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Abstract—A reconfigurable intelligent surface (RIS) can shape
the radio propagation by passively changing the directions of
impinging electromagnetic waves. The optimal control of the RIS
requires perfect channel state information (CSI) of all the links
connecting the base station (BS) and the mobile station (MS)
via the RIS. Thereby the channel (parameter) estimation at the
BS/MS and the related message feedback mechanism are needed.
In this paper, we adopt a two-stage channel estimation scheme
for the RIS-aided millimeter wave (mmWave) MIMO channels
using an iterative reweighted method to sequentially estimate the
channel parameters. We evaluate the average spectrum efficiency
(SE) and the RIS beamforming gain of the proposed scheme and
demonstrate that it achieves high-resolution estimation with the
average SE comparable to that with perfect CSI.

Index Terms—Channel estimation, compressive sensing, mil-
limeter wave MIMO, reconfigurable intelligent surface.

I. INTRODUCTION

Large unused spectrum is available in the millimeter wave
(mmWave) bands. In order to compensate for the high free
space path loss, large antenna arrays are needed both at the
transmitters and receivers [1]–[3]. This makes the channel
estimation (CE) more difficult than that in conventional sub-
6 GHz multiple-input multiple-output (MIMO) systems hav-
ing less transmit and receive antennas. The mmWave MIMO
channel is inherently sparse due to the limited number of
distinguishable paths in the angular domain. Thus, compressive
sensing (CS) techniques, which take advantage of the sparsity,
have been widely applied in the channel (parameter) estimation
of mmWave MIMO channels, e.g., in [4], [5].

In order to further improve the spectrum efficiency (SE)
and to guarantee a wide communication coverage, the concept
of a reconfigurable intelligent surface (RIS) has been recently
proposed to smartly shape the propagation of electromagnetic
waves [6]–[9]. The RIS also has great potential to offer higher
accuracy of positioning and localization, both for indoor and
outdoor, compared to the system without RISs [9], [10]. The
RIS can be made of an array of phase shifters, which can
passively steer the beams towards the dedicated user(s) by
controlling the phase of each RIS unit. This RIS architecture is
called the discrete RIS. Another type of RIS is the contiguous
RIS which can be seen as an active transceiver [6].

CE for RIS-aided MIMO systems has been recently studied
in [11]–[14]. In [11], CE is performed using CS and deep
learning methods in a setup with a few active elements at the
RIS. In [12], sparse matrix factorization and matrix completion
are exploited in a sequential manner to perform iterative CE. In

this work, full advantage of the RIS is not achieved due to the
on/off state applied to the RIS elements. Instead of estimating
the MIMO channels, a multi-level codebook based scheme was
leveraged to design the phase control matrix at the RIS and the
combining vector at the MS jointly [15]. Extension to multi-
user scenario was studied in [13], [14].

In the paper, we study the CE problem of the passive RIS-
aided mmWave MIMO system. We divide the CE problem into
two subproblems and apply an iterative reweighted method to
find the estimates of the channel parameters sequentially. In
the first stage, we estimate the angle of departure (AoD) for
the BS-RIS link, the angle of arrival (AoA) of the RIS-MS
link, and the corresponding effective propagation path gains. In
the second stage, we estimate the product of the propagation
path gains of the BS-RIS link and the RIS-MS link and the
difference of directional sine of the AoA of the BS-RIS and the
AoD of RIS-MS link. Besides evaluating the mean square error
(MSE) of the estimated channel parameters, we design the RIS
phase control matrix, the BS beamforming (BF) vector, and the
MS combining vector based on the estimates and evaluate the
average SE and RIS BF gain. The performance of the proposed
scheme is compared to that of an orthogonal matching pursuit
(OMP) approach. Simulation results demonstrate that average
SE achieved by the proposed method approaches that with
perfect channel state information (CSI), even in the low signal-
to-noise ratio (SNR) regime with limited training overhead.

