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Abstract—Network Function Virtualization (NFV) ecosystem
enables the automation of deployment and scaling of softwarized
network services (SNSs), thus reducing their operational expen-
ditures. This enables operators to handle workload fluctuations,
to keep the desired performance, with great agility and reduced
costs. However, to realize the automation of such management
practices, it is needed to determine the amount of required re-
sources to allocate the SNS so that its performance requirements
are met. This problem is commonly referred to as resources
dimensioning problem. In this paper, we address the derivation of
a closed-form expression for the optimal resources dimensioning
of an SNS in terms of cost or energy efficiency. The performance
requirement considered for the SNS is a limit on its mean
response time. The performance model considered for the SNS
is practical and accurate. The usefulness of the derived closed-
form expression is successfully validated by means of simulation.
The scenario considered for the validation is a video optimization
chain located at the SGi-LAN of a mobile network.

I. INTRODUCTION

Network Functions Virtualisation (NFV) paradigm is envis-
aged as a cornerstone to build future networks. NFV decouples
network functions (e.g., firewalling, load balancing, mobility
management, deep packet inspection, etc.) from proprietary
hardware enabling them to run as software components, which
are called Virtual Network Functions (VNFs), on virtualiza-
tion containers (e.g., Virtual Machines (VMs) and OS-level
containers) [1]. Among its benefits, NFV promises to enable
network operators the automation of the management opera-
tions and orchestration of the future networks, thus reducing
the Operating Expenditures (OPEXs) and accelerating time-
to-market of new services [2]–[5].

Particularly notable among the envisioned management
practices facilitated by NFV are the automation of deployment
and scaling of network services [5], [6]. This is thanks to
VNFs can be instantiated on-demand and at different network
locations without requiring on-site personnel to deploy new
hardware as needed traditionally. In this way, the resources
allocated to the different network services can be automatically
increased or decreased, thus enabling network operators to
handle workload fluctuations to keep the desired performance
with great agility and efficiency while reducing the total cost.
However, to realize such a scenario, it is required to define
solutions to determine when and how much resources have to
be provisioned to a given network service so that the target
performance metrics be always met. This problem is typically
known in the literature as Dynamic Resource Provisioning
(DRP).

Figure 1 depicts a possible DRP solution for network
services. A similar architecture was considered for the DRP
of Internet applications with successful results in [7]. It com-

Fig. 1. DRP solution for a network service.

bines proactive and reactive provisioning mechanisms. The
proactive mechanism is executed synchronously every ∆t units
of time. Conversely, the reactive provisioning might be run
asynchronously when it detects the workload predictor made
a significant prediction error. In either case, the dimensioning
module will be invoked to estimate the amount of required
resources for a given workload so that the performance re-
quirements are ensured.

In this context, the present work derives a closed-form
expression for the optimal resources dimensioning of a Soft-
warized Network Service (SNS) in terms of cost or energy ef-
ficiency. The performance requirement considered for the SNS
is a limit on its mean response time. To that end, we consider a
practical and accurate performance model for the SNS. Under
this consideration, we show that the formulated problem of
a network service is convex and find its explicit solution by
using the method of Lagrange multipliers. The usefulness of
the derived closed-form expression is successfully validated
through simulation. The scenario considered for the validation
is a video optimization chain located at the SGi-LAN of a
mobile network.

The remainder of the paper is organized as follows. Section
II reviews the related literature. Section III includes the system
model and formulation of the resources dimensioning problem
of an SNS. Section IV describes a simple but practical and
accurate performance model for SNSs. Section V contains the
closed-form expression to perform the resources dimensioning
of an SNS. Section VI describes experimentation carried out
and the achieved results which verify the usefulness of the
derived expression. Finally, Section VII concludes the paper.

II. RELATED WORKS

The DRP solutions can be broadly categorized into rule-
based and model-based approaches [8]. The rule-based ap-



proaches, such as those proposed in [9] and [10], are based on
reinforcement learning, statistical machine learning, and fuzzy
control. On the other hand, the model-based approaches are
based on control theory and Queueing Theory (QT). Compared
to rule-based approaches, model based approaches require
more domain knowledge, but can provide Quality of Service
(QoS) guarantees, while ensuring the system stability [8].
Here we will focus on the resources dimensioning, which is
a paramount component of DRP solutions, of the softwarized
network services following a model-based approach [11]–[20].

