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Abstract—In this paper, we describe how the microservices
paradigm can be used to design and implement distributed
edge services for Internet of Things applications. As a case
study, traditionally monolithic user mobility analysis service is
developed, with distributed and extendable microservices, for
the standardized ETSI MEC system reference architecture. In
each of the edge system three tiers, microservices implement the
service logic with components for movement trace analysis, move-
ment prediction and visualization of the results. The distributed
service is implemented with Docker containers and evaluated on
real-world settings with low capacity edge servers and real user
mobility data. The results show that the edge promise of low
latency can be met in such as implementation. The integration
of a software development technology with a standardized edge
system provides solid background for further development.

Index Terms—Multi-access Edge Computing, Service comput-
ing, 5G, Mobility, Container

I. INTRODUCTION

Edge computing is seen as the next step towards future In-
ternet of Things (IoT) systems [1]. Edge computing leverages
cloud resources, i.e. application-specific computations and
data, to the network infrastructure devices in close proximity
of the data producing IoT devices. This approach reduces both
the volume of data transmitted in the core network and the
application execution latencies, as the data can be processed
already at the edge. These benefits, with the capability of
offloading mobile applications from the device to the edge,
improve the overall Quality of Service (QoS) experienced by
the mobile users.

Still, the operational environment of the IoT devices is
dynamic, with intermittent connectivity and low bandwidth,
where edge service availability can not be guaranteed. This
makes the orchestration and management of such distributed
resources across the networks challenging, where the het-
erogeneous system components, including the IoT devices,
have varying capabilities for computation and communica-
tion. Moreover, user mobility and resulting unpredictable
actions are another reason for inherent system dynamicity.
With location- and context-awareness, edge systems can better
control resource orchestration in such an environment and
optimize the application execution at the edge.

To deploy IoT applications and application-specific services
to the edge, virtualization technologies have appeared [2].
The idea is to distribute self-contained applications as virtual

machines (VM) to the servers at the edge. However, such VMs
have typically large overhead, i.e. include a guest operating
system, and therefore resource consuming to deploy, instanti-
ate, maintain and relocate. Recently, lightweight virtualization
technologies, i.e. containers, allow partitioning of applications
into low overhead packages, e.g. without the operating system.
This further enables deployment of application packages to the
edge and IoT devices with low computational capabilities [2].

However, partitioning of monolithic cloud applications into
distributed packages and their deployment into hierarchical
IoT system architectures is not straightforward. First, the
application-specific requirements, e.g. performance and QoS,
have to be met with the available resources in the multi-
tenant edge infrastructure. Second, novel modeling, design and
programming paradigms are needed, that unify the different
properties of IoT system architecture layers for distributed
software development. A recent approach, microservices [3,
4], modularize the applications and services at the individual
process level, that can be developed in isolation and deployed
as containers to the edge. Benefits of microservices are seen
in isolation and maintainability in their development and
autonomy and scalability in their operation. The low overhead
increases scalability and further facilitates the optimization of
package deployments for service provisioning, e.g. to provide
low latency in response to the user mobility.

In this paper, we present a case study of user mobility
analysis as an edge service, implemented with distributed
microservices that complement each other as the service logic.
The presented microservices-based service design and imple-
mentation particularly follows the Multi-access Edge Comput-
ing (MEC) specifications, currently under standardization by
the European Telecommunications Standards Institute (ETSI).
The integration of a software development solution with a stan-
dardized edge system provides a solid background for further
developments. The presented microservices implementation is
then evaluated in real world settings.

The rest of the paper is organized as follows. In Sec-
tion 2, the background in microservices for edge computing,
user mobility analysis and service design is presented. The
microservice-based design and implementation of the service
logic are presented in Section 3. The resulting microservice
implemented is evaluated in Section 4. In Section 5, we discuss
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the findings of the paper. Section 6 concludes the paper.

II. BACKGROUND

In this work, we utilize the ETSI MEC reference archi-
tecture [5] to exemplify an edge computing system. MEC is
currently under standardization by ETSI. The standards cover
the system architecture and components, the functionality of
the components and their interactions and provide a set of
application programming interfaces (API). The APIs realize
capabilities for top-down MEC system orchestration and ap-
plication life-cycle management and the bottom-up retrieval of
information of the system state and resource usage. In MEC,
the APIs and interactions netween system components follow
the Representational State Transfer (REST) architectural prin-
ciples. The standardization does not address implementation
details of the system components. No implementation of the
reference architecture exists yet, but a set of the standardized
APIs is under development.

