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Abstract—We consider multicell downlink transmission where
multi-antenna base stations (BSs) collaborate in transferring data
to multiple cochannel multicast groups. Our aim is to design
a joint transmitter selection and cooperative precoding scheme
which maximizes the minimum received data rate among all
receivers under constraints on the individual BS transmit power
budgets as well as backhaul link capacity. The problem is natu-
rally cast as a mixed Boolean nonconvex program whose global
optimal solution is difficult to achieve. To solve this problem
locally, we first use difference-convex (DC) functions to represent
the Boolean variables, and further transform the problem into
an equivalent but more tractable formulation. We then propose
an iterative algorithm which provably converges to stationary
solutions. Numerical results are provided to demonstrate the
superior performance of the proposed method.

I. INTRODUCTION

The evolution of wireless communications with the contin-

uous increase in capacity allows operators to provide various

kinds of services to subscribers. The development of user

devices (e.g. smartphones) with high-quality media capabilities

boosts the growth of wireless service demand in general, and

multicast transmission in particular. Therein common infor-

mation (e.g, news, video clips, TV shows) is simultaneously

delivered to a group of users in a defined area [1], [2], and

those have been become a feature in current wireless commu-

nication standards, e.g. the Long-Term Evolution (LTE) [3].

Multicast transmissions has also received significant research

attention in recent years, e.g. in multicell networks [4] or

cognitive communications [5].

Coordinated multi-point (CoMP) transmission is one of

the key technologies to improve the capacity of wireless

networks, particularly for the cell edge users. In this context,

transmitters collaborate in designing a precoder operating as

a large virtual multiple-input multiple-output (MIMO) sys-

tem (i.e. joint beamforming) [6]. However, this technique

requires that user data is available at all transmitters, and

thus, increasing the amount of information transmitted over

the backhaul links connecting the radio controllers and base

stations (BSs). Unfortunately, capacity of the backhaul link

is limited regardless the physical medium (e.g copper, optical

fiber or microwave radio wireless) is deployed [7]. A solution

for the challenge is properly selecting the sets of serving

transmitters such that the number of duplicate versions of data

transferred over the backhaul link is reduced. This approach

has been considered in many current works with different

objectives, e.g. sum rate maximization [8], or joint backhaul

and transmit power minimization [9], [10].

In this paper, we consider multicell wireless networks where

multi-antenna BSs cooperate on transmitting data to some mul-

ticast groups. Different from [10], where the transmit power

and backhaul cost are jointly minimized, we aim at maximiz-

ing the minimum data rate among multicast groups subject

to the backhaul capacity by developing a joint transmitter

selection and precoder design. Due to the NP-hard complexity

of the multicast fairness problem and the combination of

transmitter selection, the design problem is cast as a mixed

Boolean nonconvex program which is also intractable. Hence,

to find the global optimal solution is a difficult challenge and

not practical interest. As such, we develop a low-complexity

method which solves the problem locally. For this purpose, we

first tackle the discrete parts by using difference-convex (DC)

functions to convert the Boolean variables into continuous

ones. Then, the problem is equivalently transformed such that

the convexity is more exposed. Subsequently, we propose

an iterative procedure where a second-order cone program

(SOCP) is solved in each iteration. In addition, we prove

that the proposed method converges to stationary points of

the equivalent problem. Numerical results are carried out to

empirically evaluate the effectiveness of the proposed method.

The rest of the paper is organized as follows. System model

and problem formulation are described in Section II. Section

III presents the problem transformation and the proposed itera-

tive algorithm. Numerical results and discussions are provided

in Section IV. Finally, Section V concludes the work.

Notation: Standard notations are used in this paper. Bold

lower and upper case letters represent vectors and matrices,

respectively; ‖·‖2 represents the l2 norm; |·| represents the

absolute value; Ca×b represents the space of complex matrices

of dimensions given in superscript; CN (0, c) denotes a com-

plex Gaussian random variable with zero mean and variance

c; ℜ(·) represents real part of the argument. Other notations

are defined at their first appearance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless communication system where B BS

transmitters jointly serve G multicast groups consisting U
single-antenna receivers (users) and each belongs to only one

group [2]. An example of the considered system model is

displayed in Fig. 1. Let gi indicate receiver i of group g and

Lb, Lb ≥ 2, denote the number of antennas implemented at
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Figure 1. An example of multicast multigroup cooperative transmissions with
backhaul link connecting central processor with BSs.

