senses. In this study, we consider the problem
of supporting such visuo-haptic VR perceptions over wireless
cellular networks, and focus on the downlink design.

The key challenge is that these two perceptions have com-
pletely different cellular service requirements. In fact, visual
traffic requires high data rate and relatively low reliability with
packet error rate (PER) on the order of 10~ ~ 103 [4], [5]].
This requirements can be supported mostly through enhanced
mobile broadband (eMBB) links [6]. Haptic traffic, by con-
trast, should guarantee a fixed target rate and high reliability
with PER on the order of 1074 ~ 1075 [7], [8], which can
be satisfied via ultra-reliable and low latency communication
(URLLC) links [9], [10].

Furthermore, in order to render a smooth multimodal
experience, the PERs associated with the visuo-haptic VR
perceptions should guarantee a target perceptual resolution. To
be precise, the perceptual resolution is commonly measured by
using the just-noticeable difference (JND) in psychophysics, a
field of study that focuses on the quantitative relation between
physical stimulus and perception [4], [[11]], [12]]. Following
Weber’s law, JND describes the minimum detectable change
amount of perceptual inputs, e.g., 3 mm for the object size
measurement using visuo-haptic perceptions [11]. According
to psychophysical experiments, the JND of the aggregate
visuo-haptic perception is the harmonic mean of the squared
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Fig. 1. An illustration of visuo-haptic VR perceptions and the required
URLLC-eMBB traffic slicing: (a) without multiplexing; (b) with
NOMA; and (c) with OMA.

JNDs of the individual perceptions [11]], in which the JND of
each perception is proportional to the PER [4].

As a result, the PERs associated with the visuo-haptic VR
traffic should be adjusted so as to achieve a target JND, while
abiding by the eMBB and URLLC service objectives in terms
of PERs and data rates. Due to the discrepancy of the visual
and haptic service requirements, it is difficult to support both
perceptions through either eMBB or URLLC links. Hence, it
is necessary to slice the visuo-haptic VR traffic into eMBB
and URLLC links, leading to URLLC-eMBB multimodal
transmissions. Unfortunately, such multimodal transmissions
bring about multimodal self-interference, which is manifested
through an actual wireless interference as visualized in Figs.
1-a and b, or via the necessity to share resources as shown in
Figs. 1-b and c.

This critical self-interference can be alleviated by multi-
plexing the URLLC-eMBB multimodal transmissions over the
transmit power domain with successive interference cancella-
tion (SIC) at reception, i.e., downlink non-orthogonal multiple
access (NOMA) [13]], as illustrated in Fig. 1-b. Alternatively,
as Fig. 1-c shows, the self-interference can be avoided via
orthogonal multiple access (OMA) such as frequency division
multiple access (FDMA). In this paper, using stochastic geom-
etry, we investigate the optimal design of NOMA and OMA
to support visuo-haptic VR perceptions while coping with the
multimodal self-interference in a large-scale downlink system.

Related Works — The communication and computation
resource management of mobile VR networks has recently
been investigated in [2]], [3]], [[14]-[16]], particularly under a VR
social network application [3|] and a VR gaming scenario [|16].
The end-to-end latency has been studied in [14] for a single-



cell scenario and in [3]], [[15]] for a multi-cell scenario. These
works focus primarily on supporting either visual or haptic
perceptions. Towards supporting multimodal perceptions, suit-
able network architecture and coding design have been pro-
posed in [7]], [8]], while not specifying the requirements on the
wireless links. In an uplink single-cell system, orthogonal/non-
orthogonal multiplexing of URLLC and eMBB links has been
optimized by exploiting their reliability diversity in [[17].

Contributions — The main contributions of this work are
summarized as follows.

o To the best of our knowledge, this is the first work that
combines both visual and haptic modalities in the context
of mobile VR network design.

o To support visuo-haptic VR perceptions, an optimal
downlink NOMA design with reliability-ordered SIC has
been proposed (see Lemma 2 and Proposition 4).

e Compared to an OMA baseline (see Proposition 2), it
has been observed that the proposed NOMA becomes
preferable under a higher target integrated-perceptual res-
olution and/or a higher target rate for haptic perceptions
(see Fig. 3).

o By using stochastic geometry, closed-form average rate
expressions have been derived for downlink URLLC-
eMBB multiplexing under OMA and NOMA in a large-
scale cellular network (see Propositions 1 and 3).

