
Age of Information-Aware Resource Management
in UAV-Assisted Mobile-Edge Computing Systems

Xianfu Chen, Celimuge Wu, Tao Chen, Zhi Liu, Mehdi Bennis, and Yusheng Ji

Abstract—This paper investigates the problem of age of infor-
mation (AoI)-aware resource awareness in an unmanned aerial
vehicle (UAV)-assisted mobile-edge computing (MEC) system,
which is deployed by an infrastructure provider (InP). A service
provider leases resources from the InP to serve the mobile users
(MUs) with sporadic computation requests. Due to the limited
number of channels and the finite shared I/O resource of the UAV,
the MUs compete to schedule local and remote task computations
in accordance with the observations of system dynamics. The
aim of each MU is to selfishly maximize the expected long-term
computation performance. We formulate the non-cooperative
interactions among the MUs as a stochastic game. To approach
the Nash equilibrium solutions, we propose a novel online deep
reinforcement learning (DRL) scheme, which enables each MU to
behave using its local conjectures only. The DRL scheme employs
two separate deep Q-networks to approximate the Q-factor and
the post-decision Q-factor for each MU. Numerical experiments
show the potentials of the online DRL scheme in balancing the
tradeoff between AoI and energy consumption.

I. INTRODUCTION

Strategic computation offloading in mobile-edge computing
(MEC) not only greatly improves the computation Quality-of-
Experience (QoE) and Quality-of-Service (QoS) for a mobile
users (MU), but also augments the capability of the mobile
device for running a variety of resource-demanding applica-
tions. Recent years have witnessed a large body of related
research [1, and references therein]. Offloading a computation
task to the edge server involves wireless transmissions, which
encounter the environmental dynamics. Particularly, the time-
varying channel qualities due to the MU mobility constrain the
computation performance [2]. Because of among others, the
low deployment cost, the flexibility and the line-of-sight (LOS)
connections, unmanned aerial vehicles (UAVs) are expected
to play an important role in advancing the network-generation
wireless networks [3]. Leveraging UAVs in a MEC system
has shown substantial impacts. In [4], Hu et al. put forward
an alternating algorithm to minimize the weighted sum energy
consumption for a UAV-assisted MEC system. In [5], Li et al.
adopted the Dinkelbach algorithm and the successive convex
approximation technique to maximize UAV energy efficiency.
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However, most existing literature is based on finite time and
cannot characterize the long-term performance.

This paper focuses on a UAV-assisted cellular network as
in [6], which can be deployed by an infrastructure provider
(InP). In addition to the traditional communication service,
the three-dimensional system brings computation capability
at the edge as well, where the UAV is implemented as a
complementary computing server flying in the air [3]. Such
a system opens up a new business model, following which
a third-party service provider (SP) leases resources from the
InP to serve the subscribed MUs with computation requests
[2]. Specifically, the resource orchestrator (RO) of the SP
manages a limited number of channels, which provide the MUs
with access to the UAV-assisted MEC system. The channel
allocation is regulated via a Vickrey-Clarke-Groves (VCG)
pricing mechanism [7]. Consequently, a MU is able to not only
process a computation task locally, but also offload the task
for remote execution. At the UAV, the tasks are co-executed
by creating isolated virtual machines (VMs) [8], while sharing
the same physical UAV platform causes I/O interference and
hence leads to computation rate reduction for each VM.

Under this context, each MU competes to schedule local
and remote task computations with the awareness of system
dynamics. The aim is to maximize its own expected long-term
computation performance. In practice, one critical concern
is the knowledge freshness from the computation outcomes
[9]. A key metric for capturing the freshness is the age of
information (AoI) [9], [10]. By definition, AoI is the amount of
time elapsed since the outcome of the most recently scheduled
computation was received. We formulate the non-cooperative
interactions among the MUs as a stochastic game under a
multi-agent Markov decision process (MDP). To avoid any
information exchange, we propose that each MU behaves inde-
pendently with the local conjectures, transforming the problem
into a single-agent MDP. We develop a novel online deep
reinforcement learning (DRL) scheme to deal with the huge
local state space. The DRL scheme maintains two separate
deep Q-networks (DQNs) [11] to approximate, respectively,
the Q-factor and the post-decision Q-factor for each MU.

