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Abstract—Massive multiple-input multiple-output (MIMO)
systems and pilot reuse are essential ingredients for internet of
things (IoT) networks and massive machine-type communications
(mMTC). The large number of devices and the limited amount
of resources (time, frequency, and power) preclude the allocation
of orthogonal pilot sequences for users. We propose a pilot
reuse strategy based on channel charting to deal with the
pilot contamination in massive MIMO systems with spatially
correlated channels. In particular, we use channel charting as
a means to extract angular domain information from channel
covariance matrices and assign orthogonal pilots to users with
overlapping angle of arrival intervals. The simulation results
show that the proposed pilot reuse method significantly improves
the channel estimation performance and the symbol error rate
as compared to existing schemes.

I. INTRODUCTION

The evolving 5G and 6G networks will be the corner-

stones enabling the future internet of things (IoT) connectiv-

ity. Because excessive numbers of different devices will be

connected to the internet, technological solutions for massive

machine-type communications (mMTC) are required [1]. Mas-

sive multiple-input multiple-output (MIMO) technology is one

of the main enablers in 5G systems and beyond for capacity

enhancements including the connectivity of vast numbers of

things. It relies on the spatial multiplexing provided by the

large numbers of antennas to improve the spectral and/or

energy efficiency [2]. To exploit the massive MIMO features,

channel state information (CSI) is required at the base station

(BS). The CSI is typically acquired by uplink training. In other

words, the user equipment (UE) send known data symbol or

pilot sequences and the BS estimates the channel using the

received signal. In order to minimize the signaling overhead

and avoid the need for explicit downlink channel estimation,

time-division duplexing (TDD) is usually preferred over a

frequency-division duplexing (FDD) protocol. Thereby one

can exploit the reciprocity between the uplink and downlink

channels within a coherence block [3].

In mMTC, it is impractical to allocate orthogonal pilot

sequences for all the users as it would consume excessively

time and frequency resources due to the large number of

devices. One solution is to reuse the same pilot sequence

across different UEs, which can, however, lead to interference

between users sharing the same pilot. This problem is known

as pilot contamination and typically assumed to exist between

the neighboring cells of a cellular network [4]. As presented

in [5], the pilot contamination can be alleviated by exploiting

the spatial correlation of channels. The location information

of the UEs is used to perform pilot assignment to reduce the

pilot contamination in [6]–[8].

Li et al. [9] developed a location-aware pilot reuse algorithm

for a massive MIMO multi-cell scenario. They proposed first

to group the users within the cells to alleviate intra-cell

pilot contamination. Then, to mitigate inter-cell interference,

they match the groups for neighboring cells such that groups

sharing the same set of pilots do not reside in the same

direction. The main practical limitation of such location-aware

pilot assignment is the requirement of knowledge about UEs’

positions. This was overcome in [10], where You et al. showed

the feasibility of pilot reuse for massive MIMO cells with

correlated channels and proposed a pilot reuse strategy based

on the channel covariance without knowing the UEs’ positions.

Also, they derived a robust receiver, which takes into account

the degradation in channel estimation accuracy caused by the

pilot reuse. Their results show significant improvement in the

spectral efficiency as compared to the case where all users

have orthogonal pilots.

An alternative way for employing pilot reuse without know-

ing the exact UEs’ positions could be provided by a recent

framework, channel charting (CC), proposed in [11]. CC esti-

mates the positions of devices in an unsupervised manner and

maps the features obtained from CSI into a low-dimensional

chart, in which the relative positions of UEs are preserved.

The advantage of CC is that, after an initial training phase,

the positions can be retrieved and updated from CSI obtained

when estimating the channel, avoiding further overheads.

In this paper, we propose a CC-based pilot reuse algorithm

for massive MIMO networks where the number of users is

larger than the number of available orthogonal pilot sequences.

The main idea is to perform CC using angular domain features

such that users with similar angle of arrival intervals lie

near each other in the CC map. This angular information

is then exploited to perform greedy pilot assignment. Our

main contribution is the use of CC as a means to assign

the pilots. The main advantage lies in the fact that most

existing pilot reuse schemes require the knowledge of UEs’

positions, an assumption that can be impractical. Differently

from [10], which uses channel covariance matrices as input

to a greedy pilot allocation algorithm, we perform CC on

them, resulting in improved efficiency for our proposed pilot

allocation algorithm.