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the downlink system
operation of OMA and NOMA under a single-cell scenario,
and describe its extension to the operation under a large-scale
network. Then, we specify visuo-haptic perceptions, followed
by the problem formulation of visuo-haptic VR traffic slicing
and multiplexing.

The user under study requests visuo-haptic VR perceptions
that are supported through URLLC-eMBB cellular links. We
use the subscript ¢ € {1, 2} to indicate the URLLC link Link;
with ¢ = 1 and the eMBB link Links with ¢ = 2. The subscript
j € {O,N} identifies OMA and NOMA, respectively.

A. Single-Cell Channel Model with OMA and NOMA

In a downlink scenario, we consider a single user that is
associated with a single base station (BS). For both OMA
and NOMA, the transmissions of the BS at a given time
occupy up to the frequency bandwidth normalized to one,
which is divided into the K number of miniblocks. Each
miniblock is assumed to be within the frequency-time channel
coherence intervals. The channel coefficients are thus constants
within each miniblock, and fade independently across different
miniblocks over frequency and time. The transmit power of the
BS is equally divided for each miniblock, normalized to one.

1) Single-Cell OMA: A set K; of miniblocks are allocated
to Link;, with |[IC1| 4+ |K2] = K. Each set corresponds to a
fraction w; 0 = |K;|/K > 0, with w10 + wa0 = 1. The
transmit power allocations to Link; and Linky are set as the
maximum transmit power per miniblock. Denoting as 8; 0 < 1
the transmit power allocation fraction to miniblock k£ € IC;,
this corresponds to the allocations that equal 81,0 = 82,0 = 1.

The user’s received signal-to-noise ratio (SNR) is deter-
mined by small-scale and large-scale fading gains. For a given
user-BS association distance 7, the large-scale fading gains of
Link; and Links are identically given as r—% with the path
loss exponent o > 2. For miniblock k£ € K;, the small-scale

fading gain ggk) is an exponential random variable with unit

mean, which is independent and identically distributed (i.i.d.)
across different miniblocks. The user’s received SNR of Link;
through miniblock k € KC; is then expressed as
(k)
9i
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where N is the noise spectral density of a single miniblock.

2) Single-Cell NOMA: The entire bandwidth is utilized for
both links in NOMA, i.e., the miniblock allocation fractions
equal wy Ny = wa N = 1. This is enabled by transmitting the
superposition of the signals intended for Link; and Linko,
with their different transmit power allocations, and then by
decoding the signals with SIC at reception [[13]]. The transmit
power allocated to Link; has a fraction 3; x of the maximum
transmit power per miniblock, with 8 Ny + fon = 1.

At reception, unless otherwise noted, we consider Link; is
decoded prior to Links. This SIC order implicitly captures the
low-latency guarantee of Link;, as addressed in [17] for an
uplink scenario. Furthermore, it improves the overall NOMA
system performance due to the reliability diversity of Link;
and Links, to be elaborated in Sect.

With the said SIC order, the signal intended for Link; is first
decoded, while treating the signal for Links as noise, i.e., mul-
timodal self-interference. The decoded signal is then removed
by applying SIC, and the remaining signal for Links is finally
decoded without self-interference. The user’s received SNR
for Link; through miniblock k € IC; is thereby obtained as
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Note that all the fading gains of Link; and Links are identi-

cally g}k)r’o‘ since their channels are identical.

B. Channel Model under a Stochastic Geometric Network

By using stochastic geometry, the aforementioned single-
cell operation of OMA and NOMA is extended to a large-
scale multi-cell scenario as follows. The BSs under study are
deployed in a two-dimensional Euclidean plane, according to
a stationary Poisson point process (PPP) ® with density A,
where the coordinates x of a BS belongs to ®. Following the
single-cell operation, each BS serves a single user through its
Link; and Links.