transmitter b. Let hgib ∈ C
1×Lb be the channel (row) vector

from transmitter b to receiver gi, and wgb ∈ CLb×1 be the

precoder for group g at transmitter b. With these introduced

notations and under flat fading channels, the received signal

at receiver gi is written as

ygi =

B
∑

b=1

hgibwgbxg +

B
∑

b=1

G
∑

k=1,
k 6=g

hgibwkbxk + zgi (1)

where zgi ∼ CN (0, σ2
gi
) is the additive white Gaussian noise

(AWGN) at receiver gi and xg is the normalized complex

data symbol intended for group g. For ease of description,

let wg , [wT
g1,w

T
g2, . . . ,w

T
gB ]

T ∈ C((
∑B

b=1
Lb)×1) and

hgi , [hgi1,hgi2, . . . ,hgiB] ∈ C(1×(
∑B

b=1
Lb)) which are the

beamformer vector and channel vector from all transmitters

to receiver gi, respectively. Then, based on (1), the signal-

to-interference-plus-noise ratio (SINR) at receiver gi is given

by

γgi =
|hgiwg|2

∑G

k=1,k 6=g |hgiwk|2 + σ2
gi

. (2)

In the context of multicast transmission, the common informa-

tion rate is determined by the weakest link. Thus the common

data rate transmitted to receivers in group g is given by [1]

Rg = log
(

1 + min
∀i

{γgi}
)

. (3)

We suppose that multicast data is transported from the central

processor to the transmitters via the backhaul link [8], [9],

[11]. Thus, the corresponding total backhaul rate requirement

is [10]

fBH ,

G
∑

g=1

|Bg|Rg (4)

where Bg ∈ {1, 2, ..., B} is the set of transmitters serving

group g, and |B| denotes the cardinality of set B. Assuming

that the capacity limitation of the backhaul link is given by

parameter C̄, then we have fBH ≤ C̄ . By (4), we can see

that the total backhaul rate requirement fBH depends on data

rate Rg as well as sets of serving BSs Bg, ∀g. That is to say,

besides designing the precoding vector, properly choosing the

serving BSs for each group can also improve the common

information rate. From this perspective, let us introduce the

selection variables dgb ∈ {0, 1} where dgb = 1 indicates that

group g is served by BS b and dgb = 0 otherwise. Then, the

problem of max-min fairness data rate for multicast multigroup

systems can be formulated as

maximize
wg ,pgb,dgb

min
∀gi

{

|hgiwg|2
∑G

k=1,k 6=g |hgiwk|2 + σ2
gi

}

(5a)

subject to
∑G

g=1

(

∑B

b=1 dgb

)

Rg ≤ C̄ (5b)

||Tbwg||22 ≤ dgbpgb, ∀g, b (5c)
∑G

g=1 pgb ≤ P̄b, ∀b (5d)

dgb ∈ {0, 1}, ∀g, b (5e)

where Tb , [0
Lb×

∑b−1

t=1
Lt
, ILb

,0Lb×
∑

B
t=b+1

Lt
] and pgb ≥ 0

is the soft power variable, which is introduced to force

precoder wgb to be zero when transmitter b does not serve

group g (i.e (5c)). We also consider the power constraint at

each transmitter in (5d). The backhaul constraint in (5b) is

written based on (4) since |Bg| =
∑B

b=1 dgb.1 With constraints

in (5e), problem (5) is a mixed Boolean nonconvex program.

Hence, the global optimal solution is not easy to achieve. It is

worthy to mention that, even if the Boolean variables in (5)

are fixed (or relaxed), the reduced problem is still NP-hard

[1]. In addition, we recall that, to have solutions for problems

of multicast systems, semidefinite relaxation (SDR) technique

has been used to approximate the problems, e.g. [2], [4], [12].

However, this approach cannot be employed for (5) since the

resulting problem is still nonconvex.

