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Abstract—Split-learning (SL) has recently gained popularity
due to its inherent privacy-preserving capabilities and ability to
enable collaborative inference for devices with limited computa-
tional power. Standard SL algorithms assume an ideal underlying
digital communication system and ignore the problem of scarce
communication bandwidth. However, for a large number of
agents, limited bandwidth resources, and time-varying commu-
nication channels, the communication bandwidth can become
the bottleneck. To address this challenge, in this work, we
propose a novel SL framework to solve the remote inference
problem that introduces an additional layer at the agent side
and constrains the choices of the weights and the biases to ensure
over the air aggregation. Hence, the proposed approach maintains
constant communication cost with respect to the number of agents
enabling remote inference under limited bandwidth. Numerical
results show that our proposed algorithm significantly outper-
forms the digital implementation in terms of communication-
efficiency, especially as the number of agents grows large.

Index Terms—split-learning, remote inference, DNN, time-
varying channels, over-the-air model aggregation, analog com-
munications

I. INTRODUCTION

Deep neural network (DNN) is an efficient and promising
approach for solving machine learning problems, including
image classification, speech recognition, and anomaly detec-
tion [1]–[3]. However, DNN’s performance is often dependent
on large model sizes and, as a result, its inference requires
high computation complexities, which can become an issue
for resource-constrained devices. To overcome this, split-
learning (SL), a collaborative inference approach involving
communication with a powerful entity, a parameter server
(PS), has been proposed in [4].

In SL, NN models are divided on a per-layer basis into an
agent-side and server-side segments, respectively. Each agent
performs inference using its segment up to a particular layer,
known as the cut layer. The cut layer outputs are then sent
to the PS, which completes the rest of the inference using
its segment starting from the aggregation layer. By doing so,
SL preserves the privacy of the agents’ data since they do
not share their raw data with the PS, but only the output of
the cut layer. Compared to other distributed learning methods,
such as federated learning (FL), SL allows a reduction in
agent-side computation since the client-side network has fewer
layers compared to having the entire network in the FL
setting. This is especially important when computations are

performed on devices with limited resources [5]. Furthermore,
since the data to be transmitted is limited to the cut layer’s
output, the agent-side communication costs are significantly
reduced. When a larger number of agents is considered, the
accuracy of SL is on par with other distributed deep learning
methods such as FL and large batch synchronous stochastic
gradient descent (SGD), as shown in [5]. Recently, SL has
been proposed to solve communication system problems such
as predicting the millimeter-wave received power using camera
images and radio frequency signals [6], as well as speech
command recognition and ECG signal classification in [7].

Traditionally, communication systems are assumed to be
digital with an ideal communication channel. In digital com-
munication, every agent transmits encoded bits to represent
its transmitted output. The PS needs to decode the signal of
each agent separately to ensure error-free decoding. Hence,
the agents need to compete on the available communication
resources (bandwidth, time). However, as the number of agents
grows larger, the communication resources become a bot-
tleneck, negating the practicality of split-learning. Motivated
by the fact that the weighted sum of the different agents’
outputs is required at every neuron of the first layer of the PS,
we propose a novel approach based on analog transmission.
Different from the digital scheme, analog over-the-air com-
putation aggregates the agents’ transmitted analog signals at
each subcarrier. Thus, it requires a number of communication
resources that is independent of the number of agents.
Related works. Analog schemes have been investigated for
FL [8]–[11]. By leveraging the fact that the wireless MAC
automatically provides the PS with the noised version of the
aggregate of the gradients, an analog version of the distributed
SGD (DSGD) [8] allows devices to transmit their local gra-
dient estimates directly over the wireless channel. In [9],
the authors proposed a broadband analog aggregation scheme
based on over-the-air computation. Two communication-and-
learning trade-offs were formulated to ensure a low-latency
FL system. A novel Gradient-Based Multiple Access (GBMA)
algorithm was proposed to solve the distributed learning prob-
lem over MAC in [10], where the nodes use common shaping
waveforms to transmit an analog function of the local gradient.
The network edge receives and updates the estimate using a
superposition of the analog transmitted signals representing



Fig. 1. Schematic illustration of the difference between split learning over: (a) digital transmission: outputs are transmitted using orthogonal subcarriers, and
(b) analog transmission: agents’ outputs are sent through the same subcarrier (same color).

a noisy and distorted version of the gradients. Finally, the
authors in [11] proposed A-FADMM, an alternating direction
method of multipliers (ADMM)-based approach that only
allows the use of the analog transmission’s superpositioning
property without channel inversion. The FL problem was for-
mulated to account for the impact of the time-varying channel,
and ADMM was used to solve the problem while directly
integrating the perturbed model updates and protecting the
clients’ raw data. However, while interesting, these schemes
cannot be utilized in SL since the channel inversion yields the
sum of the outputs however, what is required is the weighted
sum of the outputs between the cut layer and the first layer of
the PS, i.e., the aggregation layer.