The locations of users follow an arbitrary stationary point
process. Each user associates with the nearest BS, and down-
loads the visuo-haptic VR traffic through the Link; and Link,
of the BS. Following [[18]], we focus our analysis on a typical
user that is located at the origin and associated with the
nearest BS located at position z, of the plane. This typical
user captures the spatially-averaged performance, thanks to
Slyvnyak’s theorem [[19]] and the stationarity of ®.

In the previous single-cell scenario, interference occurs only
from the multimodal self-interference under NOMA, as shown
in . In addition to such intra-cell self-interference, extension
to the stochastic geometric network model induces inter-cell
interference. As done in [5]], [[18]], [20], inter-cell interference
is treated as noise, and is assumed to be large such that the
maximum noise power NN is negligible. In this interference-
limited regime, channel quality is measured not by SNR but
by signal-to-interference ratio (SIR), as described next.



The inter-cell interference is measured by the typical user,
and comes from the set ®, = ®\{x,} of the BSs that are
not associated with the typical user. We consider every BS
always utilizes the entire bandwidth and the maximum trans-
mit power. The average inter-cell interference per miniblock
is thus identically given under both OMA and NOMA. The
instantaneous inter-cell interference varies due to small-scale
fading. For each miniblock, any interfering link’s small-scale
fading is independent of the small-scale fading of the typical
user’s desired Link; and Links.

Under OMA, the typical user’s received SIR of Link;
through miniblock k € KC; is thereby given as

9 o)

k _ )
Yocw, 987zl
(k)

where g, ' ’s are exponential random variables with unit mean,
which are independent of ggk) and are i.i.d. across different
interfering BSs. Likewise, under NOMA, the typical user’s re-
ceived SIR of Link; through miniblock & € IC; is expressed as
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It is noted that all the SIRs under NOMA and OMA are
identically distributed across different miniblocks. For the
typical user’s Link; and Links, the large-scale fading gains
are identical. Their small-scale fading gains are independent
under OMA, but are fully-correlated under NOMA.

C. Average Rate with Decoding Success Guarantee

In a large-scale downlink cellular system with OMA and
NOMA, we derive the typical user’s average rate that guaran-
tees a target decoding success probability. Decoding becomes
successful when the instantaneous downlink rate exceeds the
transmitted coding rate.

To facilitate tractable analysis, we consider that the instan-
taneous channel information is not available at each BS. With
the channel information at a BS, one can improve the average
rate by adjusting the transmit power [17] and/or the coding
rate [18]], [20]. In addition, we assume separate coding for
each miniblock, which may loose frequency diversity gain
compared to the coding across multiple miniblocks [[17], [21]].

With these assumptions and the SIRs that are identically
distributed across miniblocks, average rate is determined by
the decoding success probability for any single miniblock.
Therefore, we drop the superscript (k) in SIRE_@) and the small-
scale fading terms, and derive the average rate in the sequel.

1) OMA: The typical user can decode the signal from Link;
with the decoding success probability p; o(t; 0) that equals

pi,o = Pr (log(l +SIR;0) > Ti,o) @)

=Pr(SIR;,0 > ti0), (8)

where 7; o is the coding rate per miniblock, which is hereafter
rephrased as a target SIR threshold ¢, o = €"° — 1.

For the given target decoding success probability 7; of
Link;, the average rate R; o(7;) of Link; is obtained by using
outage capacity [22] as

Ri0(ni) = wi,on: - sup{log(1 + ti0) : pio(tio) > ni} (9)
= wi.oni - log(1 +ti o), (10)

where the optimal target SIR threshold ¢!, satisfies
pi7o(t;‘,0) = 1, and thus equals ¢, = pi__cl)(n,;).

Note that even when the coding block length of Link; is
short, the average rate expression in (@]) still holds, since the
finite-block length rate under fading channels converges to the
outage capacity [23].