The ETSI MEC system reference architecture is illustrated
in Figure 1, with the MEC system components depicted in
white, the user and application-specific components in gray
and the microservices, as described in this paper, in black. Ap-
plication requests from the user equipment (UE) are received
through a portal that authenticates the requests. The system
Orchestrator is the sole authority for system orchestration and
resource provisioning for the applications. The Orchestrator
is expected to have complete real-time view over the system
state. With the help of system services, it validates the UE
requests with regard to available resources and services in
hosts and manages the request handling, e.g. application in-
stantiation, relocation or termination. The Platform Managers
manage the operation of a set of edge hosts under their control.
With the Orchestrator, the managers configure the hosts in the
platform to fulfill the application requests, e.g. launching the
virtualized application packages and their required services in
the selected hosts. The actual package deployment, e.g. mi-
croservices, is handled by the virtualization infrastructure with
components in the platforms and hosts. The platform managers
are responsible for collecting and sending information of their
state to the Orchestrator that uses it in the system orchestration.
The edge hosts are responsible for managing the execution
of the assigned applications and services, with the real-time
knowledge of local environment characteristics, which they
receive through the MEC system APIs. Examples of such APIs
include the Location API, that can be used for device location
tracking, and Radio Network Information API that provides
information about the measured network conditions.

A. Microservices

Server-side applications have been traditionally developed
as monoliths [3] that are difficult to maintain and evolve, due
to the internal complexities of the software. Their deployment
is resource consuming, which limits their feasibility and
scalability as a solution for IoT systems. Microservices have
emerged to address these issues through the modularization of
the application logic into a set of independent processes, which

can be deployed as loosely-coupled service components into
the hosts [3]. The resulting distributed architecture becomes
more autonomous and flexible, as these components can be
developed and deployed independently. Scalability can be
increased through a variety of deployment options for small-
scale components. Therefore, microservices are a promising
paradigm for design, implementation and deployment for dis-
tributed IoT services [4]. Challenges in their operation include
the orchestration of a set of microservices and in handling
possible down times and cascading of faults. However, these
issues can be addressed with design patterns [4].

Currently, there is no established practise for microservice
development, as the paradigm has emerged from good prac-
tises in software business [4]. Each microservice can be devel-
oped in isolation with a variety of programming paradigms and
available technologies that address the particular problem. For
distributed services, microservices have adopted the service-
oriented architecture paradigm, while communicating through
lightweight APIs, e.g. the REST paradigm [4].

Containers have emerged as an implementation technology
for microservices, providing a lightweight alternative to vir-
tualize cloud applications particularly at the edge, where VM
deployment is resource consuming [2]. A container is a self-
contained application-specific functionality, and possibly its
data, in an executable form that can be deployed as a single
package. Typically, containers include Web servers to facilitate
interactions and collaboration with their execution environ-
ment. The performance of containers has been shown similar
to the bare-metal application execution in servers, where the
instantiation of containers is faster than the corresponding
VMs [6]. In this, work we utilize Docker containers to build
the microservices for the edge system.

ETSI MEC [7] sees microservices as a tool for parti-
tioning monolithic applications into a set of loosely-coupled
distributed components. Such an architecture is expected to
facilitate dynamic tailoring during the application execution.
However, increased modularization may also increase the
orchestration and system management load. In MEC, UE’s
connect through gateways to the microservices running in the
edge host.

B. Service modeling and design

According to the different definitions in the state-of-the-art,
an IoT service can be seen as an interface enabling contextu-
alized interactions among system components. To exploit the
potential and to speed up development in IoT systems, service
modeling as a fundamental step and has been faced from
different perspectives. As reported in [8], IoT services have
been modeled according to workflow specifications, business
processes, and modeling languages and ontologies. While
the first three are operational approaches, aiming to support
the service validation, verification and simulation, the last
one provides high-level descriptive representations of both
functional and non-functional properties of services. Further,
software agent-based computing has been reported for the
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Fig. 1: Simplified MEC system architecture with hierarchical microservice deployment.

modeling and design of MEC and, in general, edge services
in [9, 10].