II. SYSTEM MODEL

We consider an uplink communication scenario with K
single-antenna UEs communicating with a base station (BS)

that is equipped with an M -element uniform linear array

(ULA). We further assume block flat-fading channels where

the channels are static within a coherence block, but can

vary from one block to another. Following the channel model

presented in [7], [12], the uplink channel vector for user k is

modelled as a superposition of L paths between the kth user

and the BS, which is given by

hk =
1√
L

L∑

l=1

βkαk,ler(θk,l). (1)

In (1), αk,l is the complex gain of the lth path, which

is modeled as an independent and identically distributed

(i.i.d.) complex Gaussian random variable with zero mean and

E{|αk,l|2} = 1. The large-scale fading coefficient for user k
βk ∈ C, is defined as

βk := bk(dk)e
−

j2πdk
λ , (2)

where bk(dk) ∈ R is the attenuation due to the path loss, λ
is the wavelength, and dk is the distance between user k and

the BS. A steering vector for the receiver ULA is of the form

er(θk,l) =
[

1, e−j2π∆r cos(θk,l), . . . , e−j2π(M−1)∆r cos(θk,l)
]T

(3)

where θk,l denotes the AoA of the lth path for user k at

the ULA, and ∆r is the normalized spacing between the

antenna elements [13]. The AoA θk,l is modelled as an

i.i.d. random variable with uniform distribution U(θmin
k , θmax

k ),
where θmin

k = θ̄k −
√
3σθ and θmax

k = θ̄k +
√
3σθ. Here,

θ̄k ∈ [π3 ,
2π
3 ] is the incident angle between the ULA and user

k, and σθ is the angular standard deviation, which specifies the

AoA interval Ak around the mean value θ̄k. The AoA interval

Ak = [θmin
k , θmax

k ] is defined as the set of possible angles of

the incoming multipath components arriving from user k.

We consider the widely accepted assumption that the chan-

nel is wide-sense stationary [5], [7], [11]. We further assume

that the channel covariance matrices are known at the BS1.

From (1), the channel covariance matrix for user k, denoted

as Rk ∈ C
M×M , is defined as Rk = E[hkh

H
k ].

Let xt = [xt
1, . . . , x

t
K ]

T ∈ C
K be the transmitted symbol

vector at time instant t. The corresponding received signal,

yt ∈ C
M , at the BS is given by

yt = Hxt + nt, (4)

where H = [h1, . . . ,hK ] ∈ C
M×K is the channel matrix, and

nt ∈ C
M is the noise vector at the M receiver antennas.

We model the noise as an i.i.d. complex Gaussian random

variable n ∼ CN (0, σ2
n), where σ2

n is the noise power. We

assume that all transmitted symbols have the same power, i.e.,

1In practice, an initial training phase is required to obtain the first estimate
for the covariance matrices. After this initial phase, we can keep updating Rk

with the estimated channel.

σ2
xt
k

= σ2
x, where σ2

xt
k

= |xt
k|2 is the transmit signal power for

user k at time instant t. Thus, the signal-to-noise ratio (SNR)

is defined as ρ = σ2
x/σ

2
n.

III. UPLINK CHANNEL ESTIMATION AND DATA

TRANSMISSION

The linear minimum mean square error (MMSE) receiver

optimally trades off between interference and noise to achieve

maximum signal-to-interference-plus-noise ratio (SINR) [13].

In this work, we deploy an MMSE-based receiver developed

in [10], which takes into account the channel estimation error.

A. Channel Estimation

At each coherence block, users transmit τ known symbols

(pilots) to the BS for channel estimation. It is a common

assumption that such pilot sequences, φm ∈ C
τ , m =

1, . . . , τ , are mutually orthogonal [5]. Herein, the pilot book

Φ = [φ1, . . . ,φτ ] ∈ C
τ×τ is generated using a Walsh-

Hadamard matrix, as proposed in [4], which satisfies the

orthogonality requirement, i.e., 〈φm,φn〉 = 0, ∀m 6= n.

Let K = {1, . . . ,K} represent the set of UEs and

T = {1, . . . , τ} the set of indices of available pilot se-

quences. The pilot sequence assigned to user k ∈ K is denoted

as xk = φπk
, where πk ∈ T . The set of UEs sharing the

same pilot sequence as UE k is denoted as Gk ⊆ K, i.e.,

Gk = {j | πj = πk, j ∈ K}.
The received pilot signal for channel estimation, Y =

[
y1, . . . ,yτ

]
∈ C

M×τ , can be written as

Y = HX+N (5)

where N =
[
n1, . . . ,nτ

]
∈ C

M×τ is the noise matrix and

X = [x1, . . . ,xK ]
T ∈ C

K×τ is the pilot signal matrix.