2) NOMA: With the SIC order that decodes Link; prior
to Link,, the typical user’s decoding success probabilities
p1N(t1n) and pa N(t1 N, t2 n) of Linky and Links are given as

pin(tin) =Pr(SIRin > tin) and (11)
paN(tin, taN) = pin(tiN) - Pr(SIRan > ton | SIRi N > tl,I\E)l-z)
Following [24], our SIC do not allow to decode the Link,
signal after the decoding failure of the Link; signal. With
a different SIC architecture that allows such a decoding
attempt, ([];ZI) is regarded as the lower bound, as done in [17]].

For the given target decoding success probability 7; of
Link;, the average rate Ry n(71) of Link; is given as

Rin(m) = n1 - sup{log(1 + t1n) : piN(t1N) > M}
=11 - log(1 + 1 n),

13)
(14)

where the optimal target SIR threshold equals ¢] y = pirl\l(m).
Similarly, for the given target decoding success probability 7y
of Link,, the average rate R n(71,72) of Links is given as

Ron(ni,m2) = n2 - sup{log(1 + taN) : p2n(ti N, taN) > 12} (15)
=2 -log(1 +t3n), (16)

where 5 y = pg_’;,(m, 72).
D. Visuo-Haptic Perceptual Resolution

The resolution of human perceptions is often measured by
using JND in psychophysics. In a psychophysical experiment,
the JND is calculated as the minimum stimulus variation that
can be detectable during 84% of the trials [11]]. For a visuo-
haptic perception, its integrated JND is obtained by combining
the JNDs of visual and haptic perceptions.

To elaborate, when individual haptic and visual perceptions
have the perceived noise variances o; and o2, a human
brain combines these perceptions, yielding an integrated noise
variance o5 that satisfies o,,> = 0 2 +0, 2. This relationship
was first discovered in [11] by measuring the corresponding
JNDs that are proportional to the perceived noise variances.
The said relationship is thus read as 71_22 = v " Yo 2
where ;o denotes the JND measured when using both visuo-
hapric perceptions, while v; and ~» identify the JNDs of the
individual haptic and visual perceptions, respectively.

For individual visual perceptions, it has been reported by
another experiment [4] that the PER is proportional to its sole
IJND 7, due to the resulting visual frame loss. Similarly, for
individual haptic perceptions, it has been observed in [[12] that
the PER is proportional to the elapsed time to complete a
given experimental task, which increases with the correspond-
ing JND 7; due to the coarse perceptions. Based on such
experimental evidence, we can write that v; = (1—1;)2, where
(1 — ;) represents the PER on Link;.

Accordingly, the JND ~;5 of visuo-haptic perceptions is
obtained from the following equation

2 = (L =m) P+ (L =m2) 7
In the following subsection, we adjust the target decoding

success probabilities 77 and 72 of Link; and Links, so as
to guarantee a target visuo-haptic JIND 6 > 0, i.e., y12 = 6.

a7



E. URLLC-eMBB Multiplexing Problem Formulation

In a downlink cellular system serving visuo-haptic VR
traffic, haptic and visual perceptions are supported through
Link; and Links, respectively. Each link pursues different
service objectives as follows. The URLLC Link; aims at:

(1) Ensuring a target decoding success probability 77 < 1;

and

(i1) Ensuring a target average rate R > 0.

In contrast, the eMBB Links aims at:

(iii) Maximizing the average rate Ry ;(7;) > 0; while

(iv) Ensuring a target decoding success probability 75, with
N2 <n2 <M.

In (iv), N2 < 19 follows from an experimental evidence that the

quality of visual perceptions dramatically drops when PER ex-

ceeds a certain limit, e.g., 10% PER that equals 72 = 0.9 [4].

In addition to these individual service objectives, with
Link; and Links, their aggregate JND ~;5 should guarantee
a target visuo-haptic JND 6. The said service objectives and
requirements of Link; and Links are described in the following
problem formulation.