In particular, the opportunistic IoT service model [11],
provides 1) a service profile that specifies functionality and
its static and dynamic properties, e.g. description, category,
dependencies, QoS parameters and provisioning rules and
constraints, and 2) a service model that details the inputs
and their preconditions, outputs and effects of the processes
that implement the service logic. With this information, a
service can be accurately described, automatically composed,
discovered and consumed. Moreover, such a comprehensive,
flexible, context-aware and technology-agnostic modeling fits
different IoT application scenarios and fosters service design
and implementation independently from a specific computing
paradigm, as exemplified for edge and aggregate computing
in [11, 12].

C. User mobility analysis

Mobility analysis states, straightforwardly, the tracking and
prediction of user movement trajectories to optimize the
system operation [13, 14]. Applications for mobility analysis
include location-based services for IoT and edge computing,
where the analysis aims to find patterns and point-of-interests
in the user trajectories.

Traditionally, mobility prediction is often modeled as the
connectivity probability according to the user movement [13].
Such large-scale data analysis of combined user device con-
nections and applications, e.g. social media check-ins [14], re-
quires both wide data sets and back-end services in clouds with
possible privacy violations. With currently available location-
aware UEs, accurate tracking services have become available,
but such approaches have been found resource consuming [15].

In edge computing, mobility prediction aims for optimizing
both the communication and edge application performance in
the opportunistic IoT environment in large scale [13]. For
example, edge-based location- and context-aware crowdsens-
ing solutions have been developed through microservices [16],

mobility enhanced Web-integrated smart objects [10] and with
autonomous software agents [17].

III. USER MOBILITY ANALYSIS FOR MEC

As a case study, we design and implement a microservice-
based distributed Mobility MicroService (MMS) as a MEC
service. The purpose of MMS is to provide refined information
about user trajectories with accuracy of one second, based on
UE connections to the edge system. In MEC, the trajectories
are identified with the information provided by the Location
APL

The three-tier architecture of the MMS is illustrated in
the Figure 1, where the depicted microservices represent the
MMS instances. At the system level, mobility information is
beneficial for the orchestration of the whole MEC system,
aiming to maintain system and application performance with
regard to the current UE locations and available resources. On
the platform level, mobility information is useful for managing
the deployment and execution of applications and services in
its hosts, e.g. application component placement and relocation
in response to the UE mobility. At the hosts, the information
is used to maintain the expected QoS for the UEs.

Such a service architecture requires data processing in
all tiers, which distributes the service execution load across
the system and increases service responsiveness for different
purposes. This is useful to address the opportunistic nature of
edge systems with a service resolution metric, e.g. accuracy
vs latency [18]. Placement of an MMS instance to the host
level facilitates low latency, but with limited accuracy due to
locality, close to the UEs and their corresponding edge appli-
cations. It is apparent that system and platform level MMS
needs to process much more data than the host level MMS,
which limits the possible component placement scenarios.

Each MMS instance collects UE session data from the
infrastructure devices, e.g. base stations or access points (AP),
under the control of its host. The geographical locations of the
infrastructure devices are known, thus can be used as coarse



estimations of the locations of the UEs. Each instance main-
tains a multidimensional data array, which contains the number
of detected UE movement actions, e.g. handovers between
origin and destination APs. The array is further divided on
each observed time scale (minute, hour, day of week, day,
month, year). The resulting array is thus 8-dimensional (O x
D x min x h x wd x d x m X y), where the cell values
are cumulative count of movement actions in the time scale.
As an array, the data are computationally straightforward to
process along the dimensions, e.g. to summarize movement
actions in each AP, host, geographical area, etc., on different
time scales. Although the actual data analysis algorithm is the
same in all tiers, the number of dimensions, that each instance
is capable of handling, varies according to resources and its
position in the system hierarchy.

A. Microservices-based design of MMS

Today, microservices are typically designed by domain
experts, with focus on the distribution and role-based en-
capsulation of the functionality. The preferred design and
implementation model of microservices is containerization,
where each functionality of the service is developed as a
single container [4], leading to a distributed microservices
architecture. The distributed service logic is expected to follow
the service-oriented architecture principles, providing loose
coupling and isolation. For edge computing, microservices
need to be implemented and configured to operate atop the
available virtualization technologies in compliance with the
edge system services. Due to the heterogeneity of software
and hardware platforms, and to extend their interoperability, a
set of adapters are typically needed for integration to the edge
system. The collaboration between microservices is commonly
based on Web technologies [4].