In [16], [17], the authors employ a Jackson’s network to
model a three-tiered virtualized Mobility Management Entity
(vMME). They use an exhaustive search methodology to
perform the dimensioning of the number of vMME worker in-
stances. However, the jointly dimensioning of many resources
following a brute force approach is expensive in terms of
computational effort. In [21], the authors provide a useful
simple model based on time series to predict the computational
resources demand in the Evolved Packet Core (EPC).

There are several heuristics proposed in the literature to
tackle the Resources Dimensioning (RD) problem of soft-
warized network services [11], [13], [18], [20]. In [11], the
authors formulate and propose a heuristic to solve the joint
optimization problem for the Service Function Chain (SFC)
routing and VNF instance dimensioning. The objective of
the problem is to maximize the number of accepted SFC
requests. In [13], the authors formulate the RD problem to
minimize the expected waiting time of service chains. The
authors employ a mixed multi-class Baskett, Chandy, Muntz,
and Palacios (BCMP) network to model a service chain and
solve it by using the Mean Value Analysis (MVA) algorithm.
Although the authors prove the convexity of the problem,
its solution cannot be found because of the required closed
queuing network calculation. Then, the authors propose a
heuristic method to address the issue. In [18], [20], the authors
propose a heuristic to carry out the joint RD of the Control
Plane (CP) entities of a virtualized EPC. The heuristic requires
an auxiliary methodology to predict the vEPC response time
for a given setup. To that end, the authors propose a holistic
QT-based model for the Long Term Evolution (LTE) CP. They
evaluate their heuristic proposal in the context of planning [20]
and DRP [18].

There are also examples of the use of metaheuristics to
find a solution to the RD problem in the context of NFV. In
[19], the authors propose a genetic algorithm to solve the RD
problem. The algorithm tries to minimize the service blocking
rate and CPU usage in Cloud/Mobile Edge Computing (MEC)
Radio Access Network (RAN)-based 5G architectures.

Finally, some works find the optimal solution for the RD
of the softwarized network services problem [12], [14], [22],
though they are tailored for specific use cases. In [12], the
authors formulate the RD problem of a Content Delivery
Network (CDN). Notably, they aim at minimizing the amount
of resources (virtual CPUs) under capacity constraints so that a
given QoE for the end user is met. To solve this problem, they
propose a novel algorithm. In [22], the authors develop a bi-
class (e.g., machine-to-machine -M2M- and mobile broadband
-MBB- communications) queuing model for the vEPC. The CP
and Data Plane (DP) of the vEPC are respectively modeled
as M/M/m/m and M/D/1 nodes. The authors assume that the
Mobility Management Entity (MME) and Serving Gateway

(SGW)/Packet Data Network Gateway (PGW) nodes run on
the same Physical Machine (PM). They formulate and solve
the problem of distributing the PM resources among the
MME and PGW nodes in order to minimize the blocking
rate of M2M sessions. The authors in [23] investigate the
fairness-aware flow scheduling problem for network utility
maximization. As part of this work, the authors model the
computational resources demanded by the flows in a chain
of VNFs. In [14], the authors propose a model for sizing
a Cloud-RAN infrastructure. More precisely, they suggest
and validate by means of simulation the bulk arrival model
M[X ]/M/C to predict the processing time of a subframe in a
Cloud-RAN architecture based on multi-core platform. Based
on this model, the authors compute the required number of
cores C to be allocated to the Cloud-RAN as the minimum
value of C so that P[T > δ ]< ε , i.e., the probability that the
subframe processing time exceeds a given value is acceptable.
In the same context, the authors in [24] propose a base station
agnostic framework for creating wireless slices in a cellular
RAN. As part of this work, the authors provide a model to
estimate the processing load of the Baseband Unit pool.

III. SYSTEM MODEL AND PROBLEM FORMULATION

Let us consider a Softwarized Network Service (SNS)
as an arbitrary composition of VNFs. Each VNF, in turn,
might consist of one or several Virtual Network Function
Components (VNFCs), each of which provides part of the
VNF functionality, working together. Each VNFC might have
several instances, each of which runs as a software component
in an isolated Virtualization Container (VC) (e.g., VM or OS
container). The packets enter and leave the SNS through its
external interfaces. The different packet flows served by the
SNS may follow any arbitrary path across the VNFCs. Here,
we assume that the load is distributed among the instances
of a given VNFC in accordance with their computational
capacities.