(P1) W7T%2(|T7I:,Z?, . Rz,j (7]1, 7]2) (18a)
st Rij(m)= Ry (18b)

Y2 =0 (18¢)

m<n<m<l (18d)

The objective functions Rj ;(11,72) and Ry (1) in the con-
straint (I8D) are obtained from (I0) for OMA and from (14)
for NOMA. In the constraint (I8c)), v12 is provided in (17).
Without loss of generality, we hereafter consider a sufficiently
large number K of miniblocks so that the miniblock allocation
fraction w; ; under OMA is treated as a continuous value.

III. OPTIMAL MULTIPLEXING OF VISUO-HAPTIC VR
TRAFFIC UNDER OMA AND NOMA

In this section, we optimize the multiplexing of Link; and
Linksy that support visuo-haptic VR traffic. With P1, for OMA,
we optimize the miniblock allocation from the unit frequency
block to each link. For NOMA, on the other hand, we optimize
the power allocation from the unit transmit power.

A. Optimal OMA

We aim at optimizing the miniblock allocation w; o < 1.
To this end, for given w; o and 7);, we derive the average rate
Rio(n) = wionilog(l + tf,o) with 7, = p;é(m). This
requires taking the inverse function of p; o(t;0) in (B).

The typical user’s p;o(tio) = Pr(SIRio > tio) is
commonly referred to as SIR coverage probability, and its
closed-form expression can be derived by using stochastic
geometry [18]], [25]]. Namely, p; o(t;,0) is given as

Pi,0(ti,0) = Ezy.0, |Pr | 95 > tiolzol® Z galz| ™ (19)
L zedP,
' 2ol \
=Esz, @, H exp <7ti7ogz ( o ) ) (20)
zed, |£L‘|
IxOI ay\ —1
=Esp0, | [] (1+ti0 , @n
zed, ‘x|

where (20) comes from the complementary cumulative density
function (CCDF) of g, and follows from the Laplace

functional of the i.i.d. exponential variables g,’s. Applying
the probability generating functional (PGFL) of a stationary
PPP &, [19], we obtain the integral expression

@) = Ex, |exp —27r>\/ (1+ ! ( Y ) )vdv (22)
v>|x,| ti,O |33o|

=1/2F1 (1,-2/a;1—2/a;—t; 0) - (23)

The last step is derived by using the void probability of ®, with
the definition of a Gauss hypergeometric function that equals
2 F1(a, b;c; z) =3, %% where I'() is the
gamma function.

In spite of the closed-form SIR coverage probability expres-
sion in (23), due to the hypergeometric function, the inverse
function of p; o(t,0) can only be numerically computed. We
resolve this problem by exploiting a simplified SIR coverage
probability bound, proposed in our previous study [26].

Lemma 1. (Closed-form SIR coverage bounds) Denoting as
SIR = glzo|™%/ > _,eq, 9u|z| ™%, according to Theorem 1 and
Corollary 1 in [26], the coverage probability of SIR is upper
and lower bounded as

Pr(SIR > 1) = (1 +ct) "=, (24)

where /(o — 2) < ¢ < [21/a - esc (27 /a)]*/2.
As validated in [26], these upper and lower bounds guarantee
the convergence to the exact values respectively for ¢ — 0 and
t — oo, which corresponds to high and low target decoding
success probabilities, respectively. We henceforth treat the
bounds as the approximated coverage probability of SIR.
Applying this to p; o(t;0) = Pr(SIR > t;0), we obtain
pio(tio) = (1 + cti,o)”/“. We thereby derive the inverse
function ¢, = p;é(m) that equals

t;O = G(n1)7
where G(n;) = (7,”%/?> — 1)/c. The specific value of ¢ and

the approximation accuracy are to be specified in Sect. IV.
Applying (25) to R; o(n;) in (I0) yields the following result.

Proposition 1. (Closed-form average rate, OMA) For a
given n;, the average rate of Link; under OMA is given as

(25)

Ri0(mi) = wi,onilog (1 +G(m:)) - (26)

Finally, applying this result to P1, we obtain the optimal
OMA design and its corresponding average rate as below.