In this work, we propose a novel approach that cleverly
introduces an additional layer at the agent side and constrains
the choices of the weights and the biases in this layer and
the aggregation layer, to ensure over-the-air aggregation of
the analog signals transmitted by different agents at each sub-
carrier. With that, the bandwidth is constant with respect to the
number of agents and depends only on the number of neurons
at the aggregation layer. The details of the proposed approach
will be described later.
Contributions. Our main contributions are summarized as
follows
• To the best of our knowledge, this is the first work

proposing analog over the air SL under noisy wireless
channels and limited transmission power.

• We consider different variants to approximate the cut
layer outputs of the agents subject to deep fading chan-
nels while benefiting from the analog aggregation and
maintaining a good inference accuracy

• We numerically show that the proposed over-the-air al-
gorithms can adjust to noisy channels and outperform the
digital communication counterpart in terms of completed
inference tasks within the available number of channel

uses while assuming a large number of agents.
The remainder of the paper is organized as follows. The

system model is described in Section II. In Section III, we
present the proposed analog SL and describe in detail how
it adjusts to noisy wireless channels and limited transmission
power and how it copes with deep fading channels. Finally,
we show some selected numerical results in Section IV.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a remote inference problem
where M agents possess input data (e.g. camera images). The
input is fed to a local model that consists of multiple NN
layers. The output of the cut layer is transmitted to a PS that
acquires the outputs of the cut layers from the different agents
and feeds them through a number of shared layers to produce
a predicted label.

We assume that the split model, distributed between the
agents and the PS, has been trained offline, and our goal
is to enable communication-efficient inference over limited
bandwidth and noisy and time-variant channels. Instead of
relying on digital communication where orthogonal subcarriers
are allocated to send different elements so that the PS can de-
code the elements of the agents, we propose a novel approach
based on analog communication where agents transmit the ith

element using the same subcarrier. In the next section, we
describe the details of the proposed approach.

III. PROPOSED ALGORITHM

Before we dive into explaining the details of the proposed
algorithm, we start by determining the communication cost for
the digital implementation of SL, as shown in Fig. 1(a). Let
CD be the communication cost which is defined as the number
of subcarriers needed to transmit the outputs of the cut layer
of all agents. For simplicity, we assume that local models of
all agents have the same architecture. Using a digital system,
the communication cost is given by CD = M · ND, where



ND is the number of neurons of the cut layer. One drawback
of the digital implementation is that the communication cost
grows linearly with respect to the number of agents M .

To overcome this problem, we consider an analog imple-
mentation of SL. However, even if we ignore the effect of the
wireless channel, direct analog implementation of Fig. 1(a)
is not possible. The reason is that the aggregation layer does
not require the sum of the outputs of the cut layers but rather
a judiciously chosen weighted sum. To solve this issue, we
propose a novel implementation of SL over an analog system.
As shown in Fig. 1(b), the idea is to replace the aggregation
layer with two soft layers:
• LC at each agent’s side: LC performs the weight multi-

plication part as in the original aggregation layer LA.
• LP at the PS’ side: LP performs the bias addition and

activation operator part as in the original aggregation
layer LA.

Using this approach, we maintain a constant communication
cost as the number of agents grows, i.e. CA = NA, where NA
is the number of neurons at the aggregation layer.

We will refer to the cut layer LC and the aggregation layer
LA by layers l and l + 1, respectively. With that, the output
of jth neuron in the LC layer of the mth agent is given by

Oml,j =

Kl−1∑
k=1

Wm
k,jO

m
l−1,k, (1)

where Wm
k,j is the weight between neurons k and j in the

layers l−1 and l, respectively, at the mth agent and Kl is the
number of neurons at layer l. Hence, for every neuron in the
cut layer, the bias is zero, and the activation function is the
identity function.

To make the explanation easier, we first describe our
proposed algorithm while neglecting the effect of the noisy
wireless channels, and later in the section, we describe how
we adjust to time varying channels. Let us start by writing the
input of the jth neuron in layer LP as

Il+1,j =
M∑
m=1

Oml,j . (2)

Using analog transmission, the mth agent transmits Oml,j using
the jth carrier which is shared across all agents. Hence, only
NA carriers are needed to transmit {Il+1,j}NA

j=1. Finally, the
output of the jth neuron in layer LP can be written as

Ol+1,j = al+1(Il+1,j + bj), (3)

which is equivalent to the output of the original aggregation
layer LA where al(·) is the activation function at layer l.