II. SYSTEM DESCRIPTIONS

We assume that an InP deploys a three-dimensional cellular
network, where the terrestrial radio access network (RAN)
provides computation service with the help of a UAV flying at
a fixed altitude of H . A set B = {1, 2, · · · , B} of base stations
(BSs) are connected via wired backhaul to the resource-rich
server at the edge, while the UAV is integrated with a parallel



computing server. A SP serves a set K of MUs with sporadic
computation requests. We use a finite set L of locations to
denote both the terrestrial service region covered by the RAN
and the region of the UAV mapped vertically from the air
to the ground. Let Lb denote the locations covered by a BS
b ∈ B. For any two BSs b and b′ ∈ B \ {b}, we have
Lb ∩ Lb′ = ∅. Then L = ∪b∈BLb. The geographical topology
of the BSs is represented a two-tuple graph ⟨B, E⟩, where
E = {eb,b′ : b, b′ ∈ B, b ̸= b′} with each eb,b′ being equal to 1
if BSs b and b′ are neighbours, and 0, otherwise. The system
operates over discrete decision epochs, each of which is with
equal duration δ and indexed by j ∈ N+.

We assume that the UAV and the MUs move at the same
speed following a Markov mobility model [2]. Let Lj

(v) ∈ L
and Lj

(m),k ∈ L denote, respectively, the mapped terrestrial
location of the UAV and the location of each MU k ∈ K during
a decision epoch j. The computation arrivals at the MUs are
assumed to be independent Bernoulli random variables with
a common parameter λ ∈ [0, 1]. Each MU k employs a pre-
processing buffer to temporarily store a computation task. It
is reasonable for an incoming task with newer arrival time
to replace an old task in the pre-processing buffer since a
newer computation task is always with fresher information.
We assume that a computation task is composed of D(max)

input data packets and each packet contains µ data bits. We let
ϑ represent the number of CPU cycles required to accomplish
one bit of a computation task. A computation task can be
either computed locally at the mobile device or executed
remotely. Specifically, let Xj

k ∈ X = {0, 1, 2, 3} denote the
computation offloading decision of MU k at each epoch j,
where Xj

k = 1, Xj
k = 2 and Xj

k = 3 indicate that the
task in the pre-processing buffer is scheduled to be computed
by the local CPU and offloaded to the edge server and the
UAV, respectively, while Xj

k = 0 means that the task is not
scheduled for computation.

The RO manages a set C of channels with bandwidth η.
To upload the input data packets of a scheduled computation
task for remote execution, the MUs compete for the limited
channels using the VCG mechanism. At the beginning of each
epoch j, each MU k ∈ K submits to the RO an auction bid
βj
k = (νjk,N

j
k), where νjk is the true valuation over Nj

k =
(N j

(s),k, N
j
(v),k) with N j

(s),k and N j
(v),k being the numbers of

demanded channels for data transmissions to the edge server
and the UAV. Let ρj

k = (ρjk,c : c ∈ C) be the channel allocation
for MU k at epoch j, where ρjk,c equals 1 if MU k is assigned
a channel c ∈ C and 0, otherwise. We take into account ∑

k∈Kj
(s),b

ρjk,c

 ·

 ∑
k∈Kj

(s),b′

ρjk,c

 = 0,

if eb,b′ = 1,∀eb,b′ ∈ E ,∀c ∈ C; (1) ∑
k∈ ∪

b∈B
Kj

(s),b

ρjk,c

 ·

 ∑
k∈Kj

(v)

ρjk,c

 = 0,∀c ∈ C; (2)

∑
k∈Kj

(s),b

ρjk,c ≤ 1,∀b ∈ B,∀c ∈ C; (3)

∑
k∈Kj

(v)

ρjk,c ≤ 1,∀c ∈ C; (4)

∑
c∈C

ρjk,c ≤ 1,∀k ∈ K, (5)

for the centralized channel allocation, where Kj
(s),b = {k : k ∈

K, Lj
(m),k ∈ Lb, N

j
(s),k > 0}, ∀b ∈ B, while Kj

(v) = {k : k ∈
K, N j

(v),k > 0}. We denote ϕj = (ϕj
k : k ∈ K) as the winner

determination, where ϕj
k equals 1 if MU k wins and otherwise

0. The RO calculates ϕj according to

ϕj = argmax
ϕ

∑
k∈K

ϕk · νjk

s.t. constraints (1), (2), (3), (4) and (5);∑
k∈Kj

(s),b

φj
k = ϕk ·N j

(s),k,∀b ∈ B,∀k ∈ K;