Notation: A bold lowercase letter a denotes the column
vector, a bold capital letter A denotes the matrix, (·)H, (·)T, and
(·)∗ denote the Hermitian transpose, transpose, and conjugate,
respectively, diag(a) denotes a square diagonal matrix with
entries of a on its diagonal, a◦b denotes the Hadamard product
of a and b, [a]i denotes the ith element of vector a, [A]ij
denotes the (i, j)th element of A, and ‖ · ‖F is the Frobenius
norm.

II. CHANNEL MODEL

We consider the RIS-aided mmWave MIMO system that
comprises one multi-antenna BS, one multi-antenna MS, and
one multi-element RIS, as depicted in Fig. 1. No backhaul
link is assumed between BS and RIS. The numbers of antenna
elements are defined as NBS, NMS, and NRIS, respectively. The
antenna array is assumed to be an uniform linear array (ULA);
an extension to an uniform planar array (UPA) is feasible.
We assume that the direct link between the BS and the MS
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Fig. 1: The considered RIS-aided mmWave MIMO system with one
multi-antenna BS, one multi-antenna MS, and one multi-element RIS.

are obstructed, which renders the potential usage of a RIS for
maintaining the connectivity.

We assume geometric channel model. The channel between
the BS and the RIS HB,R ∈ CNRIS×NBS is

HB,R =

LB,R∑
l=0

ρB,R,lα(φB,R,l)α
H(θB,R,l), (1)

where θB,R,l and φB,R,l denote the lth AoD and AoA of
the BS-RIS link, respectively, LB,R denotes the number of
resolvable paths, which is usually on the order of 3–5 in
mmWave bands [16], and ρB,R,l denotes the ith propagation
path gain. Index l = 0 refers to the line-of-sight (LoS) path, and
l = 1, · · · , LB,R refer to the non-line-of-sight (NLoS) paths,
e.g., single-bounce or multi-bounce reflection paths. Usually,
|ρB,R,0|2 � |ρB,R,l|2 for l = 1, · · · , LB,R, and the difference
is easily more than 20 dB [17]. Finally, α(θB,R,l) ∈ CNBS×1

and α(φB,R,l) ∈ CNRIS×1 are the array response vectors with
[α(θB,R,l)]k = exp

(
j2π dλ (k − 1) sin(θB,R,l)

)
for k =

1, · · · , NBS and [α(φB,R,l)]k = exp
(
j2π dλ (k − 1) sin(φB,R,l)

)
for k = 1, · · · , NRIS, where d is the antenna element spacing,
λ is the wavelength of the carrier frequency, and j

4
=
√
−1.

Similarly, the channel between the RIS and the MS, denoted
as HR,M ∈ CNMS×NRIS , is

HR,M =

LR,M∑
l=0

ρR,M,lα(φR,M,l)α
H(θR,M,l). (2)

Using (1) and (2), the composite channel H ∈ CNMS×NBS

between the BS and MS becomes

H = HR,MΩHB,R, (3)

where Ω ∈ CNRIS×NRIS is the phase control matrix at the RIS.
The matrix Ω is a diagonal matrix with unit-modulus elements
on the diagonal, i.e., [Ω]kk = exp(jω) with ω ∈ R. In practice,
the reflection may not be perfect so that reflection coefficient
a ∈ [0, 1] as [Ω]kk = a exp(jω) describes the amplitude
scaling and power loss [18]; however, we assume that a = 1.

Since the LoS path is typically much stronger than the NLoS
paths according to the field measurements in [17], we ignore the
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Fig. 2: The sounding and CE procedure. Each CE subinterval contains
multiple blocks where Ωt varies over the blocks.

NLoS paths in the BS-RIS and RIS-MS links, and approximate
the composite channel in (3) as

H ≈ α(φR,M,0)ρR,M,0α
H(θR,M,0)Ωα(φB,R,0)ρB,R,0α

H(θB,R,0)

= gα(φR,M,0)αH(θB,R,0), (4)

where g ∈ C is the effective propagation path gain, defined as

g = ρB,R,0ρR,M,0α
H(θR,M,0)Ωα(φB,R,0). (5)

According to (4) and (5), the composite channel is virtually a
point-to-point MIMO channel with one path via the RIS. The
rank of H is 1� {NBS, NMS}. Thus, the channel encompasses
a sparse structure in the angular domain – characteristic to an
mmWave channel – which can efficiently be leveraged by CS.