A. Adaptation to the Noisy Wireless Channels and Limited
Transmission Power

One challenge with the implementation of the algorithm
is the existence of a noisy time-varying channel between the
agents and the PS and the limited transmission power at the
agents. Hence, with the assumption of a flat fading channel

per subcarrier, if the mth agent sends xm,i(t) over the ith

subcarrier at time t, the PS receives

ym,i(t) = hm,i(t) · xm,i(t) + n(t), (4)

where hm,i(t) is the flat fading channel at ith subcarrier
between the mth agent and the PS at time t, and n(t) is the
additive white gaussian (AWGN) noise at the PS at time t.
Throughout this paper, we assume perfect channel estimation
at the transmitter. To ensure that the PS receives Il+1,j +n(t)
over the ith subcarrier from all agents, two operations are
required to be performed at the agents’ side: (i) channel
inversion to cancel the effect of the channel, and (ii) power
allocation such that the power constraint of each agent is
satisfied and equal power across agents is achieved at the
PS. Therefore, each agent m needs to calculate its power
factor αm(t) such that (αm(t))2 1

NA

∑NA

i=1 |
xm,i(t)
hm,i

|2 = Pm
where Pm is the maximum power. After sending αm(t) to the
PS, the latter determines α(t) = min{α1(t), · · · , αM (t)} and
shares it with all the agents over a control channel. Finally,
every agent transmits α(t)

xm,i(t)
hm,i

over the ith subcarrier to the
PS. After receiving the aggregated output of all agents, and
after matched filtering and dividing by α(t), the PS retrieves
Il+1,j + n(t).

B. Adjustment to Deep Fading Channels

When |hm,i(t)|2 ≤ ε, the mth agent will not be able to
transmit the ith output of its cut layer to the PS. In this case,
the PS carries out the inference without the input from agents
that are subject to deep fading channels. However, this will
have an impact on the quality of the inference. Therefore, we
propose to replace the input of each agent subject to deep
fading with the average input across those transmitting at that
round. More precisely, if a subset S of agents, having size k,
is experiencing deep fading, then the PS considers their output
to be

Oml,j =
1

M − k
∑
m̄/∈S

Om̄l,j , ∀m ∈ S. (5)

This choice might be more suited when there is correlation
between the inputs since it is a good estimate of the input of
each agent that is not transmitting.

In the remainder, we refer to the implementation of this
choice by A-SLv1. When the output of the agents experiencing
deep fading is not considered by the PS, we denote the analog
implementation in this case by A-SLv0.

IV. NUMERICAL RESULTS

In this section, we describe the NN architecture, the simula-
tion settings, and the numerical results of our proposed imple-
mentations while comparing them to their digital counterpart.
Model Architecture. We consider a NN model that consists of
two segements. In the first part, every agent feeds its local data
samples to a separate convolutional neural network (CNN).
Every CNN consists of 3 convolutional layers (conv) with a 3
× 3 filter and 24, 48, and 72 channels, respectively, followed
by a rectified linear unit (ReLU) activation function and a



Fig. 2. Test accuracy versus SNR for different number of agents. Digital scheme test accuaracy is 99.07%, 98.91%, and 98.95% for M = 6, 24, and 48,
respectively.

pooling layer with stride 2 for dimensionality reduction. The
output of the conv layers is fed to a fully-connected layer (fc)
with ND = 32, then a ReLU activation function is applied.
The second part is located at the PS side and it consists of
2 fc layers: an input layer with NA = 256 neurons followed
by a ReLU activation function, and an output layer having 10
neurons where softmax function is used.
Data Augmentation. For the dataset, we consider the MNIST
dataset [12] which consists of 28× 28 gray-scale handwritten
digits ranging from 0 to 9 images with 60K for training and
10K for testing. In order to supportthe multi-agent scenario,
we generated an augmented version of the MNIST dataset
using keras class ImageDataGenerator [13]. Every agent is fed
unique modified versions of the same samples. The samples
are augmented using several transformations including rota-
tion, zooming, width and height shifting in order to simulate
different camera angles of the same scene. For the training
phase, we used a batch size B = 100, a learning rate
γ = 10−3, and a number of epochs E = 10.
Network and Communication Environments. We simulate
our results for different number of agents M when Pm =
1 mW and ε = 0.2. We consider the number of subcarriers
to be 128. For each plot, we report the mean values based
on 5 runs. For analog communication, every ith element of
the output of all the agents is transmitted using the same
ith subcarrier. In our simulation, the number of transmitted
elements is NA = 256, thus the analog scheme requires
d 256