The MMS instance architecture is modularized into four
microservices, as illustrated in Figure 2, namely Web User
Interface, Mobility Trace Analysis, Mobility Prediction and
Visualization. The Web-based user interface (UI) operates as
the front-end to submit trajectory or prediction queries and
visualize the results in a Web browser. The Mobility Trace
Analysis service collects data from the UEs and updates its
mobility data accordingly. The Mobility Prediction service
further analyses the data to calculate the probabilities of
user movements based on the given parameters, e.g. a set
of APs, by following the traditional mobility modeling [13].
The Visualization microservice compiles the map for the
visualization of the data analysis results.

These MMS microservice roles are purposedly designed in
a way that each requires different computational and commu-
nication resources, including interactions, data analysis and
collaboration with an external Web service. Moreover, such a
design exemplifies an extendable microservice in MEC, where
the functionality of each microservice complements each other.

For the modeling of distributed MMS for MEC, we envision
the opportunistic service modeling [8, 11] that is based on
a service profile, detailing the service functionality and its
properties, and service model, that details the service pro-
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cesses as microservices. Such model is suitable for supporting
microservice-based edge service implementation, due to the
conceptual alignment of the service profile and model and
the MEC service and application contextual information as
defined in the MEC specifications. However, the details of
MEC specifications are out of the scope of the paper.

Thus, for each MMS microservice, a MEC service con-
figuration is created that describes the service content, the
interfaces it exposes, its operational rules, the required other
services and the requirements for computational power, data
storage and networking. According to the configuration and
available edge resources, the Orchestrator instructs the deploy-
ment and instantiation of each MMS microservice instance as
an independent system component in the MEC hosts.

B. Distributed MMS implementation

Each microservice is realized as a single container, which
internal architecture is illustrated in Figure 3. Alike all ser-
vices on the MEC system, the microservices are expected to
comply with the REST principles in their interactions with the
MEC system services and each other, through a Web server.
Data processing algorithms are needed to provide the service
content. A file system is needed storage and sharing of data
between the microservices.

The four MMS microservices are implemented as follows.
Their architecture is depicted in Figure 3. A R base, based on
Debian, is needed to deploy additional R software. The front-
end container hosts the Web User Interface that is implemented
with Shiny Web server for R. The mobility data analysis
is done in the two analysis containers with R scripts that
access the data with Data.Table R package. Docker Volume is



mounted as a distributed file system, enabling seamless sharing
of the data between microservices.

The Mobility Trace Analysis microservice identifies sets of
unique movement pairs, i.e. origin and destination APs, and
calculates the total amount of such actions in the data set
during the given time period. The resulting data is sliced up
to sets of 800 movement actions to speed up request handling
with parallelized processing through the service logic. The
visualization container uses Google Maps as the remote Map
Service, requiring two specific R packages for map handling
(ggmap and ggplot). The size of the front-end container is 1.63
GB and the size of the three other containers is 1.1 GB each.
The biggest individual component is the R base (667 MB).

To replace the MEC Location API, we utilize the mobility
data set provided in [19]. The data set contains the complete
session data, with one second accuracy, of connected UEs
in 1300 WiFi APs in the public city-wide panOULU WiFi
network in Oulu, Finland, collected during the years 2007-
2015. From the complete data set, the UE session data of 218
APs in the expanded city centre area (2km x 2km), during
February 3rd 2015, was selected for the MMS implementation.

To utilize the microservices with MEC, service descriptions
and configurations from the design phase are needed. MEC
service information contains the assigned service URI, its
descriptor, possible dependencies to other services, functional
requirements such as latency, computational power, memory,
data storage and data traffic rules. We omit this information
from the implementation presented in this paper, due to lack
of a real MEC implementation. This information is then used
by the Orchestrator to assign and instruct on the deployment
of the service into available MEC hosts, with the assistance
of the platform manager.

The expected placement of the MMS microservices, as illus-
trated in Figure 2, is the following. Mobility Trace Analysis,
Prediction and Visualization microservices operate on edge
system components with sufficient computational capacity and
need an access to the MEC Location API and to a remote Map
Service. The Web UI microservice placement is left open, but
it can be deployed for example on edge hosts, remote servers
or to an external cloud platform for global access.

IV. EVALUATION

To illustrate the MMS service results, Figure 4 shows the
user movement patterns with corresponding probabilities from
an APs to other APs at one hop distance, as identified from
the example data set, during 8am - 9am in February 3rd 2015.