The PMs that host the VCs are interconnected through
a set of network devices. The packets consume resources
(e.g., CPU, RAM, Disk I/O, network I/O, etc.) of both PMs
and network devices during its lifetime in the SNS. We
will consider that VNFCs execute CPU-intensive tasks for
processing the packets. Under this assumption, the CPU is
the resource acting as the main bottleneck at the VNFCs
instances. In this context, the resource dimensioning problem
of the different SNS VNFCs is to determine how many CPU
cores have to be allocated to the distinct VNFCs so that a set
of performance requirements are met given an SNS workload.
Next, we will formulate formally this problem considering that
the mean response time of the SNS T has to be bounded (i.e.,
T ≤ T max) as the only performance requirement.

Let us assume there are J different VNFCs that make up
the SNS and let m j denote the number of CPU cores to be
allocated to the VNFCs j ∈ [1,J]∩N so that T ≤ Tmax. The
VNFC resource dimensioning problem is formally formulated
as follows:

minimize

(
J

∑
j=1

α j ·m j

)
(1)

where α j is a cost associated with the processing instances
allocated to the VNFC j (to make the problem more generic).

Subject to :
C1 : T ≤ T max (2)



The decision variables of the optimization problem are m j∀ j ∈
[1,J]. Objective (1) intends to minimize the economic cost
or the energy consumption depending on the meaning of α j.
Constraint (2) ensures that the SNS mean delay T is below a
given threshold T max.

IV. PERFORMANCE MODEL FOR SNSS

This section describes the performance model considered
for the SNSs. The model is based on QT and allows us to
analytically estimate the mean response time of an SNS T .
T is formally defined as the expected delay experienced by
an arbitrary job during its stay in the SNS. A job might be
a single packet or a set of packets depending on the specific
scenario.

The pool of CPU cores allocated to the VNFC j is modeled
as a set of m j parallel G/G/1 queues as in [7]. The service
process of each CPU core (or G/G/1 node) is described by
its mean service rate µ j and Squared Coefficient of Variation
(SCV) of the service time c2

s j. The aggregated arrival process
to the pool of CPU cores of the VNFC j is described by
the mean arrival rate λ j and SCV of the inter-arrival times
c2

a j. These parameters (µ j, c2
s j, λ j, and c2

a j) are assumed to be
known. In practice, this can be realized by using monitoring
and predictive techniques. The workload of a given VNFC is
distributed equally among its CPU cores. The mean response
time of the pool of CPU cores of the VNFC j, T j, is
approximated as:

T j =
c2

s j + c2
a j

2
·

ρ j

µ j · (m j −ρ j)
+

1
µ j

(3)

where ρ = λ j/µ j is the utilization factor of the CPU core. The
above expression relies on the approximation employed in [25]
to estimate the mean response time of a G/G/1 queuing node
when ca j ≥ 1.

Besides the CPU cores allocated to the VNFCs, let us
assume that there are K additional resources allocated to the
SNS. Each of these resources could also be modeled as a
G/G/1 node, though this consideration does not affect the
subsequent analysis and a completely different approach could
be used instead. Under this consideration, the response time
of the resource k, θk can be approximated as:

θk =
c2

sk + c2
ak

2
· ρk

µk · (1−ρk)
+

1
µk

(4)

where parameters µk, c2
sk, c2

ak, and ρk are respectively the
service rate, SCV of the service time, SCV of the inter-arrival
times, and the utilization factor of the resource k.

The mean response time of the SNS T can be computed as:

T =
J

∑
j=1

Vj ·T j +
K

∑
k=1

Vk ·θk +Tprop (5)

, where Vj and Vk respectively denote the visit ratio of the
V NFC j and the resource k, and Tprop is a parameter to take
into account the propagation delays. A visit ratio is defined as
the average number of visits to a given node by an arbitrary
job during its lifetime in the SNS.

For the sake of illustration, Fig. 2 shows an example of
network service and a possible queuing theory model to cap-
ture its behavior. Specifically, for each VNF, the bottlenecks
considered are the processor and the Network Interface Cards
(NICs). Observe that we are assuming there is one NIC
associated with each VNF exposed interface.