∑
k∈Kj

(v)

φj
k = ϕk ·N j

(v),k,∀k ∈ K,

(6)

where ϕ = (ϕk ∈ {0, 1} : k ∈ K) and φj
k =

∑
c∈C ρ

j
k,c. We

also rewrite φj
k as φk(β

j), where βj = (βj
k,β

j
−k) with −k

denoting all the other MUs without the presence of MU k.
The payment for MU k to the SP is calculated as

τ jk = max
ϕ−k

∑
κ∈K\{k}

ϕκ · νjκ −
∑

κ∈K\{k}

ϕj
κ · νjκ, (7)

which is incurred from the channel access.

III. COMPUTATION AND AOI MODELS

Let T j
k ∈ N be the arrival epoch index of the computation

task waiting in the pre-processing buffer of a MU k ∈ K at the
beginning of an epoch j. We set T j

k = 0 if the pre-processing
buffer is empty. When Xj

k = 1 for MU k at epoch j, the
number of required epochs is calculated as ∆ = ⌈(D(max) ·µ ·
ϑ)/(δ · ϱ)⌉, where ⌈·⌉ means the ceiling function and ϱ is the
local CPU frequency. We describe by W j

(m),k ∈ {0, 1, · · · ,∆}
the local CPU state of MU k at the beginning of epoch j,
which is the number of remaining epochs to finish the task.
In particular, W j

(m),k = 0 indicates that the local CPU is idle
and is available for a new task from epoch j. The local CPU
energy consumption during epoch j is given by

F j
(m),k =
0, for W j

(m),k = 0;

ς ·
(
D(max) · µ · ϑ− (∆− 1) · δ · ϱ

)
· (ϱ)2,

for W j
(m),k = 1;

ς · δ · (ϱ)3, for W j
(m),k > 1,

(8)

where ς is the effective switched capacitance [12].
For remote execution, a MU has to be associated to the

terrestrial RAN or with the UAV until the task is accomplished.



Let Ijk ∈ B ∪ {B + 1} be the association state of each MU
k ∈ K at the beginning of epoch j, namely, Ijk = b ∈ B if MU
k is associated with a BS b and if MU k is associated with the
UAV, Ijk = B+1. When Ij+1

k ̸= Ijk, ∀j, a handover is triggered
[13]. Suppose that the energy consumed during one handover
is negligible but the handover delay is ξ. The transmission time
of MU k then is reduced to δ̃jk = δ−ξ ·1{Ij+1

k ̸=Ij
k}

, where 1{i}

is an indicator function. Let Dj
k ∈ D = {0, 1, · · · , D(max)}

denote the local transmitter state of MU k at the beginning
of each epoch j, which is the number of input data packets
at the transmitter. Let Rj

k be the number of packets to be
uploaded during epoch j, the transmitter state evolves to
Dj+1

k = Dj
k−φj

k ·R
j
k. During epoch j, MU k experiences the

channel gains Gj
b,k = g(s)(L

j
(m),k) for the link between MU

k and each BS b as well as Gj
(v),k = g(v)(L

j
(m),k, L

j
(v)) for

the link between MU k and the UAV. Note that 0 ≤ Rj
k ≤

min{Dj
k, R

j
(max),k}, where Rj

(max),k is jointly determined by
the channel gain during epoch j, the transmission time and
the maximum transmit power P(max) at the MUs.

At the beginning of an epoch j, if Xj
k = 2 for a MU k ∈ K,

all input data packets need to be offloaded during subsequent
epochs via the RAN. When Lj

(m),k ∈ Lb, b ∈ B, the energy
consumption for the transmitting φj

k ·Rj
k packets is

F j
(s),k =

δ̃jk · η · σ2

Gj
b,k

·

2

φ
j
k
·(µ·Rj

k)
η·δ̃j

k − 1

 , (9)

where σ2 is the noise power spectral density. This paper
assumes rich computation resource at the edge server and thus,
the task execution delay is ignored. Moreover, we assume that
the time for sending the computation outcome back to the MU
is negligible, due to the fact that the outcome is in general
much smaller than the input data packets [14].