III. SOUNDING PROCEDURE

We assume that the channels suffer from block fading. For
the sounding process, one coherence time interval is divided
into two subintervals, the first one for CE and the second
for data transmission (DT), as depicted in Fig. 2. The CE
subinterval is further divided into multiple blocks. In each
block, a different Ω is taken into consideration.

In each block t = 1, · · · , T , the BS sends a (random) training
matrix Xt ∈ CNBS×NX which, after reflected from the RIS
having a (random) phase control matrix Ωt, is received at the
MS through a (random) combining matrix Wt ∈ CNMS×NW .
Note that Xt can be seen as the joint effect of pilot symbols
and a precoding matrix at block t. The optimization of Xt and
Wt are not considered in the paper and left as our future work.
Thus, the received signal at the MS is summarized as

Yt = WH
t H(Ωt)Xt + WH

t Nt, t = 1, · · · , T, (6)

where we write H explicitly as a function of Ωt. Further, let

gt = ρR,M,0ρB,R,0α
H(θR,M,0)Ωtα(φB,R,0). (7)

The following assumptions are made for the CE subinterval:
• All the channel parameters stay unchanged within the

coherence time.
• Ωt is varying with block index t, and it is constructed

with randomly generated phases ω ∈ [−π π].
• Wt and Xt are varying with block index t.



IV. TWO-STAGE CE APPROACH

We consider a two-stage approach to simplify the CE prob-
lem. The solution process is summarized in Algorithm 1. The
details of the algorithm will be provided in the sequel.

Algorithm 1: Two-stage CE Approach

. First stage
Input: Received signals Y1, . . . ,YT , combining matrices

W1, . . . ,WT , training matrices X1, . . . ,XT , phase con-
trol matrices Ω1, . . . ,ΩT , and threshold value τth.

Output: θ̂, φ̂, and ĝ.
1: Initial θ(i) and φ(i) for i = 0 by the SVD based approach.
2: repeat
3: Compute ĝ(i+1)

t by (10).
4: Construct the objective function S̃(ĝ(i+1), θ, φ) by (11).
5: Use gradient descent to minimize S̃(ĝ(i+1), θ, φ).
6: until The maximum number of iterations reached or
‖ĝ(i+1) − ĝ(i)‖2 < τth.
. Second stage

Input: ĝ and threshold value τ̃th.
Output: q̂ and ˆ̃

θ.
7: Initial θ̃(i) for i = 0.
8: repeat
9: Compute q̂(i+1).

10: Construct the objective function J̃(q̂(i+1), θ̃) by (17).
11: Use gradient descent to minimize J̃(q̂(i+1), θ̃).
12: until The maximum number of iterations reached or
|q̂(i+1) − q̂(i)| < τ̃th.

A. First Stage

In the first stage, we estimate the AoD of the BS-RIS link
θB,R,0 in (4), the AoA of the RIS-MS link φR,M,0 in (4),
and the effective propagation path gain of the reflection link
gt in (7) based on the received signals {Yt}Tt=1. Typically,
the CS methods like OMP have been proposed for CE. One
drawback is that they only can recover angular estimates that
lie on a pre-defined grid of discrete angles. This “on-the-grid”
problem, which inevitably deteriorates the CE performance, can
be counteracted by the iterative reweighted method [8], used
herein as well.

Using the iterative reweighted method, the CE problem in
the first stage is formulated as

min
g,θ,φ

S(g, θ, φ) =

T∑
t=1

ln(|gt|2 + ε) + ξ‖Yt −WH
t H(Ωt)Xt‖2F,

(8)
where g = [g1, · · · , gT ]T, parameter ε > 0 ensures that the
argument of ln(·) is positive, ξ > 0 controls the tradeoff
between the sparsity of g and data fitting. Here, we replaced
φR,M,0 and θB,R,0 with φ and θ to simplify the notations. The
sparsity-inducing ln(·) term accounts for the fact that due to
the random generation of Ωt, t = 1, · · · , T , some elements in
g may be much smaller than others.