Fig. 2. Example of QT model for a given SNS.

V. OPTIMAL RESOURCE DIMENSIONING OF SNSS

This section includes the closed-form expression for the
VNFCs resources dimensioning, which was derived by using
the method of Lagrange multipliers. The problem formulation
and the SNS performance model considered are those respec-
tively described in Sections III and IV.

Let L (mi, ...,mJ ,γ) denote the Lagrangian associated with
the dimensioning problem formulated in Section III, which is
given by L (mi, ...,mJ ,γ) = f (mi, ...,mJ)+ γ ·g(mi, ...,mJ):

L (m j ∀ j ∈ [1,J],γ) =
J

∑
j=1

α j ·m j + γ ·
(
T −T max

)
(6)

where γ is the Lagrange multiplier.

Corollary 1. The resource dimensioning problem defined by
(1) and (2) is convex considering the SNS performance model
described in Section IV.

Proof: The Hessian matrix of the Lagrangian
∇2L (mi, ...,mJ ,γ) is diagonal as f (mi, ...,mJ) and
g(mi, ...,mJ) are given by the sum of J terms, each of
which is a function of only one decision variable m j of
the problem. The jth element of the principal diagonal of
∇2L (mi, ...,mJ ,γ) is given by:

∇2L j, j =
γ ·Vj · (c2

s j + c2
a j) ·ρ j

µ j · (m j −ρ j)3
(7)

The parameters c2
s j, c2

a j, ρ j, and Vj are positive by definition1

and γ is also positive as it can be observed in (12). Moreover,
m j > ρ j, otherwise, the system would be unstable. Then, ∇2L
is definite positive and the problem is convex.

Next, we can find the critical points m∗
j by solving

∇L (m j ∀ j ∈ [1,J],γ) = 0, where ∇L denotes the gradient
of the Lagrangian.

Theorem 1. Considering the resource dimensioning problem
defined by (1) and (2) and the SNS performance model
presented in Section IV, the optimal number of CPU cores
m∗

j to be allocated to each VNFC j of a given SNS so that its
mean response time be lower than T max is given by:

m∗
j =

⌈√
β j ·

J

∑
k=1

αk ·
√

βk +ρ j

⌉
(8)

where

β j =
Vj · (c2

s j + c2
a j) ·ρ j

2 ·α j ·µ j ·
(

T max −θ −∑J
k=1

Vk
µk

) (9)

1c2
s j and c2

a j can equal zero simultaneously in deterministic systems, but in
such case the optimal solution of the problem can be computed easily



Fig. 3. The scenario considered in the experimental setup.

Fig. 4. Flow diagram for HTTP web traffic.

The above expressions allow us to determine the number
CPU cores has to be allocated to each VNFC j of the SNS
for minimizing the economic cost or the energy consumption,
while the maximum response time of the SNS is guaranteed
(i.e., T ≤ T max). Please refer to the appendix for the proof of
Theorem 1.

VI. RESULTS

A. Experimental Setup

We verified the correctness and usefulness of (8) for the
scenario shown in Fig. 3. Specifically, we considered a typical
Service Function Chain (SFC) deployed on the SGi-LAN of
mobile networks for video optimization as described in [26].
The SFC consists of four essential service functions:

i) a Load Balancer (LB) that separates HTTP over TCP port
80 from the rest of traffic and distributes the HTTP load
among a pool of proxies,

ii) a steering proxy that redirects HTTP traffic.
iii) a Deep Packet Inspector (DPI) which checks whether a

given HTTP GET or RESPONSE is video content, and
iv) a Transcoder (XCDR) which converts videos to an ap-

propriate format on the fly.
The flow diagram considered for requesting, downloading,

and transcoding a given chunk of video, which is encapsulated
in an HTTP RESPONSE, is depicted in [26, Fig. 8]. Figure 4
shows the flow diagram considered for processing non-video
HTTP traffic.

We developed a simulator of the video optimization chain
shown in Fig. 3 running in a virtualized infrastructure. The un-
derlying physical infrastructure comprises 40 PMs or servers,
each of which with 16 physical CPU cores, interconnected
through a 10 Gbps Ethernet network with a tree topology and
two layers of switches. The resources of the video optimization
chain are adapted according to the demand by using the
proposed solution.

TABLE I
TRAFFIC MODEL SETUP.