Proposition 2. (Maximum average rate, OMA) The maximum
average rate of Links under OMA is provided as

Rio(ns) =wiomilog (1+ G(n3))  where  (27)
* Rl
=1 28
W20 =1 Toe+ G(n)) @®
1
1 1 T2
=1 (g ) =
Ny = arg max R3 o(n2), (30)

Az <ma <min(1,1—60~/2)

R;o(n2) = wjo(n2)nzlog (14 G(n2)), and wj o(n2) is
obtained by replacing 73 with 7 in w3 .
Proof: See Appendix-A. |
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Fig. 2. Average rate R3 ;(n2) w.r.t. the target decoding success probability 72 under OMA and NOMA (Ry = 107° nats/sec, v = 4).

Notice that R 0(772) still requires optimization with respect
to 72, as shown in @ In fact, the objective function to
be maximized in (30) is concave over 72, as wj 5(n2) is a
monotone increasing function of 7,. Nevertheless, it is non-
differentiable due to w3 ;(72), and can thus be optimized only
by simulation. 7

In order to obtain the closed-form expression of R o(13),
we consider a sufficiently large 7> in (I8d), such that the
concave objective function in (30) monotonically decreases
with 72 > 7. In this regime, the optimum R} ,(n3) is
achieved at 15 = 7)o, yielding the following corollary.

Corollary 1. (Closed-form maximum average rate, OMA) For
72 — 1, the objective function in (30) is a monotone decreas-
ing function of 72, and we thus obtain Rj o(n3) = I3 o(7)2)-

Note that Corollary 1 holds even under 7 that is much smaller
than 1. For instance, as illustrated by simulation in Fig. 2,
R o(n2) monotonically decreases with 72 > 0.3. This value
is still much smaller than a practical value of 75, e.g., 72 = 0.9
as reported in [4], [5]. Therefore, we conclude that R3 0(172)
in Corollary 1 is the closed-form approx1mat10n Validating its
accuracy compared to Proposition 1 is deferred to Sect. IV.

B. Optimal NOMA

Our goal is to optimize the transmit power allocation frac-
tion 3; N < 1 to Link;. To this end, for given 3; y and 7;, we
derive the average rate R; n(7;) provided in (I4). The average
rate is determined by the decoding order of the superposition
of Link; and Linky signals. We propose the following optimal
SIC decoding order.

Lemma 2. (Reliability-ordered SIC) In (P1) with n; > 15,
Ro n(n2) is maximized when Link; is decoded prior to Links.
Proof: By contradiction, we assume Linky is decoded prior
to Link;. We obtain the corresponding p1 n(t1n,%2N) Dy
exchanging the subscripts 1 and 2 in (I2)), given as

piN(tiN, t2N) = pen(t2N) - Pr(SIRin > t1n | SIR2N > t2N)-
(€29)]
According to (I3), it should guarantee pi n(t1,n,t2N) > 71,
which now reads
Pr(SIRin > tin | SIR2aN > t2n) > m1/pan(t2N).  (32)
Since Pr(SIRy ny > t1 N | SIRz N > t2n) < 1, the denominator
of the RHS in should satisfy ps. N( 2.N) > n1. On Links,

this consequently imposes the target decoding success proba-
bility at least 77, which is higher than its original target 7.
The resulting Ry n(71) is thus smaller than Ry n(72) in (T4)
with the opposite decoding order, finalizing the proof. ]

The proposed downlink SIC in order of reliability is con-
sistent with the same SIC rule for uplink URLLC-eMBB
multiplexing, proposed in [[I7]. Note that this reliability-
ordered SIC may not always comply with a traditional SIC
design that decodes the stronger signal first [13]], [21]. If
BiN > Pan, ie., Bin > 0.5, then the reliability-ordered
SIC follows the traditional power-ordered SIC. Otherwise,
the reliability-ordered SIC should decode the weaker signal
first, which is not allowed under the power-ordered SIC. Such
restriction is examined by simulation in Sect. IV.