128e = 2 time slots to upload the outputs of all the agents
per inference.
For digital communication, the transmission of every element
is carried out using 32 bits. We note that the number of
transmission time slots depends on the number of transmitted
elements, as well as the channel gain of each subcarrier. We
consider that every subcarrier provides Wi = 15 KHz of
bandwidth for a duration of 1 ms [14]. The channel model is
generated following Rayleigh fading with zero mean and unit
variance, i.e. h ∼ CN (0, 1). The required uploading duration
τ̂m to transmit the output elements of agent m is found as the
minimum τm satisfying the following condition:

∫ τm

t=0

128
M∑
i=1

Rm,i(t)dt ≥ 32ND, (6)

where N0 is the power spectral density and Rm,i(t) =
Wi log2

(
1 + Pm|hm,i(t)|2/N0Wi

)
. Thus, to complete the in-

ference task, the needed uploading time for all the outputs of
the agents is found as τ̄ = max{τ̂1, τ̂2, · · · , τ̂M}.
A. Simulation Results

We show the numerical results in Figs. 2 and 3. In Fig 2,
the performance of the two analog-based algorithms (A-SLv0
and A-SLv1), described in section III-B, is reported in terms
of the test accuracy with respect to different number of agents
and signal to noise ratio (SNR) values. In Fig. 3, we put a
constraint on the number of channel uses CUs =

∑J
j=1 Sj

where Sj is the number of available subcarriers at time slot
j. Consequently, we plot the number of completed inference
tasks (number of full transmissions of the agents’ outputs using
10K input inference samples) for different number of agents,
and we compare the performance of the analog baselines
A-SLv0 and A-SLv1 to the digital transmission scheme for
different values of SNR = {−20, 0, 20} dB.
Impact of Signal to Noise Ratio. The average SNR is given
by Et

[
Pm|hm,i(t)|2/N0Wi

]
= Pm/N0Wi. Consequently,

while N0Wi is fixed, increasing the SNR is reflected by
increasing the transmit power Pm. In Fig. 2, we notice that the
test accuracy decreases at low SNR regimes for both analog
baselines due to the high effect of the noise incorporated with
the received signal at the PS, which affects the inference deci-
sion. Nonetheless, the test accuracy improves as we increase
the SNR, i.e, the transmit power. In Fig. 3, for the digital
scheme, we note that the SNR has a significant effect on the
number of completed inference tasks. The better the channel
condition (higher SNR) gets, the more inference tasks are
completed.
Impact of the Number of Agents. In Fig. 2(a), we observe
that A-SLv0 obtains a better test accuracy compared to A-
SLv1. However, the performance of A-SLv1 improves as the
number of agents increases. This is justified by the correlation
between the input samples, and averaging across the agents



Fig. 3. Scalability (number of completed inference tasks w.r.t number of agents) for different CUs.

which provides useful information to the received signal at
the PS improves the inference accuracy. In addition to this, the
gap between the test accuracies of the digital scheme and both
analog baselines decreases as the number of agents increases.
This is mainly due to the fact that the more correlated data is
fed to the network, the more robustness and enhancement is
instilled into the inference process. In Fig. 3, as the number
of agents increases, the number of completed inference tasks
for the digital scheme reduces significantly. This is justified
by the fact that the communication cost of the digital scheme
grows linearly with the number of agents, and this is limited
by the available CUs. On the other hand, we note that both A-
SLv0 and A-SLv1 have the same fixed number of completed
inference tasks. The reason for this is the advantage of analog
transmission in view of its communication cost which is solely
related to the number of neurons at the aggregation layer.
Impact of Constrained amount of Channel Uses. In
Fig. 3(a), we fix the number of channel uses to CUs = 2×106.
We notice that the number of completed inference tasks using
analog transmission is much higher than the number achieved
by the digital counterpart, except for M < 9, where the
communication cost of the digital scheme is less than that
of the analog scheme. In Fig. 3(b), the results are shown for a
higher number of available channel uses CUs = 5× 106. We
notice that both A-SLv0 and A-SLv1 are able to complete all
the inference tasks using the available CUs. For the digital
scheme, more inference tasks are completed compared to the
case in Fig. 3(a). However, analog transmission is crucial to
fulfil more inference tasks when the number of agents grows
and the communication bandwidth is the bottleneck.

V. CONCLUSION
In this paper, we present analog implementations of split

learning that adjust to noisy wireless channels and limited
transmission power and cope with deep fading channels.
Our proposed implementations overcome the drawback of the
linear increase in communication cost of the digital communi-
cation. Moreover, it enables the weighted sum operation at the
aggregation layer by introducing two soft layers. Numerical

results show that our algorithm is able to cope with noisy
and time-varying channels and shows a robust and enhanced
performance at high number of agents. Simulations also show
that for the same number of available time slots, the number of
completed inference tasks is significantly higher when analog
transmission is utilized, compared to the digital scheme.
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