III. PROPOSED SOLUTION

In this section, to solve (5), we introduce an iterative

procedure based on the state-of-the-art technique namely suc-

cessive convex approximation (SCA) [13], [14], which has

been widely used in wireless communication designs, e.g. [15],

[16]. For this purpose, problem (5) needs to be transformed

into a more amenable formulation. To do so, we first use DC

function to equivalently represent the Boolean constraints in

(5e) as [17, Chap. 4]

dgb ∈ {0, 1} ⇔
{

dgb − d2gb ≤ 0

0 ≤ dgb ≤ 1
. (6)

1The constraint shown in (5b) is for the case of total backhaul capacity.
We remark that the method proposed in this paper can be straightforwardly
applied to the case of individual transmitter backhaul links with constraint

(5b) is rewritten as
∑G

g=1 dgbRg ≤ C̄b, ∀b, where C̄b denotes the backhaul

capacity corresponding to transmitter b.



In addition, let us introduce variable ϑg such that data rate

transmitted to group g is log(1 + ϑg). Then we can rewrite

problem (5) into a more tractable form as

maximize
wg ,pgb,dgb,ϑg ,ϑ̃

ϑ̃ (7a)

subject to
|hgiwg|2

∑G

k=1,k 6=g |hgiwk|2 + σ2
gi

≥ ϑg, ∀gi (7b)

ϑg ≥ ϑ̃, ∀g (7c)
∑G

g=1

(

∑B

b=1 dgb

)

log(1 + ϑg) ≤ C̄ (7d)

||Tbwg||22 ≤ dgbpgb, ∀g, b (7e)
∑G

g=1 pgb ≤ P̄b, ∀b (7f)

dgb − d2gb ≤ 0, ∀g, b (7g)

0 ≤ dgb ≤ 1, ∀g, b (7h)

where all variables in (7) are continuous due to (6). However,

problem (7) is still difficult to solve due to the intractable

format of (7b), (7d). Thus we introduce slack variables tgi > 0
and sg ≥ 0, then rewrite (7) as

maximize
wg ,pgb,dgb,

ϑg ,ϑ̃,tgi ,sg

ϑ̃ (8a)

subject to
|hgiwg|2

tgi
≥ ϑg, ∀gi (8b)

G
∑

k=1,k 6=g

|hgiwk|2 + σ2
gi

≤ tgi , ∀gi (8c)

log(1 + ϑg) ≤ sg, ∀g (8d)
∑G

g=1

(

∑B

b=1 dgb

)

sg ≤ C̄ (8e)

(7c), (7e), (7f), (7g), (7h) (8f)

At this stage, if we directly apply SCA to (8), there is some

iteration where the subproblem is infeasible due to (7g) and

(7h) leading to the failure of obtaining solutions for (5).

Inspired by the recent results in DC program [18], we tackle

this issue by alternatively considering the relaxation of (8)

given as

maximize
wg,pgb,dgb,ϑg,

ϑ̃,tgi ,sg ,φgb

ϑ̃− λ
∑

g,b

φgb (9a)

subject to (7c), (7e), (7f), (7h), (8b), (8c), (8d), (8e) (9b)

dgb − d2gb ≤ φgb, ∀g, b (9c)

where φgb ≥ 0,∀g, b, are slack variables and λ > 0 is the

penalty parameter. Obviously, (8) and (9) are equivalent when

φgb = 0, ∀g, b. From now on, we introduce an iterative proce-

dure based on SCA to solve (9) such that, at the convergence

points, the Karush-Kuhn-Tucker (KKT) conditions of (9) are

satisfied and φgb = 0, ∀g, b (i.e. the convergence points are

also the feasible solutions of (8)).

Let us first consider nonconvex constraint (8b). An

important observation is that the left side of this con-

straint is a quadratic-over-linear function which is con-

vex (c.f. [19, chap. 3]). For ease of description, let

us define ugi , hgiwg and u
(n)
gi , hgiw

(n)
g where

(w
(n)
g , p

(n)
gb , d

(n)
gb , ϑ

(n)
g , ϑ̃(n), t

(n)
gi , s

(n)
g , φ

(n)
gb ) is supposed to be

some feasible point of (9). Then an approximation of this

constraint is given as [16]

2ℜ
(

(u
(n)
gi )H(ugi − u

(n)
gi )

)

t
(n)
gi

+

(

u
(n)
gi

)H

u
(n)
gi

t
(n)
gi

−

(

u
(n)
gi

)H

u
(n)
gi

(

t
(n)
gi

)2 (tgi − t(n)gi
) ≥ ϑg (10)

which is convex since the left side is linear in the involved

variables. We now turn our attention on nonconvex constraint

(8d). In the similar manner, since the left side is a logarithm

function, we arrive at a convex approximation of this constraint

given as

log(1 + ϑ(n)
g ) +

(ϑg − ϑ
(n)
g )