The MMSE estimate of the communication channel between

user k and the BS, hk in (1), is given as [10]

ĥk = RkQ
−1
k yd

k, (6)

where yd
k represents the decorrelated received signal for the

pilot sequence assigned to user k, i.e.,

yd
k =

1

σ2
xτ

Yx∗
k = hk +

∑

j∈Gk\{k}

hj

︸ ︷︷ ︸

Pilot interference

+
1

σ2
xτ

Nx∗
k, (7)

and Qk ∈ C
M×M is the covariance matrix of the received

signal as

Qk =

K∑

j=1

Rj +
1

ρτ
IM . (8)

The expression in (7) shows the degradation of channel

estimation accuracy caused by the pilot reuse. However,

according to [10], [14], when the number of BS antennas

tends to infinity, the array response vectors for UEs with non-

overlapping AoAs are orthogonal, thus, making it possible to

avoid pilot contamination between UEs with distinct AoAs.

As highlighted in [5], even though in practice UEs are not

completely spatially uncorrelated, we can minimize the pilot



contamination effect by assigning orthogonal pilot sequences

to UEs with overlapping AoA intervals, i.e., Ak ∩ Aj 6= ∅.

B. Uplink Data Transmission

For TDD systems, downlink and uplink channels are sym-

metric, i.e., the downlink channel can be inferred at the BS

from the uplink one [13]. In this paper, we concentrate on the

uplink data transmission phase and the design of the MMSE

receiver at the BS. Given the estimated channel Ĥ, we use the

optimum linear MMSE receiver derived in [10],

Wopt =

(

ĤĤH +

K∑

k=1

R
h̃k

+
1

ρ
IM

)−1

Ĥ, (9)

which takes into account the error covariance matrix R
h̃k

. Be-

cause the channel estimation error is independent of ĥk [15],

we can decompose the channel as hk = ĥk + h̃k, where

h̃k ∼ CN (0,R
h̃k
) is the channel estimation error for user k.

Thus, the error covariance matrix for user k is defined as [11]

R
h̃k

= Rk −RkQ
−1
k Rk. (10)

Therefore, the received symbol vector at time instant t, after

employing the MMSE receiver, can be expressed as

r̂t =
(
Wopt

)H
yt. (11)

IV. CHANNEL CHARTING BASED PILOT ALLOCATION

Next, we present the proposed channel charting (CC) aided

pilot reuse scheme for massive MIMO deployments. Prior to

the algorithm description, we present the principles of CC.

A. Channel Charting

The first step to build CC is to extract suitable features from

CSI. As reported by [11], the large-scale properties of multi-

antenna systems can be captured in the second order statistics

of radio environment, i.e., Rk carries information about large-

scale fading. The large-scale propagation effects are related

to the power dissipation through the propagation environment

and the presence of objects between the transmitter and

receiver. Thus, they vary over relatively large distances and

time scales as compared to small-scale fading [16]. This is

desirable for the features to be used by CC.

Our CC-based pilot assignment algorithm relies on angular

domain information of channel covariance matrices and aims

at assigning orthogonal pilots to users with overlapping AoA

intervals to avoid pilot contamination. To this end, we must

convert the information captured in the second-order statistics

to the angular domain. We perform this transformation by

computing the discrete Fourier transform (DFT) of the channel

covariance matrices (Rk). For a large-antenna system we can

approximate the eigenvectors of the channel covariance matrix

by the unitary DFT matrix D such that DDH = IM [14], [17].

Therefore, we define the feature associated with UE k in the

angular domain as

Ck = DRk. (12)

To improve the quality of features, the work [11] proposes

to take the absolute value of features; thus, we set C̃k =
|Ck|. This enhances continuity and trustworthiness measures,

which assess, respectively, whether neighbors in the high-

dimensional space remain neighbors in the low-dimensional

space and if false neighbors are introduced in the CC domain.

Let fk ∈ R
M2

represent the vectorized feature C̃k, such that

F = [f1, . . . , fK ]. After the extraction of the suitable features

F, we apply a function C that generates CC by mapping these

features to a low-dimensional domain, i.e.,

C : fk 7→ zk, (13)

where zk ∈ R
N is the point in the N -dimensional CC corre-

sponding to feature fk, where typically N ≪M .

The remaining step is to determine C in (13), which maps

the extracted features to a lower dimension embedding. Several

unsupervised dimensionality reduction techniques have been

proposed for this purpose. Principal component analysis (PCA)

is a widely used algorithm, which performs a linear projection

of high-dimensional data onto a subspace of lower dimension-

ality [18]. In this work, we use PCA as a CC method to get

the information required by the pilot allocation algorithm2.

The main idea behind PCA is to find the components that

maximize the variance of the projected data. To obtain CC

points via PCA, we first centralize the features in zero, so that

F = [f1−f1, . . . , fK−fK ], where fk is the mean of feature k.