With the reliability-ordered SIC, as done for OMA in
Sect. III—AL we exploit Lemma 1, and derive the closed-form
decoding success probabilities, followed by the average rates.

First, when decoding the signal intended for Link;, the de-
coding success probability p; n(t1 n) = Pr(SIRi N > t1N) is
rephrased as p1 n(t1n) = Pr(SIR > [1/t;x — fan/Bin] 1),

which follows from (II) with SIR;n in (B). Applying
Lemma 1 to this, we thereby obtain
pin(tin)=1— (1 + C|:1/t1,N - 52,N//5'1,N] - )_ (33)

By taking the inverse function, t] y = p;. Tx(m) is derived as
tin= [52,N/51,N + 1/G(771)]

Applying this to Ry x(71) in (T4), we finally obtain the closed-
form average rate, provided in Proposition 3 on the next page.
Next, when decoding the signal intended for Links, follow-
ing from (12) with SIRy x in (6) and from py n(1] x) = M
in (I4), the decoding success probability pa N(t] x,t2,N) is

(34)

pQ,N(tI’N, tQ’N) =m Pr (SIRQ’N > ta.N | S|R17N > tI,N) (35)
=mPr (STR > max{t2,N/B2N, [1/t1 n — /5’2,N/51,N]71}) (36)
~ M Pr (SliR 2 tQ,N/ﬂQ,N) =M PI‘(SleyN 2 t27N). (37)

In (36), we utilize the relationship Pr(SIRan > ton) =
PI‘(S'R Z t2,N/62,N)’ as well as Pr (SlRLN Z tT,N) =
Pr(SIR > [1/tiy -2 ~N/Ba, N]_ ). The approximation in (37)
is valid for hlgh 771, since t] y in approaches 0 as 777 — 1.

By comparing (37) and @]) we conclude that Links signal
is almost mdependently decoded with Link; decoding under
high 7;. In fact, SIR; x in () and SIRz y in (6) are correlated
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Fig. 3. Maximized average rates R5 (n3) and R5 n(n7,75) W.rt. a target rate Ry of Link, for different target visuo-haptic JND thresholds.

over both large-scale fading and small-scale fading, and the
Link; decoding success may thus affect the subsequent Link,
decoding success. With high 7;, nevertheless, Link; can be
decoded almost regardless of the channel quality, negligibly
contributing to the Linky decoding success.
Finally, applying Lemma 1 to (37), we obtain &3y =
p27,11\1(771, 72) that equals
tyn = PanH (n1,m2), (38)

where H(n1,m2) = [(n1/12)*/? — 1]/c. Plugging this in (T6)
yields the closed-form average rate as follows.

Proposition 3. (Closed-form average rate, NOMA) For a
given 17);, the average rate of Link; under NOMA with the
reliability-ordered SIC is given as

g"’z (11)}> and  (39)

Ran(n1,m2) = n2log (1 + ﬂz,NH(mﬂh))- (40)

With these closed-form average rate expressions, we solve
P1, and obtain the optimal NOMA design as follows.

Rin(m) = m log ( {

Proposition 4. (Maximum average rate, NOMA) The maxi-
mum average rate of Link, under NOMA is provided as

R (i n3) = log (1-+ BiH(ni.ni))  where @b
—1y —1
1 1
fin= (14 | —~ “am| | @
exp <R1/77T) 1 G(ny)

1

1 1 2
i (- ) w
N5 = arg max R3 x(m1,m2), (44)

A2 <nz2 <min(1,1-6+/2)

RS (. m2) = n2log (1 + B3 x(n2) H (1, m2)), and S5 x(n2)
is obtained by replacing n; in 5y with 7.
Proof: See Appendix-B. ]

Similar to Corollary 1 for OMA, we consider a sufficiently
large 72 so that R \(71,72) in (4) monotonically decreases
with 79, yielding the following closed-form result.