1 + ϑ
(n)
g

≤ sg. (11)

To deal with nonconvex constraint (8e), we introduce variables

vg , then equivalently rewrite the constraint as

{

vg =
∑B

b=1 dgb
∑G

g=1

(

(vg + sg)
2 − (vg − sg)

2
)

≤ 4C̄
(12)

where the first constraint is linear and the second one is

nonconvex with the left side is the summation of difference of

quadratic functions. We can convexly approximate the second

constraint in (12) as follows

G
∑

g=1

[(vg + sg)
2 − (v(n)g − s(n)g )2

− 2(v(n)g − v(n)g )(vg − v(n)g − sg + s(n)g )] ≤ 4C̄ (13)

Finally, for the last nonconvex constraint (9c), we have a

convex approximation given as

(

d
(n)
gb

)2

+ 2d
(n)
gb (dgb − d

(n)
gb ) + φgb ≥ dgb. (14)

We now present the proposed iterative procedure whose

main steps are outlined in Algorithm 1. In particular, based

on the above discussions, the safely approximated convex

problem of (9) which is solved in the (n + 1)th iteration of



Algorithm 1 The proposed algorithm to solve (7)

1: Initialization: set n := 0, generate an initial feasible point

(w
(0)
g , p

(0)
gb , d

(0)
gb , ϑ

(0)
g , ϑ̃(0), t

(0)
gi , s

(0)
g φ

(0)
gb ) of (9) and initial

penalty parameter λ.

2: repeat

3: n := n+ 1.

4: Solve (15) to obtain optimal values

(w∗
g , p

∗
gb, d

∗
gb, ϑ

∗
g, ϑ̃

∗, t∗gi , s
∗
g, φ

∗
gb).

5: Set (w
(n)
g , p

(n)
gb , d

(n)
gb , ϑ

(n)
g , ϑ̃(n), t

(n)
gi , s

(n)
g ) :=

(w∗
g , p

∗
gb, d

∗
gb, ϑ

∗
g, ϑ̃

∗, t∗gi , s
∗
g).

6: Update λ := min(cλ, λmax).
7: until Convergence

8: Output: (w
(n)
g , p

(n)
gb , d

(n)
gb )

the algorithm (i.e. line 4) is given as

maximize
wg ,pgb,dgb,ϑg ,

ϑ̃,tgi ,sg ,φgb,vg

ϑ̃− λ
∑

g,b

φgb (15a)

subject to (7c), (7f), (7h), (10), (11), (13), (14) (15b)
√

√

√

√

G
∑

k=1,k 6=g

|hgiwk|2 + σ2
gi
+

(tgi − 1)2

4
≤ tgi + 1

2
, ∀gi

(15c)
∥

∥

∥

∥

[

Tbwg
1
2 (dgb − pgb)

]∥

∥

∥

∥

2

≤ 1

2
(dgb + pgb) , ∀g, b (15d)

vg =

B
∑

b=1

dgb (15e)

where (15c) and (15d) are second-order cone representations

of (8c) and (7e), respectively [20]. At the initial stage of

the algorithm, the penalty parameter λ is set at small value

to provide high relaxation for the BS selection. Then, this

parameter is increased after each iteration by a constant c > 1
(line 6) to guarantee that

∑

g,b|φ∗
gb| = 0 when n → ∞.

Particularly, the property of the proposed algorithm (Algorithm

1) is stated in the following theorem.

Theorem 1. There exist finite values of λmax and n1 such that
∑

g,b|φ∗
gb| = 0 in iteration n2, ∀n2 ≥ n1, and lim

n→∞

∥

∥ϑ̃(n+1)−
ϑ̃(n)

∥

∥

2
= 0. In addition, the convergence points of Algorithm

1 satisfy the Karush-Kuhn-Tucker (KKT) conditions of (9).

Proof: Please refer to Appendix.

According to Theorem 1, Algorithm 1 is guaranteed to

converge to stationary points of (8) (due to
∑

g,b|φ∗
gb| = 0). In

general, λmax is difficult to know. Thus, in practical implemen-

tations, we can increase λ until
∑

g,b|φ∗
gb| < ǫ is satisfied, then

terminate the procedure when
∥

∥ϑ̃(n+1) − ϑ̃(n)
∥

∥

2
< ǫ. Herein,

ǫ ≈ 0 is positive tolerance parameter.