The problem in (8) can be further formulated as [19]

min
g,θ,φ

S̃(g, θ, φ) = gHG(i)g + ξ

T∑
t=1

‖Yt −WH
t H(Ωt)Xt‖2F,

(9)
where

G(i) = diag
([ 1

|ĝ(i)
1 |2 + ε

, · · · , 1

|ĝ(i)
T |2 + ε

]T)
and ĝ

(i)
t is an estimate of gt at the ith iteration. Setting the

first-order partial derivative of S̃(g, θ, φ) in (9) with respect to
gt to zero yields

ĝ
(i+1)
t =

(
1

ξ(|ĝ(i)
t |2 + ε)

+ ‖AtXt‖2F

)−1 NX∑
k=1

xH
t,kA

H
t yt,k,

(10)
where xt,k and yt,k is the kth column of Xt and Yt, respec-
tively, and At = WH

t α(φ)αH(θ). Thus, for given ĝ(i+1) =

[ĝ
(i+1)
1 , · · · , ĝ(i+1)

T ]T, (9) can be written as

S̃(ĝ(i+1), θ, φ) =
1

ξ

T∑
t=1

β2
t z
∗
t zt

1

|ĝ(i)
t |2 + ε

+

T∑
t=1

NX∑
k=1

yH
t,kyt,k

+

T∑
t=1

{
−ĝ(i+1)

t z∗t −
(
ĝ

(i+1)
t

)∗
zt + |ĝ(i+1)

t |2‖AtXt‖2F
}

=

T∑
t=1

(
−βtz∗t zt +

NX∑
k=1

yH
t,kyt,k

)
, (11)

where we defined the quantities zt =
NX∑
k=1

xH
t,kA

H
t yt,k and

βt =
(

1

ξ(|ĝ(i)t |2+ε)
+ ‖AtXt‖2F

)−1

.
The above equations give rise to an iterative algorithm aiming

at minimizing the objective function in (11). To this end, we
propose Algorithm 1 where at each iteration i, we use a gradient
descent algorithm to find estimates for the angles θ and φ for
a given ĝ(i+1) in (10). The calculation of the required first-
order partial derivatives associated with θ and φ is presented in
Appendix A. The initial values for θ and φ, defined as θ(0) and
φ(0), can be determined by the singular value decomposition
(SVD) based approach [8]. After a certain stopping criterion is
met, we proceed to the second stage.

B. Second Stage

In the second stage, we estimate the remaining channel
parameters based on the final estimate of g obtained in the
first stage, denoted as ĝ = [ĝ1, · · · , ĝT ]T. Obtaining a separate
estimate of the AoA for the BS-RIS link φB,R,0 and the AoD
for the RIS-MS link θR,M,0 seems infeasible; the same holds
for the propagation path gains in the BS-RIS and RIS-MS links
ρR,M,0 and ρB,R,0. Thus, instead, we will estimate the product
of the propagation path gains ρR,M,0ρB,R,0 and the difference of
directional sine, defined as θdiff = sin(φR,M,0)− sin(θB,R,0).

According to (7), we rewrite gt as

gt = ρR,M,0ρB,R,0ω
T
t

(
α∗(θR,M,0) ◦α(φB,R,0)

)
, (12)



where ωt ∈ CNRIS×1 is the vector of phase control matrix values
as Ωt = diag(ωt). By stacking the T different ωt’s row-wise
as Ω̃ = [ω1, · · · ,ωT ]T and introducing q = ρR,M,0ρB,R,0 and
θ̃ = asin(θdiff), we have

g= Ω̃ρR,M,0ρB,R,0
(
α∗(θR,M,0)◦α(φB,R,0)

)
= qΩ̃α(θ̃). (13)

Recall that the the angular sparsity is one. Regarding this
fact, we aim at finding the sparsest representation while mini-
mizing the MSE of the data fitting, which fits in the problem
of line spectral estimation [19]. Further, we assume that

