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Abstract—The sensitivity of millimeter-wave (mmWave) radio
channel to blockage is a fundamental challenge in achieving low-
latency and reliable connectivity. In this paper, we explore the
viability of using coordinated multi-point (CoMP) transmission
for a delay bounded and reliable mmWave communication.
We provide an iterative algorithm for the time-average sum-
power-minimization problem by solving a system of Karush-
Kuhn-Tucker (KKT) optimality conditions. We use the Lyapunov
optimization framework and derive a dynamic control algorithm
to transform a time-average stochastic problem into a sequence
of deterministic subproblems. Furthermore, for the robust beam-
former design, we consider a pessimistic estimate of the user-
specific rate, assuming that a portion of CoMP links would be
blocked during the data transmission phase, while ensuring the
average latency requirements. The numerical examples illustrate
that in the presence of random blockages, the proposed method
outperforms baseline scenarios and results in energy-efficient,
high-reliability and low-latency mmWave communication.

I. INTRODUCTION

Next-generation millimeter-wave (mmWave) based cellular
systems will enable throughput-intensive and low-latency ap-
plications, such as tactile internet, augmented reality, and au-
tonomous driving [1]. However, radio channel at the mmWave
frequencies is inherently unreliable due to blockage, high pen-
etration, and path losses [2]. These lead to rapid degradation
of signal strength, and results in intermittent connectivity. For
example, a mobile human blocker can obstruct the dominant
communication paths (e.g., a line-of-sight (LoS) link) for hun-
dreds of millisecond, and may disconnect the communication
session [2]. On the other hand, adapting with unpredictable
blockages and maintaining reliable communication session
at mmWave frequencies is challenging, and demands critical
latency overhead. Therefore, the use of macro-diversity via
Coordinated Multi-Point (CoMP) connectivity is imperative
for more robust and resilient communication [3]–[6].

In the Joint Transmission (JT)-CoMP schemes, each user
equipment (UE) is concurrently served by multiple spatially
distributed remote radio units (RRUs) [3]–[6]. The use of
CoMP has been widely studied under the context of legacy
4G systems [3], [4] and lately also in the context of mmWave
frequencies [5], [6]. CoMP techniques were mainly studied
with the scope of enhancing capacity and cell-edge coverage
(e.g., in [3]–[6]). Further, these schemes are studied for the
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static case (i.e., resource allocation problem for a given time
instance). Hence, these algorithms are not always applicable
for a dynamic network with stringent latency and reliability
requirements in the presence of random blockages.

In this paper, we develop a highly-reliable downlink trans-
mission strategy for a mmWave based dynamic network,
satisfying the user-specific latency requirements. Specifically,
we consider a time-average sum-power minimization problem
subject to maximum allowable queue length constraint in the
presence of random blockages. The long-term time-average
problem is transformed into a sequence of deterministic and in-
dependent subproblems using the Lyapunov optimization [7].
Furthermore, to improve communication reliability and avoid
outage, we consider a pessimistic estimate of user-specific
rate over the potential link blockage combinations. We ob-
tain a robust beamformer by iteratively solving a system of
Karush-Kuhn-Tucker (KKT) optimality conditions of the sum-
power minimization problem. The proposed method provides
insight into the trade-offs between required sum-power and
achievable-rate, while ensuring average latency requirements.

II. SYSTEM MODEL

We consider a downlink transmission in a mmWave based
cloud (or centralize) radio access network (C-RAN) architec-
ture, where all RRUs are connected to the edge cloud by the
fronthaul links, as illustrated in Fig. 1. Each RRU is equipped
with N transmit antennas. We use K = {1, 2, . . . ,K} to de-
note the set of all single antenna UEs, and B = {1, 2, . . . , B}
to denote the set of all RRUs. The set of RRUs that serve
kth UE is denoted by Bk, such that Bk ⊆ B for all
k ∈ K. We assume JT-CoMP connectivity, where kth UE
receives a concurrently synchronous signal from its serving
RRUs Bk. Further, we assume that the network operates in
time-slotted manner with each slot normalized to integer value
t ∈ {0, 1, 2, . . . }, and all RRUs use same time-frequency
resources for the downlink transmission.