To evaluate the feasibility of the distributed MMS, in
comparison with a monolithic single-container version, we
collected the MMS service request latencies in both implemen-
tations where the functionality is the same. A service request
in a MMS instance calculates the movement actions and the
resulting predictions in a selected set of APs, corresponding to
different geographical areas in a city and visualizes the results
as a Web service content in a map that is fetched from a remote
map service. The selected areas roughly correspond to the
three-tiered MMS instance deployment in a MEC system. As

Pokkisenvayla

65.0150 -
Elba

Kiikeli

65.0125 1
MERITULLI/Z,

KUUSILUOTO §
65.0100 -

65.0075 -

ETU-LYOTTY

' '
25.460 25.465

Map data ©2019 Google

' D
25.475 25.480

25470

Fig. 4: Visualization of a movement prediction.

shown in Figure 5a, an area with more than 150 APs represents
the MEC system that covers a city centre (about 2km x 2km).
An area with 50-100 APs represents a MEC platform that
covers several blocks. An area with up to 20 APs represents
the area covered by a single MEC host, corresponding to a
block in the city.

The MMS containers were instantiated on two computers
for comparison of service request handling latencies: (1) a
desktop PC (Intel i5-7600K CPU, 3.79 GHz, 16 GB RAM) and
(2) an Asus R558U laptop (Intel i5-7200U CPU, 2.71 GHz, 8
GB RAM). The measured latencies are shown in Figure 5b.
It can be observed that at MEC host level, such a distributed
MMS handles service requests, in a small geographical area,
with latencies up to a few seconds, e.g. one second in desktop
PC-based host and three seconds in a Laptop-based host.
The latency difference between the distributed and monolithic
implementations is observed to be from a half a second to
two seconds in the desktop PC, depending on the size of the
controlled area. In the Laptop versions, the latency difference
is about 1-3 seconds in all areas.

V. DISCUSSION

In this paper, the microservices paradigm is utilized to build
a modularized and distributed user mobility analysis service
on an edge computing platform, exemplified by ETSI MEC.
For seamless integration, the microservices are designed and
implemented according to the MEC practises, e.g. comply with
MEC service configurations, follow REST principles and use
the MEC Location API. As demonstrated, the existing IoT
service modeling and design approaches provide formalized
methods and tools for realizing microservice-based edge ap-
plications. With microservices, the main design factors include
computational, data and network resource requirements, de-
pendencies on other services, deployment costs and overall
distributed maintainability [4].

Container-based microservices have been demonstrated to
be a feasible lightweight option for edge application imple-
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mentation. There is no clear definition of how “small” a
microservice functionality should be [4], but each implements
a function that is integrated into a complete service logic that
is extendable with minimal effort in MEC. Moreover, each of
the presented MMS service components can be developed and
maintained in isolation and deployed independently.

The presented latency evaluation shows that such a dis-
tributed service implementation meets the low latency re-
quirements of edge applications, even with low capacity edge
hosts. The MMS implementation relied on R based software
components, where some operational overhead is expected
in comparison with a bare-metal implementation. Neverthe-
less, such measurement results are largely application- and
implementation-specific, further depending on the skills of
the programmers and availability edge system resources. For
example, an industry edge host typically consists of server
racks with tens of cores and hundreds of gigabytes of memory.

Regarding the interactions between the microservices, the
latency measurements show that the selected virtualization
technology does not introduce significant management over-
head latency in such an application. However, network delays
are to be expected when the operation is distributed across
edge hosts, where typical edge infrastructure is required to
have a high-speed Internet connection between the compo-
nents.

VI. CONCLUSION

This paper demonstrated the design and implementation of
an edge service logic with distributed microservices for an
edge system. The integration of microservices paradigm, a
lightweight virtualization technology and a standardized edge
computing system provides a solid background for further
developments of distributed IoT applications and services for
edge computing. With the presented evaluation, the contribu-
tions of this paper support the idea of modularization of edge
service logic with microservices that are deployed to the edge
system components, even with low resources.

The presented user mobility analysis service is being de-
veloped with an open source-based 5G edge testbed [20] at
the premises of the University of Oulu, Finland. Moreover,
the development framework provided by opportunistic edge
service modelling [11], large-scale edge simulation platform
[12] and the real-world 5G testbed facilitates future develop-
ments of distributed microservice prototypes and their detailed
evaluation.
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