When all the input data packets of a computation task are
received up to an epoch, the UAV starts to execute by creating
a VM for the MU from the next epoch [8]. If Xj

k = 3 at a MU
k ∈ K, the energy consumed for the transmissions of φj

k ·R
j
k

input data packets turns to be

F j
(v),k =

δ̃jk · η · σ2

Gj
(v),k

·

2

φ
j
k
·(µ·Rj

k)
η·δ̃j

k − 1

 . (10)

Let K̆j
(v) ⊆ Kj

(v) represent the set of MUs, whose computation
tasks are being simultaneously executed by the UAV during an
epoch j. Let χ0 be the computation service rate at the UAV
given that the task is run in isolation, the degraded rate of
each MU k ∈ K̆j

(v) is modeled as χj = χ0 · (1 + ε)
1−|K̆j

(v)
|,

where | · | denotes the cardinality of a set and ε ∈ R+ is a
reduction factor. The remote processing state of MU k can be
updated by W j+1

(v),k = max{W j
(v),k − χj · δ, 0}, where W j

(v),k
quantifies the amount of input data bits remaining at the UAV
at the beginning of an epoch j.

To depict the knowledge freshness for each MU k ∈ K from
computation, we define the AoI as the difference between the
current time and the arrival time of the latest task, the outcome

of which is received. Let Aj
k denote the AoI of MU k at each

epoch j. The AoI evolution can be analysed as follows.
1) When there is no computation outcome received at MU

k, Aj+1
k = Aj

k + δ.
2) When MU k receives only one computation outcome,

Aj+1
k =

(
j − T j

(m),k −∆+ 1
)
· δ +

D(max) · µ · ϑ
ϱ

,

for W j
(m),k = 1, Dj

k = 0 and W j
(v),k = 0;(

j − T j
(s),k + 1

)
· δ,

for W j
(m),k = 0, Dj

k > 0 and W j
(v),k = 0;(

j − T j
(v),k

)
· δ +

W j
(v),k

χj
,

for W j
(m),k = 0, Dj

k = 0 and W j
(v),k > 0,

(11)

where T j
(m),k, T j

(s),k and T j
(v),k are the arrival epoch

indices of the task processed at the local CPU, the edge
server and the UAV.

3) When two computation outcomes arrive at MU k,

Aj+1
k = (12)

(
j − T j

(s),k + 1
)
· δ,

for Dj
k > 0,W j

(v),k = 0 and T j
(s),k > T j

(m),k;(
j − T j

(v),k

)
· δ +

W j
(v),k

χj
,

for Dj
k = 0,W j

(v),k > 0 and T j
(v),k > T j

(m),k;(
j − T j

(m),k −∆+ 1
)
· δ +

D(max) · µ · ϑ
ϱ

,

otherwise.

By default, the AoI is initialized as A1
k = 0 and up-limited by

A(max) for each MU k.

IV. STOCHASTIC GAME FORMULATION

During each decision epoch j, the local state of each MU
k ∈ K can be described by Sj

k = (Lj
(v), L

j
(m),k,1{T j

k>0}, I
j
k,

W j
(m),k,W

j
(v),k, D

j
k, A

j
k) ∈ S . Sj = (Sj

k,S
j
−k) ∈ S |K| charac-

terizes the global system state. Let πk = (π(c),k, π(t),k, π(p),k)
denote the control policy of MU k, where π(c),k, π(t),k and
π(p),k are the channel auction, the computation offloading and
the packet scheduling policies. The joint control policy of all
MUs can be given by π = (πk,π−k). With the observation
of Sj at epoch j, MU k makes decisions following πk(S

j) =
(π(c),k(S

j), π(t),k(S
j
k), π(p),k(S

j
k)) = (βj

k, X
j
k, R

j
k). We de-

fine an immediate payoff

ℓk

(
Sj ,
(
φj
k, X

j
k, R

j
k

))
= uk

(
Sj ,
(
φj
k, X

j
k, R

j
k

))
− τ jk , (13)

where uk(S
j , (φj

k, X
j
k, R

j
k)) = ϖk·exp(−Aj

k)+ωk·exp(−F j
k )