Let fb,k(t) ∈ CNx1 denote the transmit beamformer from
bth RRU to kth UE. Then the received signal yk(t) at kth UE
during time slot t can be expressed as

yk(t) =
∑
b∈Bk

hH
b,k(t)fb,k(t)dk(t)

+
∑

u∈K\k

∑
g∈Bu

hH
g,k(t)fg,u(t)du(t) + wk(t), (1)
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Fig. 1. C-RAN with B transmitters (RRUs) and K receivers (UEs) in the
presence of randomly distributed blockers.

where hb,k(t) ∈ CNx1 is the channel vector between RRU-UE
pair (b, k), wk(t) ∈ CN (0, σ2

k) is circularly symmetric additive
white Gaussian noise (AWGN), and dk(t) is data symbol
associated with kth UE. Moreover, we assume that data
symbols are normalized and independent, i.e., E{|dk(t)|2} = 1
and E{dk(t)d∗u(t)} = 0 for all k, u ∈ K. The received signal-
to-interference-plus-noise ratio (SINR) of kth UE during time
slot t can be expressed as

Γk(F(t)) =

∣∣∣ ∑
b∈Bk

hH
b,k(t)fb,k(t)

∣∣∣2
σ2
k +

∑
u∈K\k

∣∣∣ ∑
g∈Bu

hH
g,k(t)fg,u(t)

∣∣∣2 , (2)

where F(t) , [f1,1(t), f1,2(t), . . . , fB,K(t)].

A. Blockage Model & Achievable Rate

In mmWave frequency band, the radio channel is spa-
tially sparse due to low-scattering, reduced diffraction, higher
penetration, and path losses [2]. Hence, a mmWave link is
inherently unreliable due to its susceptibility to blockages. In
a typical mmWave communication, channel modeling shows
that a link outage occurs with 20% − 60% probability [2].
Thus, we assume binary blockage such that the channel hb,k(t)
between RRU-UE pair (b, k) can have one of two states, i.e., it
is either fully-available or completely blocked (when the chan-
nel is blocked we assume that hb,k(t) = 0). Furthermore, we
consider random blockage, and the blocking of the channels
{hb,k(t)}b∈B,k∈K for all t are independent1 [8].

To improve system reliability and avoid outage under the
uncertainties of mmWave channel, we preemptively underes-
timate the achievable SINR assuming that a portion of CoMP
links would be blocked during the data transmission phase.
This is specifically required in the mmWave channel, because
of dynamic blockages which are not possible to track during
the channel estimation phase. Let baseband processing unit
(BBU) assume that each UE k have at least Lk available links
(i.e., unblocked RRUs). Then we allow BBU to proactively
model the SINR over all possible subset combinations, by

1This is reasonably accurate assumption for a mmWave communication,
especially when the blockers are not very large and closer to the UEs [8].

excluding the potentially blocked links, and allocate the rate
to users such that transmission reliability is improved (i.e.,
to minimize the outage due to random blockages that appear
during data transmission phase). As an example, let the set
of RRUs that are used to serve kth UE with RRU indices
Bk = {1, 2, 3}. Then, with the assumption of at least Lk = 2
available links, the serving set of unblocked RRUs available
to kth UE can be any one of following combinations:

B̂k(Lk) =
{
{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
. (3)

Let C(Lk) denote the cardinality of set B̂k(Lk), defined
as C(Lk) =

∑|Bk|
l=Lk

|Bk|!
l! (|Bk|−l)! . We use Bc

k to represent the
c-th subset of B̂k(Lk), i.e., subset Bc

k ∈ B̂k(Lk) such that
cardinality |Bc

k| ≥ Lk for all c = 1, . . . , C(Lk). Then, the
received SINR of kth UE for Bc

k (i.e., c-th subset) is obtained
excluding the potentially blocked links in expression (2), can
be expressed as