Web browsing
Probability of a web session 0.99
HTTP GET Size 600 Bytes
HTTP RESPONSE Size 810 kBytes
Mean number of HTPP GETs per
user session

230

Video streaming
Probability of a video session 0.01
HTTP GET Size (Video) 800 Bytes
Mean HTTP RESPONSE Size be-
fore transcoding (Video)

131250 Bytes (1 second,
1280×720, 25 fps, H.264)

Mean HTTP RESPONSE Size af-
ter transcoding (Video)

38750 Bytes (1 second,
426×240, 25 fps, H.264)

Mean number of chunks per user
session (Video)

231 (1 video per session, video
duration distribution from [27])
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Fig. 5. Experimental service processes per CPU instance.

The workload was synthetically generated using the web
browsing and HTTP video streaming traffic models, with some
adaptations, included in [17]. Table I include a summary of
the main characteristics of the traffic models considered.

Figure 5 depicts the Cumulative Distribution Functions
(CDFs) of the LB, proxy, and XCDR service times. These
curves were measured experimentally and represent the dis-
tribution of the service time required by a single process-
ing instance to process a given HTTP message (GET or
RESPONSE). Specifically, the processing instance considered
in the setup was an Intel(R) Core(TM) i7-4600U CPU @
2.10GHz. Figure 5 also includes the mean and SCV of the
depicted CDFs.

Observe that the CDF of the LB, proxy, and XCDR service
times present a ladder shape. This is because each service
function type has to carry out different processing tasks
depending on the kind of incoming HTTP message. For
the sake of illustration, the XCDR acts as a proxy for the
video HTTP GETs and performs transcoding for the video
HTTP RESPONSEs. This fact explains that the XCDR service
time distribution is a mixture of two different distributions,
one associated with the lightweight processing of the HTTP
GETs messages, and the other with the heavy processing of
transcoding.

Regarding the DPI service process, it was considered deter-
ministic (c2

DPI = 0). The DPI service time per HTTP message
was set to 3 ms considering that the DPI has to inspect the
video HTTP RESPONSEs in the depth of 10 packets along
with the measurements included in [28].

B. Resources Dimensioning Results

To validate the usefulness of (8), we carried out a set of
simulations for eight different workloads. The workload is



expressed as the incoming rate of HTTP GETs to the video
optimization chain. The performance requirement considered
was T ≤ 30 ms, which means that the video optimization
chain has a budget of 30 ms on average to serve an HTTP
message (e.g., HTTP GET or HTTP RESPONSE). The delay
measurement of 4 ·105 HTTP messages was considered as stop
condition for all the simulations. We observed that the system
achieved convergence (steady-state) comfortably with this stop
condition.

Table II includes the results of the above-mentioned set
of simulations. The number of CPU cores allocated to each
service function, which are included in the middle four
columns of Table II, were computed using (8). To guarantee
the correctness of the closed-form expression derivation, we
verified that CVX, a package for specifying and solving
convex programs [29], [30], achieved exactly the same results.
The mean response time of the video optimization chain
(see third column of Table II or Fig. 7) obtained for all
the simulations is below T max = 30 ms, thus validating the
usefulness of (8).

Fig. 7 depicts both the mean response time of the video op-
timization chain obtained by simulation (labeled as “Sim”) and
predicted by the performance model described in Section IV
(labeled as “Theo”). It also shows the relative error exhibited
by the performance model (the same data are also included in
Table II). The relative estimation error is below 18%, which
is acceptable compared with the QT standard methodologies
of analysis [31]. However, it should be noted that this error is
not only due to the performance model itself, but also to the
estimation error of the SCV of the aggregated arrival process
to each service function (see columns eight to twelve in Table
II and Fig. 8). Before launching a simulation, we knew neither
the mean arrival rates or the SCV of the arrival processes. In
a practical situation, there might be a workload predictor (see
Fig. 1) which provides these parameters for a given time based
on previous observations. To overcome this limitation of our
setup, we estimated those parameters. The arrival rates are
calculated easily and very accurately using the flow balance
equations and the traffic model setup. For the estimation of the
SCVs we used the methodology proposed in [25] considering
that the number of CPU cores m j allocated to each service
function j equals ⌈λ j/µ j⌉ (stability condition).