and φj
k = φk(π(c)(S

j)) with π(c) = (π(c),k,π(c),−k). In the
utility function uk(S

j , (φj
k, X

j
k, R

j
k)), F

j
k = F j

(m),k +F j
(s),k +



F j
(v),k is the total local energy consumption, while ϖk ∈ R+

and ωk ∈ R+ are the weighting constants.
Each MU k ∈ K aims to device a best-response control

policy π∗
k = (π∗

(c),k, π
∗
(t),k, π

∗
(p),k) such that

π∗
k = argmax

πk

Vk(S,π), (14)

for any global system state S = (Sk = (L(v), L(m),k,1{Tk>0},
Ik,W(m),k,W(v),k, Dk, Ak) : k ∈ K) ∈ S |K|, where

Vk(S,π) = (15)

(1− γ) · Eπ

 ∞∑
j=1

(γ)j−1 · ℓk
(
Sj ,
(
φj
k, X

j
k, R

j
k

))
|S1 = S

 .

Herein, γ ∈ [0, 1) is the discount factor and Vk(S,π) is also
termed as the state-value function of S under π [15]. Due to
the limited number of channels, the shared I/O resource at the
UAV and the stochastic nature of the system, we formulate
the interactions among the competing MUs over the infinite
time-horizon as a non-cooperative stochastic game. A Nash
equilibrium (NE) describes the rational behaviours of the MUs
in a stochastic game. Specifically, a NE is a tuple of control
policies ⟨π∗

k : k ∈ K⟩, where π∗
k is the best response to

π∗
−k [16]. For brevity, define Vk(S) = Vk(S,π

∗
k,π

∗
−k) as

the optimal state-value function. It can be easily found that
Vk(S,π) of a MU k depends on information of not only the
global system states across the time-horizon but also the joint
control policy π. In other words, the decision makings from
all MUs are coupled in the stochastic game.

V. DRL WITH LOCAL CONJECTURES

We develop an online DRL scheme for the MUs to approach
the NE control policy with only local information.

A. Local Conjectures

In the stochastic game, it is challenging for each MU k ∈ K
to obtain the private information from other MUs. On the
other hand, the coupling of the decision makings exists in
the channel auction and the remote task execution at the
UAV. From the viewpoint of MU k, the payment τ jk and
the computation service rate χj at an epoch j are realized
under Sj

−k. We allow a MU k to conjecture Sj+1 during the
next epoch j + 1 as Ŝj+1

k = (Sj+1
k ,Oj+1

k ), where Oj+1
k =

(τ jk , χ
j) ∈ Ok. Now we transform (15) into

Vk

(
Ŝk,π

)
= (16)

(1− γ) · Eπ

 ∞∑
j=1

(γ)j−1 · ℓk
(
Sj ,
(
φj
k, X

j
k, R

j
k

))
|Ŝ1

k = Ŝk

,
where Ŝk = (Sk,Ok) ∈ Ŝk = S × Ok with Ok being the
initial local conjecture of S−k, while π hereinafter refers to
the conjecture based joint control policy. Each MU k then
switches to maximize Vk(Ŝk,π), ∀Ŝk ∈ Ŝk, which is basically
a single-agent MDP. With a slight abuse of notation, we let
Vk(Ŝk) = Vk(Ŝk,π

∗), ∀k ∈ K, where π∗ is the best-response

control policy profile of all MUs with local conjectures and
the Bellman’s optimality equation is given by (17).

When all MUs follow the best-response control policy
profile π∗ based on the local conjectures, each MU k ∈ K
announces at the beginning of a current decision epoch to the
RO the channel demands

N(s),k = zk · 1{
π∗
(t),k

(Sk)=2
}, (18)

N(v),k = zk · 1{
π∗
(t),k

(Sk)=3
}, (19)

together with the true valuation being specified as

νk = uk

(
Sj ,
(
zk, π

∗
(t),k(Sk), π

∗
(p),k(Sk)

))
+

γ

1− γ
· (20)∑

Ŝ′
k∈Ŝk

P
(
Ŝ′
k|Ŝk,

(
zk, π

∗
(t),k(Sk), π

∗
(p),k(Sk)

))
· Vk

(
Ŝ′
k

)
,

where zk denotes the preference of winning one channel and
Ŝ′
k is the subsequent local state. It remains challenging to come

up with an optimal bid without the local system dynamics
statistics and the structure of the payment function.