Γk(F(t),Bc
k) =

∣∣∣ ∑
b∈Bc

k

hH
b,k(t)fb,k(t)

∣∣∣2
σ2
k +

∑
u∈K\k

∣∣∣ ∑
g∈Bu\Dc

k

hH
g,k(t)fg,u(t)

∣∣∣2 , (4)

where Dc
k = Bk\Bc

k denotes a subset of potentially blocked
RRUs which are excluded from the interfering links to kth UE.
Thus, the pessimistic achievable rate2 for kth UE during time
slot t can be expressed as

rk(t) = log2
(
1 + γk(t)

)
, (5)

where the SINR estimate γk(t) = min
c=1,...,C(Lk)

Γk(F(t),Bc
k).

B. Network Queueing & Delay
We assume that the BBU maintains a set of internal queues

for storing network layer data of all UEs [7, Ch. 5]. Let Qk(t)
denote the current queue backlog of kth UE during time slot t,
and Ak(t) represents the amount of data that exogenously
arrive to it, with the mean arrival rate E[Ak(t)] = λk. Then
the dynamics of queue Qk(t) can be expressed as

Qk(t+ 1) =
[
Qk(t)− rk(t) +Ak(t)

]+
, ∀k ∈ K, (6)

where rk(t) is transmission rate defined in expression (5). Fur-
thermore, let Qk denote the time-averaged queue associated
with kth UE, defined as

Qk , lim
T→∞

1

T

T−1∑
t=0

E
[
Qk(t)

]
, (7)

where the expectation depends on the control policy, and is
with respect to the random channel states and arrivals.

According to the Little’s law, the average delay is directly
proportional to the average queue length Qk [9, Ch. 1.4].
Hence, for kth UE, we can achieve a desired latency by
imposing a constraint on its queue length at each time slot.
Here, we use a probabilistic constraint on the queue length
which is defined as

Pr
{
Qk(t) ≥ Qth

k

}
≤ ϵ, ∀t, (8)

where Qth
k is the maximum allowable queue length for kth UE

and ϵ≪ 1 is the tolerable queue length violation probability.

2We consider Gaussian signalling and each UE decodes its intended signal
by treating all other interfering signal as noise (4).



C. Problem Formulation

Our objective is to develop a highly-reliable downlink
transmission strategy for C-RAN based dynamic mmWave
communication system, satisfying the latency requirement.
Specifically, we consider a problem of time-average sum-
power minimization for mmWave communication with random
channel blockages, subject to the maximum allowable queue
length constraint for each UE, and it can be expressed as

min
F(t),γk(t),∀t

lim
T→∞

1

T

T−1∑
t=0

( ∑
b∈B

∑
k∈K

E
[
∥fb,k(t)∥2

])
(9a)

s. t. Pr
{
Qk(t) ≥ Qth

k

}
≤ ϵ, ∀k ∈ K, ∀t (9b)

γk(t) = min
c=1,...,C(Lk)

Γk(F(t),Bc
k),

∀k ∈ K, ∀t,
(9c)

where the function Γk(F(t),Bc
k) is defined in (4). The con-

straint (9b) ensures that the queue backlog of each user is
less than Qth

k at each time slot with the probability 1 − ϵ,
and thus ensure the desired probabilistic latency requirement.
Note that for each user k ∈ K, the constraint (9c) is pessimistic
estimate of achievable SINR. More specifically, for a given Lk,
BBU models the SINR over all possible subset combinations
of potentially available RRUs from the serving set B̂k(Lk)
(see Section II-A), and uses the pessimistic estimate of SINR
in order to allocated the transmission rate for the users.

III. DYNAMIC ALGORITHM VIA LYAPUNOV OPTIMIZATION

Problem (9) consists of a long-term time-average objective
function, non-linear probabilistic queue length constraint (9b),
and a large number of coupled non-convex SINR expres-
sions (9c). Hence, problem (9) is intractable. In this section, we
derive a dynamic control algorithm for (9) by using Lyapunov
optimization techniques [7].