Complexity analysis: We now discuss the computational

complexity of Algorithm 1. Since there is no theoretical result

about the number of required iterations for the convergence of

the SCA-based approaches, we focus on the arithmetical cost

in an iteration which is dominated by that of solving (15). We

note that problem (15) is a SOCP which requires less computa-

tional effort to be solved compared to other nonlinear programs

(e.g. semidefinite and generic convex programs) [20]. To be

specific, the number of required iterations satisfying a given

acceptable tolerance (when solving (15) by an interior-point

method) is bounded by O
(√

GB + U
)

and the bound of

arithmetical cost in one iteration (of the interior-point method)

is O
(

G3(B +
∑

b Lb)
2(U +B +

∑

b Lb)
)

.

IV. NUMERICAL RESULTS

In this section, we report simulation results to evaluate

the performances of the proposed method. For comparison

purposes, we additionally provide the performances of two

other strategies. The first strategy is the coordinated beam-

forming (CoB) where each group receives data from only one

transmitter [4]. The second one is the joint beamforming (JB)

where each group is served by all transmitters. The solution

for JB is obtained based on that in [2], [12]. To solve the

convex problems in this section, we use the modeling package

YALMIP [21] with the inner solver SeDuMi [22].

We consider the simulation model as follows. For each

group, the positions of receivers are randomly generated in

a circle with a radius of 10 meters. In a similar manner, the

positions of transmitters and that of the centers of multicast

groups are randomly generated inside a circle with a radius

of 200 meters. The path loss model follows the one in 3GPP,

i.e. PL(dB) = 30.18 + 26 log10(l) where l is the distance in

meters [23]. The log normal shadowing standard deviation is

4, the noise power density is −150 dBm/Hz, and the system

bandwidth is 1MHz. Other specific parameters are written in

the captions of figures.
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Figure 2. Convergence performance of Algorithm 1 over a random chan-
nelization. The network setting is G = 3, B = 4, Lb = 4, C̄ =

15 (Mnats/s), P̄b = 2 dBm ∀b, and the number of users in each group is
3 (i.e. U = 9).

In the first experiment, we numerically study the conver-

gence of the proposed algorithm. Fig. 2 plots the values of

functions
(

ϑ̃(n) − λ
∑

g,b φ
(n)
gb

)

/ϑ̃∗ and
(

λ
∑

g,b φ
(n)
gb

)

/ϑ̃∗,

where ϑ̃∗ is the obtained value of ϑ̃ at a convergence point,

over the running iterations. As we can observe in the figure, the

algorithm converges in this case and the objective function of

(15) arrives at ϑ̃∗ when convergence due to λ
∑

g,b φ
(n)
gb ≈ 0.
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Figure 3. Average min-rate versus the backhaul capacity C̄. The network
setting is G = 3, B = 4, Lb = 4, P̄b = 10 dBm ∀b, and the number of
users in each group is 3.

In Fig. 3, we investigate the achievable min-rate perfor-

mances of the considered schemes, i.e. Algorithm 1, CoB and

JB, versus the backhaul capacity C̄. The results in the figure

clearly show that the min-rate of all considered schemes in-

creases (to the limitations corresponding to unlimited backhaul

models) when C̄ increases. We can also see in the figure that

CoB scheme achieves better min-rate than the JB scheme when

C̄ is small and vice versa when C̄ is large. In other words, JB

outperforms CoB when the backhaul capacity is large enough.

We can explain this observation as follows. When C̄ is small,

the achievable min-rate of the wireless transmissions is larger

than the limitation of the backhaul link, i.e. the min-rate of

the network strongly depends on the transmitted data rate from

central processor to transmitters (via backhaul). On the other

hand, as C̄ is large, transmission schemes and transmit power

budgets have the main impact on the network capacity. This

also explains the fact that the performance of the proposed

method is close to that of CoB and JB as C̄ is small and

large, respectively. As expected, the proposed method yields

good performances in all cases of C̄.

1 5 15 25 35 45 55 65 75

1

1.5

2

2.5

3

3.5

4

Coordinated beamforming

Joint beamforming

Algorithm 1

Backhaul capacity, C̄ (Mnats/s)

A
v
g
.

n
u
m

.
se

rv
.