Then, we apply eigenvalue decomposition on the covariance

matrix of the centralized features F, i.e.,

FHF = UΣU, (14)

where Σ is the diagonal matrix formed by the eigenval-

ues of F sorted in the descending order, λ1, . . . , λK , and

U = [u1, . . . ,uK ] ∈ R
K×K is the unitary eigenvector matrix

related to Σ. Since U is unitary, the eigenvalues in Σ represent

the variances related to each eigenvector [19]. Therefore, we

finally obtain the CC points Z = [z1, . . . , zK ] ∈ R
N×K by

Z =
[√

λ1u1, . . . ,
√

λNuN

]T
. (15)

Fig. 1 illustrates CC mapping: Fig. 1(a) shows a scenario

where 64 UEs are served by a massive MIMO BS equipped

with a 128-element ULA. We considered the channel model

described in (1) for σθ = 10◦, ∆r = 0.5 and L = 200.

The triangle indicates the BS position while the UEs are

represented by circles which are colored based on their AoAs

with respect to the BS. Fig. 1(b) shows the CC obtained

via PCA. We notice that CC preserves well the angular

information for users nearby each other in the angular domain,

i.e., UEs with a similar AoA are mapped close in the CC

domain. However, UEs that have large azimuth distances suffer

from distortions in CC, which incorrectly maps them closer

than they should be [20]. The authors in [20] propose a

dimensionality reduction method based on Euclidean distance

2This is not a restriction of our proposed method; another suitable CC
methods could be incorporated as well.



(a) Considered system scenario.

(b) Channel charting mapping.

Fig. 1: Illustration of channel charting for a massive MIMO

scenario with 64 UEs: (a) The triangle represents the BS,

equipped with a 128-element ULA, and each colored circle

represents a UE, and (b) 2-dimensional channel chart mapping,

Z for N = 2, obtained via PCA from angular domain channel

features fk of size 642.

matrix completion to handle this issue. Despite this minor

distortion, the simulation results in Section V show that the

proposed CC-based method obtains high performance.

B. Pilot Allocation Strategy

Here, we present the proposed CC-based pilot allocation

algorithm, shown in Algorithm 1. Our algorithm relies on an

observation that a PCA-based CC map for a typical mMTC

uplink communication scenario has a curved line shape, as

illustrated in Fig. 1(b). Thus, provided that that CC captures

well the angular distances among UEs, our greedy algo-

rithm allocates the orthogonal pilot sequences in an ordered

way φ1,φ2, . . . ,φτ ,φ1,φ2, . . . by traversing through the CC

curve, aiming at maximizing the distances between the same

pilot sequences.

The first step in Algorithm 1 is to allocate the first pilot

sequence φ1 to one of the users. For now, allow φ1 to be

allocated to a random UE; later on, we discuss the impact

of an alternative initialization. Then, we greedily allocate the

next orthogonal pilot sequence, φ2, to the unassigned UE

with the smallest distance to the previously allocated user

Algorithm 1: CC-based pilot assignment algorithm

Input : 1) The number of UEs K, 2) the pilot length

τ , and 3) the CC points zk, k ∈ K.

Output: A pilot assignment X = [x1, . . . ,xK ]
T
.

1 Initialize the set of unassigned UEs Kun = K, and the

set of unassigned pilots T un = T .

2 Select a random UE k and initialize the auxiliary

variable k′ with it, i.e., k′ = k.

3 Assign φ1 to user k and update the set of unassigned

UEs and pilots, i.e., Kun ← Kun \ {k} and

T un ← T un \ {1}.
4 Initialize the auxiliary variable: p = 2.

5 while Kun 6= ∅ do

6 if T un = ∅ then

7 Reinitialize: T un = T and p = 1.

8 end

9 Assign pilot φp to user k, i.e., xk = φp, that

satisfies k = argmin
k∈Kun

‖zk − zk′‖2.

10 Update the set of unassigned UEs,

Kun ← Kun \ {k}, and the set of unassigned

pilots, T un ← T un \ {p}.
11 Update k′ = k and p = p+ 1.

12 end

k′, i.e., we find k that minimizes ‖zk − zk′‖2 (Line 9).

We repeat this process until all orthogonal pilot sequences

have been allocated. Once the last orthogonal pilot sequence

φτ has been allocated after τ iterations, we start to repeat

the steps by allocating the first sequence φ1 to the closest

unassigned UE from the precedent allocated user. We repeat

this process until all UEs have been assigned a pilot sequence.

Note that once the CC has been generated, the pilot allocation

strategy summarized in Algorithm 1 enjoys low computational

complexity due to greedy-based search among the UEs.