We start by transforming the probabilistic constraint (9b)
into a time-average constraint using the Markov’s inequality,
Pr{Qk ≥ Qth

k } ≤ E[Qk]/Qth
k [9]. Thereby, problem (9) can

be rewritten as

min
F(t),γk(t),∀t

lim
T→∞

1

T

T−1∑
t=0

( ∑
b∈B

∑
k∈K

E
[
∥fb,k(t)∥2

])
(10a)

s. t.
lim
T→∞

1

T

T−1∑
t=0

E
[
Qk(t)

]
≤ ϵQth

k ,

∀k ∈ K, ∀t
(10b)

γk(t) ≤ Γk(F(t),Bc
k),

∀k ∈ K, c = 1, . . . , C(Lk), ∀t.
(10c)

Note that we have relaxed (9c) while writing constraint (10c),
and these constraints are equivalent at optimality.

Now we use Lyapunov optimization, specifically, a drift-
plus-penalty method [7] to find a solution of problem (10).
Here, we enforce time-average constraint (10b) by transform-
ing it into a queue stability problem [7, Ch. 5]. Specifically,
a virtual queue associated with (10b) for each UE k ∈ K is
introduced, and the stability of these virtual queue implies that
the constraint (10b) is satisfied.

Let Zk(t) be the virtual queue associated with (10b) for
kth UE during time slot t, and we update Zk(t) as
Zk(t+ 1) = [Zk(t) +Qk(t+ 1)− ϵQth

k ]
+, ∀k ∈ K. (11)

The expression (11) can be interpreted as a queue dynamics
for kth UE with arrival rate Qk(t+ 1) and service rate ϵQth

k .
Note that if the virtual queues {Zk(t)}k∈K are stable, then by
using [7, Theorem 2.5] we can show that (10b) is satisfied.

We now define Lyapunov function and its drift, which is
used to stabilize queues {Zk(t)}k∈K. For a compact repre-
sentation, let Ψ(t) = [Z1(t), . . . , ZK(t), Q1(t), . . . , QK(t)]T

denote a collection of virtual and actual queues. Then we
define following quadratic Lyapunov function:

L(Ψ(t)) , 1
2

∑
k∈K

Zk(t)
2. (12)

Intuitively, we can observe that if L(Ψ(t)) is small, then all
queues {Zk(t)}k∈K are small. Contrarily, if L(Ψ(t)) is large
then at least one of the queues is large. Thus, by minimizing
a drift of L(Ψ(t)) from one time slot to another, queues
{Zk(t)}k∈K can be stabilized.

The expected drift of Laypunov function L(Ψ(t)) can be
expressed as [7]
△(Ψ(t)) = E

[
L
(
Ψ(t+ 1)

)
− L(Ψ(t))|Ψ(t)

]
= 1

2E
[∑

k∈K
(
Zk(t+ 1)2 − Zk(t)

2
)∣∣Ψ(t)

]
. (13)

Next, by using expressions (6) and (11) in (13), an upper
bound of drift △(Ψ(t)) can be expressed as3

△(Ψ(t)) ≤ ζ +Φ(t) (14)

− E
[ ∑
k∈K

(Qk(t) +Ak(t) + Zk(t))rk(t)
∣∣Ψ(t)

]
,

where ζ and Φ(t) are positive constant term and satisfy the
following condition4 for all time slots:

ζ ≥ 1
2E

[ ∑
k∈K

Ak(t)
2 + rk(t)

2
∣∣Ψ(t)

]
,

Φ(t) =
∑
k∈K

[
1
2 (ϵQ

th
k )

2 + 1
2Qk(t)

2 + Zk(t)Qk(t)

+
(
Qk(t) + Zk(t)

)
λk

]
.