ĝ = g + n = qΩ̃α(θ̃) + n, (14)

where the estimation error n from the first stage is modelled
as additive Gaussian noise, independent of q and θ̃. Thus, the
objective function of the second stage estimation problem is
formulated as

min J(q, θ̃) = ln(|q|2 + ε) + µ‖ĝ − Ω̃h‖22, (15)

where h = qα(θ̃) and µ is a parameter that controls the tradeoff
between the sparsity and data fitting. The objective function can
be further reformulated as

min J̃(q, θ̃) =
qq∗

|q̂(i)|2 + ε
+ µ‖ĝ − Ω̃h‖22. (16)

We also follow the iterative reweighted method to find the
high-resolution estimate of θ̃. At the beginning, we find an
initial estimate of θ̃ on the grid as θ̃(0) = arg maxθ̃∈Υ |ĝHΩ̃h|,
where Υ is a quantized set of angles within [−π π]. Setting
the derivative of the objective function J̃(q, θ̃) in (16) with
respect to q to zero yields q̂(i+1) = γα(θ̃)HΩ̃

H
ĝ, where γ =(

1/(µ(|q̂(i)|2 + ε))+α(θ̃)HΩ̃
H
Ω̃α(θ̃)

)−1
. For fixed q̂(i+1), the

objective function can be further written as

J̃(q̂(i+1), θ̃) = −γτ + ĝHĝ. (17)

where τ = α(θ̃)HΩ̃
H
ĝĝHΩ̃α(θ̃). Based on the first-order

derivative in Appendix B, gradient descent is applied to find a
(suboptimal) θ̃ that minimizes the objective function in (17).

V. PERFORMANCE EVALUATION

In this section, we evaluate the MSE performance of the
angular parameter estimation in the first stage, the average SE,
and the RIS BF gain based on the estimated parameters.

The simulation parameters are set as follows: NBS = NMS =
32, NRIS = 64, NX = NW = 10, T = {10, 16}, ε = 1,
ξ = µ = 1000, and d = λ

2 . The number of RF chains is
defined as NRF = 10. The number of required time slots for
CE is T NXNW

NRF
= {100, 256}. We assume that the product

of the propagation path gains, q, follows CN (0, 1) and each
element of Nt follows CN (0, σ2). The SNR is defined as 1

σ2 ,
and 2000 realizations are considered for averaging.

The average SE is defined as

R = E
[

log2(1 + |wHH(Ω̂)f |2/σ2)
]

bits/s/Hz, (18)

where w =
√

1/NMSα(φ̂R,M,0), f =
√

1/NBSα(θ̂B,R,0), and
the estimate based optimal phase control matrix is [Ω̂]kk =
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Fig. 3: Angular parameter estimate in the first stage.

exp(−j2π dλ (k − 1) sin(
ˆ̃
θ)). The RIS BF gain is defined as

GBF = |αH(θR,M,0)Ω̂α(φB,R,0)|/NRIS.

As a benchmark, we consider a two-stage OMP algorithm
that has the following one-to-one correspondence with our
proposed scheme: the first stage applies the simultaneous OMP
whereas the standard OMP is uses in the second stage. The dic-
tionary for the first stage is constructed by quantizing the angles
as Ψ1 =

(
A∗({θ̄k}

NBS,q

k=1 )⊗A({φ̄k}
NMS,q

k=1 )
)

with NBS,q = 2NBS
and NMS,q = 2NMS; the dictionary in the second stage is
Ψ2 = A

(
{θ̄k}

NRIS,q

k=1

)
with NRIS,q = 2NRIS. A

(
{φ̄k}

NMS,q

k=1

)
is

defined as A
(
{φ̄k}

NMS,q

k=1

)
=
[
α(φ̄1), · · · ,α(φ̄NMS,q)

]
, and the

same principle is applied to A({θ̄k}
NBS,q

k=1 ) and A({θ̄k}
NRIS,q

k=1 ).
The simulation results are shown in Figs. 3–6. As shown in

Fig. 3, the proposed scheme outperforms the two-stage OMP
scheme in terms of the MSE of the AoA and AoD estimates
obtained in the first stage. A super-resolution estimate can be
achieved, e.g., the average MSE is at the level of 10−3 at the
SNR of −5 dB when T = 16. This offers a near-optimal design
of the BF and combining vectors at the BS and the MS.