Corollary 2. (Closed-form maximum average rate, NOMA)
For 7 — 1, the objective function in (44) is a monotone

decreasing function of 72, and we thus obtain R5 \(n7,73) =
R3 (i, ) where iy = 1 — [1/6% — 1/(1 — )] 12

As shown in Fig. 2 and discussed after Corollary 1, Corol-
lary 2 also holds under 7y that is much smaller than 1. We
thus consider this as the closed-form approximation, and defer
its validation to Sect. IV.

IV. NUMERICAL EVALUATION

In this section, we numerically validate our analytic results
on multiplexing visuo-haptic VR traffic. The default simulation
parameters are: j2 = 0.9, ¢ = a/(o — 2), and a = 4.

Fig. 3 renders the rate region of the maximized average rate
R2 of Links and the target rate R1 of Link;, under the opti-
mal OMA and NOMA demgns This validates that our closed-
form optimal rate expressions R3 .’s in Corollaries 1 and 2
are only up to 1.75% less than the simulated values obtained
by using Propositions 2 and 4 without the use of Lemma 1.
Furthermore, in NOMA, we observe that the performance of
the proposed reliability-ordered SIC is significantly degraded
when the power-ordered SIC is enforced, calling for an SIC
implementation that can decode the weaker signal first if it is
more reliable.

Next, compared to OMA, the resultsA in Figs. 3 shows that
NOMA performs better for a higher R;. In fact, NOMA is
capable of achieving a higher rate, since its power-domain
multiplexing logarithmically decreases the rate whereas the
rate under OMA linearly decreases. In addition, as shown by
comparing Figs. 3-a and b, NOMA is also preferable for a
higher target visuo-haptic perceptual resolution, i.e. low 6. In
this regime, due to the integrated JND relationship in (17),
it leads to the higher decoding success probability 7; that
reduces the rate loss induced by SIC in NOMA, namely, the
concatenated decoding at the reception of Linksy signals.

Finally, the maximum required ¢ from which NOMA
outperforms OMA for different R;’s is specified in Fig. 4.
Following the same reasoning as for Fig. 3, a lower # with
NOMA results in a higher 7;, thereby minimizing the rate
loss induced by the SIC process. With OMA, on the contrary,
the higher 7, solely decreases the miniblock allocation to
Links, reducing the rate of Links. For a larger R, the rate of
Linky changes negligibly under the transmit power reduction
of NOMA, yet deteriorates significantly under the linear-scale
bandwidth reduction of OMA.
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V. CONCLUSION

In this paper, we studied the multiplexing design for sup-
porting visuo-haptic VR perceptions through downlink eMBB-
URLLC links in cellular systems. Based on our closed-form
average rate derivations under OMA and NOMA, we conclude
that NOMA with the proposed reliability-ordered SIC outper-
forms OMA, for a higher target haptic data rate as well as for
a higher target visuo-haptic perceptual resolution. A possible
extension to this work is to optimize its uplink multiplexing
design. Incorporating different types of multimodal percep-
tions could also be an interesting topic for further research.
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APPENDIX - PROOFS OF PROPOSITIONS

A. Proof of Proposition 2

Now that R; o(;) monotonically increases with w; ; while
decreasing with w; ; for ¢ # ¢ with ¢ € {1,2}, the optimal
allocation wy  for 51 is determined by the equality constraint
(T8B). By applying Proposition 1, (T8b) reads

m log (14 G(m)) = Ru. (45)
Solving this equation yields wj 5. Applying w3 o =1 —wj g
and to Rz 0(n2) in Proposition 1 results in R (n3).
The feasible range of 7, comes from and (T8d). [ ]

)

B.  Proof of Proposition 4

As 1~ grows, Ry n(1m1) monotonically increases, while
Ro n(m1,m2) decreases. Therefore, the optimal allocation BT’N

for P1 is achieved by the equality constraint (I8B) that is
given as

nilog(1 + [Ban/Bin + 1/G(m)] ") = Ry (46)
Solving this equation, we obtain 3] y. Applying S5y =
1 —piy to to Ron(m1,7m2) in Proposition 1 results
in R% (07, n3). The feasible range of 7, follows from
and (18d). [ ]
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