B
S

p
er

g
ro

u
p

Figure 4. Average number of serving BSs per group versus the backhaul
capacity C̄. The setting network is same as that in Fig. 3.

Fig. 4 depicts the average number of serving transmitters

per multicast group versus the backhaul capacity C̄. As can be

observed, the results shown in this figure are entirely consistent

with those presented in Fig. 3. The min-rate of the network in

low backhaul capacity regime relies on data rate transmitted

over backhaul link, thus, the strategy is to use a small number

of transmitters to transfer data to a group. On the contrary, at

the high backhaul capacity regime, the min-rate is limited by

wireless transmissions. Therefore, to improve the min-rate, the

proposed method should use more transmitters (per group).

V. CONCLUSION

We have investigated the cooperative multicell networks

where multiple BSs collaborate to simultaneously transmit

data to multiple multicast groups under the limitation of

the backhaul link capacity. The target of this paper is to

design the low-complexity scheme of transmitter selection

and linear precoding such that the minimum data rate among

the groups is maximized. The problem is cast as a mixed

Boolean nonconvex program, and thus, we have transformed

it into the equivalent, but more tractable, program using DC

functions. Then, we have proposed an iterative algorithm

which provably converges to stationary points of this problem.

Simulation results have confirmed the effectiveness of our

proposed method.

APPENDIX

Let ϕ
(n)
gb and ρ

(n)
gb be the KKT multipliers corresponding to

the constraints (14) and φgb ≥ 0, respectively, in iteration n.

Since the Slater’s condition is satisfied in (15), we have

− λ+ ϕ
(n+1)
gb + ρ

(n+1)
gb = 0 (16)

In addition, following the same arguments in [24], we have
∑

g,b |ϕ
(n)
gb | is upper bounded. Therefore, if λmax is larger than

this bound, there exists n1 such that −λ+ ϕ
(n+1)
gb < 0, ∀n >

n1. Combining with (16), we have ρ
(n+1)
gb > 0, ∀n > n1.

Moreover, following the KKT conditions, we have ρ
(n)
gb φ

(n)
gb =

0, ∀n. Therefore, finally, we have φ
(n+1)
gb = 0,∀n > n1.

Now, for arbitrary n2 such that n2 > n1, we have ϑ̃(n2+1) ≥
ϑ̃(n2) due to the fact that the solution in iteration n2 is also a

feasible point in iteration (n2 + 1). We note that ϑ̃ is upper

bounded due to the power and backhaul constraints. Therefore,

we have the conclusion that lim
n→∞

∥

∥ϑ̃(n+1) − ϑ̃(n)
∥

∥

2
= 0. In

addition, following the same arguments in [13], we have the

fact that the convergence points of Algorithm 1 satisfy the

KKT conditions of (9). This completes the proof.

ACKNOWLEDGMENT

This work was supported in part by the Academy of

Finland under project Message and CSI Sharing for Cellular

Interference Management with Backhaul Constraints (MESIC)

belonging to the WiFIUS program with NSF.



REFERENCES

[1] N. Sidiropoulos, T. Davidson, and Z.-Q. Luo, “Transmit beamforming
for physical-layer multicasting,” IEEE Trans. Signal Process., vol. 54,
no. 6, pp. 2239–2251, June 2006.

[2] D. Christopoulos, S. Chatzinotas, and B. Ottersten, “Weighted fair mul-
ticast multigroup beamforming under per-antenna power constraints,”
IEEE Trans. Signal Process., vol. 62, no. 19, pp. 5132–5142, Oct. 2014.

[3] D. Lecompte and F. Gabin, “Evolved multimedia broadcast/multicast
service (eMBMS) in LTE-advanced: overview and rel-11 enhance-
ments,” IEEE Commun. Mag., vol. 50, no. 11, pp. 68–74, Nov. 2012.

[4] Z. Xiang, M. Tao, and X. Wang, “Coordinated multicast beamforming
in multicell networks,” IEEE Trans. Wireless Commun., vol. 12, no. 1,
pp. 12–21, January 2013.

[5] A. H. Phan, H. D. Tuan, H. H. Kha, and D. T. Ngo, “Nonsmooth
optimization for efficient beamforming in cognitive radio multicast
transmission,” IEEE Trans. Signal Process., vol. 60, no. 6, pp. 2941–
2951, June 2012.