B. Proposed DRL Scheme

To make the calculation of an auction bid feasible, we
introduce a local post-decision state [17] for the MUs. At each
current epoch, the local post-decision state of a MU k ∈ K
is defined as S̃k = (L(v), L(m),k,1{Tk>0}, Ik,W(m),k,W(v),k,

D̃k, Ak,Ok) ∈ Ŝk by letting D̃k = Dk − φk(β) · Rk, where
β = (βk, β−k). For each MU k, we define the right-hand-side
of (17) as a Q-factor, namely,

Qk

(
Ŝk, (φk, Xk, Rk)

)
= (1− γ) · ℓk(S, (φk, Xk, Rk))+

γ ·
∑

Ŝ′
k∈Ŝk

P
(
Ŝ′
k|Ŝk, (φk, Xk, Rk)

)
· Vk

(
Ŝ′
k

)
, (21)

where φk, Xk and Rk correspond to the channel allocation, the
computation offloading and the packet scheduling decisions
under Ŝk. We further define a post-decision Q-factor by

Q̃k

(
S̃k, (φk, Xk, Rk)

)
= γ ·

∑
Ŝ′

k∈Ŝk

P
(
Ŝ′
k|S̃k, (φk, Xk, Rk)

)
· Vk

(
Ŝ′
k

)
. (22)

By substituting (22) back into (20), we obtain

νk = uk

(
Sj ,
(
zk, π

∗
(t),k(Sk), π

∗
(p),k(Sk)

))
+

1

1− γ
· Q̃k

(
S̃k,
(
zk, π

∗
(t),k(Sk), π

∗
(p),k(Sk)

))
. (23)

where zk can be hence derived from

zk = argmax
z∈{0,1}

Qk

(
Ŝk,
(
z, π∗

(t),k(Sk), π
∗
(p),k(Sk)

))
. (24)

It is easy to observe that Ŝk faced by each MU k ∈ K is
extremely huge. The tabular nature in representing the Q-factor
and the post-decision Q-factor values makes the conventional
Q-learning rule impractical. Inspired by the widespread suc-
cess of a deep neural network [18], we propose to adopt two



Vk

(
Ŝk

)
= max

πk(Ŝk)

(1− γ) · ℓk
(
S, φk

(
π(c),k

(
Ŝk

)
,π∗

(c),−k

(
Ŝ−k

))
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separate deep Q-networks (DQNs), namely, DQN-I and DQN-
II, to reproduce the Q-factor and the post-decision Q-factor of
a MU. Specifically, for each MU k, we model the Q-factor in
(21) by, ∀(Ŝk, (φk, Xk, Rk)) ∈ Ŝk × {0, 1} × X ×D,

Qk

(
Ŝk, (φk, Xk, Rk)

)
≈ Qk

(
Ŝk, (φk, Xk, Rk);θk

)
, (25)

and the post-decision Q-factor in (22) by, ∀(S̃k, (φk, Xk, Rk))
∈ Ŝk × {0, 1} × X ×D,

Q̃k

(
S̃k, (φk, Xk, Rk)

)
≈ Q̃k

(
S̃k, (φk, Xk, Rk); θ̃k

)
, (26)

where θk and θ̃k denote the vectors of parameters that are
associated with DQN-I and DQN-II.

During the online DRL, each MU k ∈ K is equipped with a
finite replay memory Mj

k = {yj−M+1
k , · · · ,yj

k} to track the
most recent M historical experiences up to a decision epoch
j, where an experience yj−m+1

k (1 ≤ m ≤ M ) given by

yj−m+1
k =

(
Ŝj−m
k ,

(
φj−m
k , Xj−m

k , Rj−m
k

)
, (27)

ℓk

(
Sj−m,

(
φj−m
k , Xj−m

k , Rj−m
k

))
, Ŝj−m+1

k

)
.

1) DQN-I Training: MU k keeps a Qk(Ŝk, (φk, Xk, Rk);θ
j
k)

and a target Qk(Ŝk, (φk, Xk, Rk);θ
j,−
k ), where θj

k and θj,−
k

are the associated parameters at each decision epoch j and
from a previous epoch before j, respectively. To perform
experience replay [19], MU k randomly samples a mini-batch
Yj
k ⊆ Mj

k to train DQN-I, the objective of which is to update
θj
k in the direction of minimizing the loss given by (28).