Now we define following drift-plus-penalty function [7] for
problem (10):

△(Ψ(t)) + V E
[∑
b∈B

∑
k∈K

∥fb,k(t)∥2
∣∣Ψ(t)

]
, (15)

where V ≥ 0 is a trade-off parameter. By using expres-
sion (14) in (15), and minimizing the upper bound of (15)
subject to constraint (10c) at each time slot, we can stabilize
queues {Zk(t)}k∈K and minimize the objective function of
problem (10). Thus, we utilize the concept of opportunistic
minimization of an expectation [7, Ch. 1.8] to minimize the
drift-plus-penalty function (15), and obtain a dynamic control
algorithm as detailed in Algorithm 1.

At each time slot of Algorithm 1, we need to solve prob-
lem (16) to find optimal transmit beamformers F(t). We derive
an iterative algorithm for this in the next section.

3To obtain (14), we have used the fact that ([a+ b− c]+)2 ≤ (a+ b− c)2

for any a ≥ 0, b ≥ 0, and c ≥ 0.
4We have assumed that second moments of arrival and transmission

processes are bounded [7].



Algorithm 1: Dynamic algorithm for problem (9)

1 For a given time slot t, observe queue backlogs
{Qk(t)} and {Zk(t)}, and solve following problem:

min
F(t),γk(t)

V
∑
b∈B

∑
k∈K

∥fb,k(t)∥2 −
∑
k∈K

(
Qk(t)+

Ak(t) + Zk(t)
)
log2

(
1 + γk(t)

) (16a)

s. t.
γk(t) ≤ Γk(F(t),Bc

k),

∀k ∈ K, c = 1, . . . , C(Lk).
(16b)

2 Update queues Qk(t+ 1) and Zk(t+ 1) by using (6)
and (11), respectively, for all k ∈ K

3 Set t = t+ 1, and go to step 1

IV. ITERATIVE ALGORITHM FOR PROBLEM (16)

Problem (16) is non-convex due SINR constraint (16b).
In this section, we adopt Successive Convex Approximation
(SCA) technique [10], [11] to find a solution for problem (16).
In the following, we omit time index t to simplify the notation.

By using the expression of Γk(F,Bc
k) (see (4)) and adding

one on both sides of constraint (16b), we rewrite it as

1 + γk ≤
σ2
k +

∑
j∈K

∣∣∣hcH
k fj

∣∣∣2
σ2
k +

∑
u∈K\k

∣∣∣hcH
k fu

∣∣∣2 , (17)

where fj ∈ C|B|N×1 is the stacked transmit beamformer and
hc
k ∈ C|B|N×1 is the stacked channel vector, defined as

fj ,
[
1Bj

(1)fT
1,j , . . . ,1Bj

(b)fT
b,j , . . . ,1Bj

(B)fT
B,j

]T
,

hc
k ,

[
1Gc

k
(1)hT

1,k, . . . ,1Gc
k
(b)hT

b,k, . . .1Gc
k
(B)hT

B,k

]T
.

The indicator function 1Gc
k
(b) and 1Bj

(b) are defined as

1Gc
k
(b) =

{
1 if and only if b ∈ B \ Dc

k

0 otherwise,

1Bj
(b) =

{
1 if and only if b ∈ Bj
0 otherwise.

where Gc
k = B\Dc

k for all c = 1, . . . , C(Lk) and k ∈ K. Note
that we have added one on both sides of (16b) and expressed it
equivalently as (17), in order to improve numerical stability of
the algorithm. It will become clear in the following subsection.

For more compact representation, we introduce new func-
tions Ik(F, c) and Gk(F, γk, c), defined as

Ik(F, c) , σ2
k +

∑
u∈K\k

∣∣∣hcH
k fu

∣∣∣2, (18a)

Gk(F, γk, c) ,
σ2
k +

∑
j∈K

∣∣∣hcH
k fj

∣∣∣2
1 + γk

. (18b)

Hence, expression (17) can be expressed as

Ik(F, c)−Gk(F, γk, c) ≤ 0, (19)

for all c = 1, . . . , C(Lk) and k ∈ K.
Note that function Gk(F, γk, c) is a quadratic-over-linear,

which is a convex function [12, Ch. 3]. Hence, the left-hand-
side of expression (19) is a difference of convex function.
Thus, the best convex approximation of constraint func-
tion (19) can be obtained by replacing Gk(F, γk, c) with

its first-order approximation [10]. The linear first-order Tay-
lor approximation of Gk(F, γk, c) around an arbitrary point
{f (i)k , γ