Fig. 4 shows the average MSE of the angular difference
estimate in the second stage. The increase of the time slots
improves performance. This in turn brings higher RIS BF gain
and average SE, as seen in Figs. 5 and 6. It is worth noting that
for T = 16, the average SE of the proposed scheme is close to
that with full CSI, even in the low SNR regime.

VI. CONCLUSION

We studied the CE problem for the RIS-aided mmWave
MIMO systems. We proposed a two-stage iterative reweighted
method that finds estimates of the channel parameters in a
sequential optimization loop. Simulation results confirmed the
advantages of the proposed scheme compared to the two-stage
OMP approach in terms of CE and SE performance. Since the
used gradient descent method cannot guarantee the optimality
of the solutions and its convergence may be slow, it is of interest
to study more computational efficient algorithms in future work.
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In addition, the consideration of a general scenario with multi-
path channels also needs further investigation.

APPENDIX

A. Derivatives in the First Stage

The first-order partial derivative of S̃(ĝ(i+1), θ, φ) in (11)
with respect to θ is written as

∂S̃(ĝ(i+1), θ, φ)

∂θ
=

T∑
t=1

−∂βt
∂θ

z∗t zt − βt
∂z∗t
∂θ

zt − βtz∗t
∂zt
∂θ

,

where ∂βt

∂θ , ∂z
∗
t

∂θ , ∂zt∂θ , and ∂‖AtXt‖2F
∂θ are given by

∂βt
∂θ

= −β2
t

NX∑
k=1

xH
t,k

∂AH
t

∂θ
Atxt,k + xH

t,kA
H
t

∂At

∂θ
xt,k,

∂z∗t
∂θ

=

NX∑
k=1

yH
t,k

∂At

∂θ
xt,k,

∂zt
∂θ

=

NX∑
k=1

xt,k
∂AH

t

∂θ
yH
t,k,

∂‖AtXt‖2F
∂θ

=

NX∑
k=1

xH
t,k

∂AH
t

∂θ
Atxt,k + xH

t,kA
H
t

∂At

∂θ
Atxt,k,

and ∂At

∂θ = AtDθ, Dθ = diag
(
[0,−j2π dλ cos(θ), · · · ,

− j2π dλ (i− 1) cos(θ), · · · ,−j2π dλ (NBS − 1) cos(θ)]T
)
.
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Similarly, we can write the first-order partial derivative of
S̃(ĝ(i+1), θ, φ) in (11) with respect to φ as

∂S̃(ĝ(i+1), θ, φ)

∂φ
=

T∑
t=1

−∂βt
∂φ

z∗t zt − βt
∂z∗t
∂φ

zt − βtz∗t
∂zt
∂φ

,

and ∂At

∂φ = WH
t Dφα(φ)αH(θ), Dφ = diag

(
[0, j2π dλ cos(φ),

· · · , j2π dλ (i− 1) cos(φ), · · · , j2π dλ (NMS − 1) cos(φ)]T
)
.

B. Derivatives in the Second Stage

The derivative of J̃(q̂(i+1), θ̃) in (17) with respect to θ̃ can
be written as

∂J̃(q̂(i+1), θ̃)/∂θ̃ = −τ∂γ/∂θ̃ − γ∂τ/∂θ̃,

where ∂γ/∂θ̃ and ∂τ/∂θ̃ are in the form of

∂γ/∂θ̃ = −γ2
(
α(θ̃)HDH

θ̃
Ω̃

H
Ω̃α(θ̃) +α(θ̃)HΩ̃

H
Ω̃Dθ̃α(θ̃)

)
,

∂τ/∂θ̃ = α(θ̃)HDH
θ̃
Ω̃

H
ĝĝHΩ̃α(θ̃) +α(θ̃)HΩ̃

H
ĝĝHΩ̃Dθ̃α(θ̃),

and Dθ̃ = diag
(
[0, j2π dλ cos(θ̃), · · · , j2π dλ (i− 1) cos(θ̃), · · · ,

j2π dλ (NRIS − 1) cos(θ̃)]T
)
.
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