[6] D. Gesbert, S. Hanly, H. Huang, S. Shamai Shitz, O. Simeone, and
W. Yu, “Multi-cell MIMO cooperative networks: A new look at inter-
ference,” vol. 28, no. 9, pp. 1380–1408, Dec. 2010.

[7] O. Tipmongkolsilp, S. Zaghloul, and A. Jukan, “The evolution of cellular
backhaul technologies: Current issues and future trends,” "IEEE Commu.

Surveys Tutorials", vol. 13, no. 1, pp. 97–113, 2011.
[8] B. Dai and W. Yu, “Sparse beamforming and user-centric clustering for

downlink cloud radio access network,” IEEE Access, vol. 2, pp. 1326–
1339, 2014.

[9] F. Zhuang and V. Lau, “Backhaul limited asymmetric cooperation
for MIMO cellular networks via semidefinite relaxation,” IEEE Trans.

Signal Process., vol. 62, no. 3, pp. 684–693, Feb 2014.
[10] H. Zhou, M. Tao, E. Chen, and W. Yu, “Content-centric multicast

beamforming in cache-enabled cloud radio access networks,” in Proc.

IEEE Global Commu. Conf. (GLOBECOM), Dec. 2015.
[11] J. Zhao, T. Quek, and Z. Lei, “Coordinated multipoint transmission with

limited backhaul data transfer,” IEEE Trans. Wireless Commun., vol. 12,
no. 6, pp. 2762–2775, June 2013.

[12] E. Karipidis, N. Sidiropoulos, and Z.-Q. Luo, “Quality of service and
max-min fair transmit beamforming to multiple cochannel multicast
groups,” IEEE Trans. Signal Process., vol. 56, no. 3, pp. 1268–1279,
March 2008.

[13] A. Beck, A. Ben-Tal, and L. Tetruashvili, “A sequential parametric
convex approximation method with applications to nonconvex truss
topology design problems,” Journal of Global Optimization, vol. 47,
no. 1, pp. 29–51, 2010.

[14] B. R. Marks and G. P. Wright, “A general inner approximation algorithm
for nonconvex mathematical programs,” Operations Research, vol. 26,
no. 4, pp. 681–683, August 1978.

[15] L.-N. Tran, M. Hanif, and M. Juntti, “A conic quadratic programming
approach to physical layer multicasting for large-scale antenna arrays,”
IEEE Signal Process. Lett., vol. 21, no. 1, pp. 114–117, Jan 2014.

[16] Q.-D. Vu, L.-N. Tran, R. Farrell, and E.-K. Hong, “An efficiency
maximization design for SWIPT,” IEEE Signal Process. Lett., vol. 22,
no. 12, pp. 2189–2193, Dec 2015.

[17] H. Tuy, Convex Analysis and Global Optimization. Springer US, 1998.
[18] T. P. Dinh and H. A. L. Thi, “Recent advances in dc programming and

DCA,” Transactions on Computational Intelligence XIII, vol. 8342, pp.
1–37, April 2014.

[19] S. Boyd and L. Vandenberghe, Convex optimization, 1st ed., S. Boyd,
Ed. Cambridge, 2004.

[20] M. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of
second-order cone programming,” Linear Algebra Appl., Special Issue

on Linear Algebra in Control, Signals and Image Processing, pp. 193–
228, Nov. 1998.

[21] J. Löfberg, “YALMIP : A toolbox for modeling and optimization in
MATLAB,” in Proc. the CACSD Conference, Taipei, Taiwan., 2004.
[Online]. Available: http://users.isy.liu.se/johanl/yalmip

[22] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optim. Meth. Softw., vol. 11, pp. 625–653, 1999.

[23] 3GPP, “Spatial channel model for multiple input multiple output
(MIMO) simulations,” 3rd Generation Partnership Project, TR 25.996.
[Online]. Available: http://www.3gpp.org/technologies

[24] T. V. Do, H. A. L. Thi, and N. T. Nguyen, Advanced Computational

Methods for Knowledge Engineering. Springer, 2014.

http://users.isy.liu.se/johanl/yalmip
http://www.3gpp.org/technologies

	I Introduction
	II System Model and Problem Formulation 
	III Proposed Solution
	IV Numerical Results
	V Conclusion
	Appendix
	References