(i)
k } can be expressed as

G̃k(F, γk, c) , 2
∑
j∈K

ℜ
{
f
(i)H
j hc

kh
cH
k

1 + γ
(i)
k

(
fj − f

(i)
j

)}
+

σ2
k +

∑
j∈K |hcH

k f
(i)
j |2

1 + γ
(i)
k

(
1−

γk − γ
(i)
k

1 + γ
(i)
k

)
. (20)

Hence, (16) can be approximated as the following convex
problem:

min
F,γk

V
∑
k∈K

∥fk∥2

−
∑
k∈K

(Qk +Ak + Zk) log2(1 + γk)
(21a)

s. t. ak,c : Ik(F, c)− G̃k(F, γk, c) ≤ 0, ∀k ∈ K,∀c, (21b)

where {ak,c} are non-negative Lagrangian multipliers asso-
ciated with constraints (21b). Note that (21) approximates a
solution for (16) in the vicinity of a point {f (i)k , γ

(i)
k }. Thus,

by iteratively solving (21) while updating {f (i)k , γ
(i)
k } with the

solution of current iteration, we can find the best local optimal
solution for (16).

A. Iterative Algorithm via KKT Conditions

The Karush-Kuhn-Tucker (KKT) optimality conditions pro-
vide necessary and sufficient conditions for the solution of a
convex problem. Hence, we tackle problem (21) by iteratively
solving a system of KKT optimality conditions [12, Ch.
5.5]. The Lagrangian L(F, γk, ak,c) of problem (21) is given
in (24). The stationary conditions for (21) can be expressed as

∇γk :
Qk +Ak + Zk

1 + γk
=

C(Lk)∑
c=1

ak,c
σ2
k +

∑
j∈K | hcH

k f
(i)
j |2

(1 + γ
(i)
k )2

, (25a)

∇fk : fH
k

(
V 1+

∑
u∈K\k

C(Lu)∑
c=1

au,ch
c
uh

cH
u

)
=

∑
j∈K

C(Lj)∑
c=1

aj,c

( f (i)H
k hc

jh
cH
j

1 + γ
(i)
j

)
. (25b)

In addition to (25) and primal-dual feasibility constraints, the
KKT conditions also include the complementary slackness as

ak,c
{
Ik(F, c)−G̃k(F, γk, c)

}
= 0, ∀k ∈ K, c = 1, . . . C(Lk).

Note that the user-specific SINR constraints (21b) are
coupled and interdependent over the link blockage combi-
nations (see Section II-A). Hence, obtaining a closed-form
solution for Lagrangian multipliers {ak,c} in expression (25)
is significantly more challenging than the case with single
SINR constraint per-user [10], [11]. To overcome this chal-
lenge, we resort to the subgradient approach, where all non-
negative Lagrangian multipliers {ak,c} are iteratively solved



L(F, γk, ak,c) =
K∑
k=1

[
V ∥fk∥2 − (Qk +Ak + Zk) log2(1 + γk) +

C(Lk)∑
c=1

ak,cσ
2
k +

∑
u∈K\k

C(Lu)∑
c=1

au,c | hcH
u fk |2

− 2
∑
j∈K

C(Lj)∑
c=1

aj,cℜ
{
f
(i)H
k hc

jh
cH
j

1 + γ
(i)
j

(fk − f
(i)
k )

}
−
C(Lk)∑
c=1

ak,c
σ2
k +

∑
j∈K | hcH

k f
(i)
j |2

1 + γ
(i)
k

(
1−

γk − γ
(i)
k

1 + γ
(i)
k

)]
. (24)

using the subgradient method [13]. The steps in the iterative
algorithm are:

f
(i)H
k =

∑
j∈K

C(Lj)∑
c=1

a
(i−1)
j,c

( f (i−1)H
k hc

jh
cH
j

1 + γ
(i−1)
j

)
× (26a)