Assuming that CC perfectly captures the angular distances

among UEs and we made a "good" choice when assigning the

first pilot sequence (chose the one of the UEs in the extremities

of the angular domain), our algorithm efficiently assigns the

pilot sequences to avoid pilot contamination. Note that we face

additional interference from initialization only if the last UE

processed by the algorithm receives the first pilot sequence.

V. SIMULATION RESULTS

We consider K = 64 users uniformly distributed in a cell

as depicted in Fig. 1(a) and a BS equipped with a critically

spaced (∆r = 0.5) 128-element ULA. The propagation chan-

nel between the kth user and the BS consists of L = 200
paths. We assume channel normalization, i.e., βk = 1, ∀ k.

We use binary phase shift keying (BPSK) for the channel

estimation and quadrature phase shift keying (QPSK) for the

data transmission.

We consider three baseline pilot assignment methods:

• “Random”: A random pilot assignment scheme.
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Fig. 2: Impact of the angular standard deviation σθ. Figs. 2(a)–(c) present the normalized average square error (NASE) for the

channel estimation. Figs. 2(d)–(f) present the symbol error rate (SER).

• “Real position”: A multi-cell pilot assignment method

proposed in [9] adapted to a single-cell scenario. This

method relies on the exact UEs’ positions and does not

require covariance information.

• “SGPS”: The statistical greedy pilot scheduling (SGPS)

developed in [10] that, similarly to our method, relies

on the knowledge of the channel covariance matrices.

Differently, we perform CC on them to assign the pilots;

this also obviates the need to store them at the BS.

We evaluate the performance of methods in terms of 1)

the normalized mean square error in the channel estima-

tion, NMSE =
E[‖Ĥ−H‖2

F ]
E

[
‖H‖2

F

] , which is numerically evaluated

via Monte-Carlo averaging over independent simulation re-

alizations and presented as normalized average square error

(NASE), and 2) the symbol error rate (SER), which assesses

the impact of the pilot reuse on the data rate.

Fig. 2 depicts the impact of the angular standard deviation

σθ on channel estimation error (Figs. 2(a)–(c)) and SER

(Figs. 2(d)–(f)) as a function of SNR for a pilot reuse factor

K/τ = 4. We can see from Figs. 2(a)–(c) that the proposed

method outperforms the baseline methods for all simulated

scenarios. One should note that the “Real position” pilot

assignment method was primarily developed for a multi-cell

scenario; UEs with similar AoAs are grouped and assigned

orthogonal sequences. However, no policy guides the alloca-

tion within the groups. Also, we observe that the smaller the

angular spread Ak, the smaller the channel estimation error.

This happens because the likelihood of UEs having overlap-

ping Ak’s decreases as Ak decreases. Since the receiver relies

on the estimated channel, it is expected that the SER also

improves as we improve the estimation for the channel, which

is confirmed in Figs. 2(d)–(f). It can be further noticed that σθ

has a great impact on both SER and NASE, e.g., the NASE

for the random pilot assignment with σθ = 10◦ is lower than

that obtained for all compared methods with σθ = 15◦.

Fig. 3 presents the performance of the proposed method for

different pilot reuse factors K/τ = {2, 4, 8} and a fixed angu-

lar standard deviation, σθ. Following [4], we adopt σθ = 10◦

which is a suitable value for an urban environment. Similar

to Fig. 2, the proposed scheme outperforms all compared

methods. We observe from Fig. 3(c) that the performance

of the proposed algorithm provides significant improvement

for a pilot reuse factor of 2: for example, at 20 dB SNR,

we achieve more than 12.5 dB gain with respect to random

pilot assignment and 6 dB gain with respect to SGPS. From

Figs. 3(d)–(f) we notice how big is the impact of the pilot reuse

factor on SER. The proposed method achieves SER values

from 2.8× 10−1 for a pilot reuse factor of 8, up to 5× 10−5

when K/τ = 2, at 20 dB SNR.

VI. CONCLUSIONS

This paper addressed the pilot contamination problem in

a single cell for massive MIMO systems. We proposed a

novel pilot reuse approach which relies on CC to exploit the

spatial/angular information present in CSI to tackle the pilot

contamination problem. The proposed pilot assignment utilizes

CC mapping to maximize the AoA distances between the same
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Fig. 3: Performance of the pilot allocation algorithms for a fixed angular standard deviation σθ = 10◦ and different pilot reuse

factors K/τ = {2, 4, 8}.

pilot sequences. The proposed method showed significant

improvements in terms of channel estimation error and symbol

error rate as compared to existing pilot allocation schemes.
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