2) DQN-II Training: At each decision epoch j, we designate
θ̃j
k as the parameters associated with DQN-II of MU k. Taking

θj
k from DQN-I as an input, MU k updates θ̃j

k to minimize
the loss given by (29) over the mini-batch Yj

k .

VI. NUMERICAL EXPERIMENTS

To evaluate the performance of the proposed online DRL
scheme, we conduct numerical experiments based on Tensor-
Flow [20]. We build an experimental RAN covering a 0.4×0.4
Km2 square area, where there are B = 4 BSs and |K| = 20
MUs. The BSs are placed at equal distance apart, and the
service area is divided into |L| = 1600 locations. The UAV
flies at the altitude of H = 100 meters. For each MU k ∈ K,
Gj

b,k and Gj
(v),k, ∀b ∈ B and ∀j, follow the channel model

in [2] and the LOS model in [21], respectively. The state
transition probability matrices of all MUs and the UAV are
generated independently and randomly. We design the DQN-
I and the DQN-II of each MU assuming two hidden layers,
each containing 32 neurons. ReLU is selected as the activation
function [22] and Adam as the optimizer [23]. Other parameter

TABLE I
PARAMETER VALUES IN EXPERIMENTS.

Parameter Value Parameter Value
D(max) 10 µ 500 Kbits

ϑ 1300 A(max) 30 seconds
η 1 MHz σ2 −144 dBm/Hz
δ 1 second P(max) 3 Watt
ϖk 10, ∀k ωk 2, ∀k
ϱ 1 GHz ξ 10−2 seconds
χ0 2 · 107 bits/second ε 0.2
ς 10−27 M 5000

values are listed in Table I. We consider the following baseline
schemes as well for the performance comparisons.

1) Local Computation (Baseline 1) – Each MU processes
the computation tasks only at the local mobile device.

2) Server Execution (Baseline 2) – Each MU always of-
floads the computations to the edge server for execution.

3) UAV Execution (Baseline 3) – All computation tasks of
the MU are processed at the UAV.

4) Greedy Processing (Baseline 4) – Whenever possible, a
task is computed locally or executed remotely.

In Baselines 2, 3 and 4, the valuation at each decision epoch is
calculated as the utility from transmitting a maximum number
of input data packets.

The first experiment demonstrates the average utility per
MU per decision epoch by changing the task arriving prob-
abilities. We assume |C| = 16 channels that can be utilized
by the MUs. The results are exhibited in Fig. 1, from which
we observe that the proposed DRL scheme achieves the best
performance. As the computation task arriving probability
increases, each MU consumes more energy for task processing
to maintain the fresh knowledge. With the chosen weights,
the AoI increasingly dominates the utility function value
when the energy consumption increases, which confirms the
average utility performance trends of all schemes. Then we
simulate the average utility performance versus the numbers
of channels, where we select λ = 0.5. The more channels
available, the more likely a MU wins from the channel auction.
Therefore, with Baselines 2, 3 and 4, the MU consumes
more energy to offload more input data packets for remote
execution, while with the proposed scheme, there are more
opportunities for a MU to process a computation task with
less energy consumption. Using Baseline 1, the average utility
keeps constant since the MUs do not participate the channel
auction. Last but not least, both experiments corroborate the
performance gains of the proposed scheme.

VII. CONCLUSIONS

This paper aims to design an optimal control policy for
the MUs in a three-dimensional UAV-assisted MEC system.
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Fig. 1. Average utility performance per MU across the learning procedure
versus computation task arriving probability.
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Fig. 2. Average utility performance per MU across the learning procedure
versus number of channels.

Each MU selfishly maximizes its own expected long-term
computation performance. We formally formulate the non-
cooperative interactions among the MUs as a stochastic game.
To approach the NE, we develop a novel online DRL scheme,
which maintains two separate DQNs to approximate the Q-
factor and the post-decision Q-factor for each MU. Imple-
menting the proposed DRL scheme, each MU makes the
decisions of computation offloading, channel auction and input
data packet scheduling with only the local information. From
numerical experiments, we find that compared with the four
baselines, the proposed scheme achieves better average utility
performance, indicating a better tradeoff between AoI and
energy consumption.
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