{
V 1+

∑
u∈K\k

C(Lu)∑
c=1

a(i−1)
u,c hc

uh
cH
u

}−1

,

γ
(i)
k =

(
Qk +Ak + Zk

)
× (26b){

C(Lk)∑
c=1

a
(i−1)
k,c

σ2 +
∑
j∈K | hcH

k f
(i−1)
j |2

(1 + γ
(i−1)
k )2

}−1

− 1,

Γ
(i)
k (F,Bc

k) =
|hcH
k f

(i)
k |2

σ2
k +

∑
u∈K\k

| hcH
k f

(i)
u |2

, (26c)

a
(i)
k,c = a

(i−1)
k,c + β

[
γ
(i)
k − Γ

(i)
k (F,Bc

k)
]
, (26d)

where β is small positive step-size5. In expression (26d),
the dual variables {ak,c} are iteratively updated based on
the violation of SINR constraint (10c), using the subgradient
method [13]. Note that due to reformulation of constraint (16b)
as in (17), we get {1 + γj}j∈K in the denominator of (26a)
and (26b), and these are invertible, even if some UEs have zero
SINR. Thus, the proposed iterative method for problem (16)
is numerically stable, and it is summarized in Algorithm 2.

Algorithm 2: Iterative algorithm for problem (16)

1 Set i = 1 and initialize
{
f
(0)
k , γ

(0)
k , a

(0)
k,c

}
, ∀c, ∀k,

2 repeat
3 Solve f

(i)
k from (26a) with

{
f
(i−1)
k , γ

(i−1)
k , a

(i−1)
k,c

}
4 Obtain γ(i)k from (26b)
5 Calculate Γ

(i)
k (F,Bc

k) from (26c) with updated f
(i)
k

6 Obtain a(i)k,c using (26d) with
{
γ
(i)
k ,Γ

(i)
k (F,Bc

k)
}

7 Set i = i+ 1
8 until convergence or for fixed iterations;

V. SIMULATION RESULTS

We consider a mmWave based donwlink transmission with
UEs K = 2, RRUs B = 2, and each RRU is equipped with a
uniform linear array (ULA) of N = 16 antennas. We assume a
fully-connected JT-CoMP scenario, i.e., Bk = B for all k ∈ K
such that all RRUs coherently serve each UE. RRUs are placed
with the spacing of 50 meters and connected to a common
BBU. All single antenna UEs are randomly dropped, thus
each UE have different path-gain and angle with the RRUs.

5The step size β > 0 in (26d) depends on the system model, as it directly
affects the convergence rate and controls the oscillation in the objective [13].

The radio channel hb,k(t) between a RRU-UE pair (b, k) is
based on sparse geometric model [14], and defined as

hb,k(t) =

√
N

M

M∑
m=1

vb,k(t)d
−ψm

b,k (t)aH
T (ϕ

m
b,k(t)), (27)

where M = 3 is the number of independent paths, and vb,k(t)
is random complex gain with zero mean and unit variance.
The distance between RRU-UE pair is represented with db,k,
and the notation ψm denote a random path-loss exponent. In
the simulation, we set ψm ∈ [2, 6] ∀m. The array response
vector for ULA is represented with aT (ϕ

m
b,k(t)) ∈ CNx1,

where angle-of-departure (AoD) for each path is uniformly
distributed, i.e., ϕmb,k(t) ∈ [−π/2, π/2] ∀m, ∀t. Similar to [8],
we assume a probabilistic blockage model, where the channel
between RRU-UE pair is either fully available, i.e., as in (27)
or completely blocked i.e., hb,k(t) = 0, with the probability
of qb,k ∈ [0, 1] for all b ∈ B and k ∈ K.