Figure 6 shows the impact of the load and the value of
the mean response time budget on the resources demand. As
expected, the more stringent is the performance requirement,
the more resources we need to allocate to the SNS to fulfill it.
The most interesting result observed in Fig. 6 is that there is a
point in the load where the demand of CPU cores shoots up.
We observed that this is because of the rest of the resources
consumed by the SNS start to exhibit a significant response
time (congestion). Specifically, in our case, some of the links
of the network that interconnects the PMs caused this behavior.
This result highlights the importance of the integration and
coordination of Software Defined Network (SDN) and NFV
paradigms.

VII. CONCLUSION

In this work, we have tackled the derivation of a closed-
form expression for the optimal resources dimensioning of an
SNS in terms of cost or energy efficiency. The performance
requirement considered for the SNS is a limit on its mean
response time. To estimate the performance of the SNS, we
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Fig. 6. The total number of CPU cores allocated to the video optimization
chain versus the load for different values of Tmax.

Fig. 7. SNS mean response time model validation.

have considered a simple but practical and accurate queuing
model. The usefulness of the derived closed-form expression
has been successfully validated through simulation. The sce-
nario considered for the validation is a video optimization
chain located at the SGi-LAN of a mobile network.

APPENDIX

This Appendix includes the proof of the Theorem 1
(see Section V). The critical points m∗

j of the SNS re-
source dimensioning problem can be found by solving
∇L (m j ∀ j ∈ [1,J],γ) = 0, where ∇L denotes the gradient
of the Lagrangian. This yields the following set of nonlinear
equations:

J

∑
j=1

Vj ·

(
c2

s j + c2
a j

2
·

ρ j

µ j · (m j −ρ j)
+

1
µ j

)
−T budget

J

∑
j=1

Vj ·
(

Wj +
1
µ j

)
−T budget = 0

(10)

α j − γ ·Vj ·
c2

s j + c2
a j

2
·

ρ j

µ j · (m j −ρ j)2

α j − γ ·Vj ·
Wj

(m j −ρ j)
= 0 ∀ j ∈ [1,J]

(11)

Where Wj denotes the mean waiting time at the CPU resource
of the VNFC j. Then, solving (11) for Wj and substituting it
in (10), and after solving (10) for γ , we get:

γ =
∑J

i=1 αi · (mi −ρi)

T budget −∑J
i=1

Vi
µi

=
∑J

i=1 αi · (mi −ρi)

T max −θ −∑J
i=1

Vi
µi

(12)

Then, by substitution of (12) in (11) and solving for m j ∈
N ∀ j ∈ [1,J], we finally get (8) and (9). Last, under stability
conditions and T max ≥ θ −∑J

i=1 Vi/µi, γ > 0 (see (12)). Then,
considering Corollary 1, the Karush-Kuhn-Tucker (KKT) con-
ditions are met and m∗

j ∀ j ∈ [1,J] is the global minimum of
the problem, thus concluding the proof of Theorem 1.



TABLE II
VALIDATION RESULTS OF THE CLOSED-FORM EXPRESSION FOR THE RESOURCES DIMENSIONING OF A VIDEO OPTIMIZATION CHAIN.

Mean response time Resources demand (# of CPU cores) Estimation error SCV arrival processes
Load (in HTTP GETs per second) Theo. Sim. ε LB Proxy DPI XCDR LB Proxy DPI XCDR

192 18.1 ms 20.5 ms 11.6% 1 1 1 2 10.5% 4.1% 26.2% 8.9%
383 24.8 ms 26.1 ms 4.8% 3 2 1 3 88.1% 20.4% 56.7% 8.0%
575 25.0 ms 26.7 ms 6.4% 3 3 2 4 8.2% 14.9% 2.6% 22.81%
767 24.7 ms 26.1 ms 5.5% 4 5 2 6 16.7% 4.0% 35.3% 14.7%
958 24.7 ms 26.3 ms 6.0% 6 6 3 7 6.0% 3.8% 16.2% 9.6%

1150 25.4 ms 26.3 ms 3.5% 8 8 4 10 5.4% 10.1% 27.3% 21.5%
1342 25.9 ms 22.1 ms 17.3% 57 62 20 81 2.1% 2.8% 34.4% 35.6%

Fig. 8. Estimation error of the SCVs of the HTTP messages inter-arrival
times at the different service functions.
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