For each UE k, we assume identical subset size Lk = L,
arrival Ak ∼ Pois(λ) with λ = 3.5 bits/slot and allowable
queue length Qth

k = 5 bits with tolerable probability ϵ = 0.1
in problem (9). In the simulations, we set the subgradient step
size β = 0.5 in (26d), and the frequency fc = 28 GHz.

The outage event occurs if the instantaneous transmit
rate rk(t) exceeds the supported rate6 ck(t) for all k ∈ K.
Then, the queue dynamics Qk(t) in (6) can be expressed as

Qk(t+1) =
[
Qk(t)−rk(t)1{rk(t)≤ck(t)}+Ak(t)

]+ ∀k, (28)
where 1{·} is an indicator function. Specifically, expres-
sion (28) implies that queue backlog also increases with each
unsuccessful downlink transmission due to random blockages.

For the baseline methods, we consider Coordinated Beam-
forming (CB) [3] and full-JT (i.e., L = B) [11] beamformer
design. Fig. 2 illustrates the average queue delay performance
with V = 1 and blockage of 20%. Result shows that our
proposed and baseline methods satisfy the queue backlogs of
each user k (i.e., Qth

k = 5) within the allowable tolerance
level ϵ = 0.1. Thus, all methods strictly achieve the desired
average latency requirements (i.e., constraint (9b)). However,
our proposed method substantially improves the sum-power
performance while ensuring the average latency requirements,
as shown in Fig. 3. For example, with V = 1 blockage of 20%,
our proposed method improves the sum-power performance
by 7dB and 9dB compared to CB and full-JT, respectively.

6For a give time slot t, let Sk(t) = {γ∗
k(t), f

∗
k (t)}∀k∈K denote solution

obtained from Algorithm (2). Then, for each user k, the transmission rate
is given by rk = log2(1 + γ∗

k). However, the actual supported rate
for kth user depends on the beamformers {f∗k (t)}∀k∈K and channel state
{hb,k(t)}b∈B,k∈K, which can not be exactly known to the BBU during
data transmission phase due to random blockages. The supported rate can be
calculated using the actual SINR values (2), i.e., ck = log2(1+Γk(F

∗(t))),
and these rates are unknown to the BBU.
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Hence, the proposed method significantly outperforms the
conventional full-JT and CB design.

Fig. 4 illustrates the impact of parameter L in constraint (9c)
on achievable rate and reliable connectivity. For example,
the use of smaller subset size L provides a lower SINR
estimate (see (4)), and hence lower rate to each user. However,
pessimistic SINR estimate over the link blockage combinations
greatly improves the outage performance. Thus, it leads to
more stable and resilient connectivity in the presence of
random blockages. For example, with V = 1 and blockage
of 30%, the outage is decreased from 46% to 9% by changing
parameter L from 2 (full-JT) to 1 (proposed) in problem (9).
Clearly, there is a trade-off between achievable rate, latency,
and reliable connectivity. More specifically, for a given queue
length (i.e., latency requirements), we can guarantee a mini-
mum user-rate and vice-versa. However, compared to the base-
line schemes, the proposed method provides energy-efficient,
high-reliability and low-latency mmWave communication.

VI. CONCLUSION

In this paper, we have studied achievable latency and
reliable connectivity in mmWave systems by exploiting the
multi-antenna spatial diversity and CoMP transmission. We
considered a time-average sum-power minimization problem
subject to maximum allowable queue length constraint. We
have adapted the Lyapunov optimization framework to derive
a dynamic control algorithm for the long-term time-average
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Fig. 4. Effective user-rate with V = 1, blockage probability qb,k = 10%
(solid line) and blockage probability qb,k = 30% (dotted line).

stochastic problem. We have proposed an iterative algorithm
for the sum-power minimization problem based on the SCA
framework and KKT optimality conditions, while accounting
for the uncertainties of mmWave radio channel in terms of
blockages. The numerical results manifested the robustness of
the proposed beamformer design in the presence of random
blockage. Specifically, the achievable rate and sum-power per-
formance with our proposed method outperforms the baseline
scenarios and results in energy-efficient, high-reliability and
low-latency mmWave communication.
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